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NLR family pyrin domain containing 3 (NLRP3) is expressed in immune cells,

especially in dendritic cells and macrophages and acts as a constituent of the

inflammasome. This protein acts as a pattern recognition receptor identifying

pathogen-associated molecular patterns. In addition to recognition of pathogen-

associated molecular patterns, it recognizes damage-associated molecular

patterns. Triggering of NLRP3 inflammasome by molecules ATP released from

injured cells results in the activation of the inflammatory cytokines IL-1b and IL-18.

Abnormal activation of NLRP3 inflammasome has been demonstrated to

stimulate inflammatory or metabolic diseases. Thus, NLRP3 is regarded as a

proper target for decreasing activity of NLRP3 inflammasome. Recent studies

have also shown abnormal activity of NLRP3 in ischemia/reperfusion (I/R) injuries.

In the current review, we have focused on the role of this protein in I/R injuries in

the gastrointestinal, neurovascular and cardiovascular systems.

KEYWORDS
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Introduction

NLR family pyrin domain containing 3 (NLRP3) gene is located on chromosome

1q44. The protein encoded by this gene is expressed in immune cells, especially in

dendritic cells and macrophages and acts as a constituent of the inflammasome (1). In

addition, NLRP3 is expressed in smooth muscle cells, endothelial cells, beta cells and
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cardiomyocytes (2–4). The pyrin-like protein encoded by this

gene has a pyrin domain, a nucleotide-binding site (NBS)

domain, and a leucine-rich repeat (LRR) motif. NLRP3

interacts with pyrin domain of apoptosis-associated speck-like

protein comprising a CARD. Mutations in this gene have been

detected in some organ specific autoimmune disorders. Being an

element of the innate immune system, NLRP3 acts as a pattern

recognition receptor (PRR) that identifies pathogen-associated

molecular patterns (5). PRRs are receptors involved in the

recognition of endogenous or exogenous invaders. These

receptors can trigger an appropriate immune response to

preserve the host integrity. Five groups of PRRs have been

identified: Toll-like receptors, nucleotide oligomerization

domain-like receptors, retinoic acid-inducible gene-I-like

receptors, C-type lectin receptors, and absent in melanoma-2-

like receptors (ALRs) (6). Among them, NLRP3 belongs to the

NOD-like receptors. NLRP3 in addition to the adaptor ASC

protein creates the caspase-1 activating complex NLRP3

inflammasome. In addition to recognition of pathogen-

associated molecular patterns (PAMPs), it recognizes Damage-

Associated Molecular Patterns (DAMPs).

NLRP3 and some other types of NLRs can create huge

cytosolic protein complexes (probably hexamers or heptamers)

called inflammasomes, which contribute to the initiation of

cleavage and activation of procaspase-1 leading to proteolytic

activation of pro- IL-1b and pro-IL-18 (7).
Abbreviations: tMCAO, transient middle cerebral artery occlusion; MCA,

middle cerebral artery; CIS, Cerebral ischemic stroke; CSF1R, colony-

stimulating factor 1 receptor; KCs, Kupffer cells; RGCs, retinal ganglion

cells; LVECs, lung vascular endothelial cells; BMDMs, Bone marrow-derived

macrophages; NRCMs, neonatal rat cardiomyocytes; NRVMs, Neonatal rat

ventricle myocytes; CFs, cardiac fibroblasts; PRSCA, Primary rat spinal cord

astrocytes; CMPK2, Cytidine monophosphate kinase 2; AIM2, absent in

melanoma 2; MDA, Malondialdehyde; MPO, myeloperoxidase; TAC, total

antioxidant capacity; AMH, anti-Müllerian hormone; TER, transepithelial

electrical resistance; I-FABP), intestinal fatty binding protein; CAT, Catalase;

Sirt-1, Sirtuin-1; H/R, Hypoxia/reoxygenation; OGD, oxygen and glucose

deprivation; IP3R1, Intracellular ion channel inositol 1,4,5-triphosphate

receptor; LDLR, Low-density lipoprotein receptor; BMVECs, brain

microvascular endothelial cells; PMNs, polymorphonuclear leukocytes;

HSPA8, heat shock protein family A; CHOP, C/EBP homologous protein;

CCR4, chemokine receptor type 4; MARK4, microtubule affinity-regulating

kinase 4; Drp1, dynamin-related protein 1; UCP2, uncoupling protein 2;

CKLF1, Chemokine-like factor 1; PMC, Primary microglial cell; Trx1,

hioredoxin1; Nrf2, Nuclear factor erythroid 2-related factor 2; TXNIP,

thioredoxin interacting protein; AIM2, absent in melanoma 2; NLRC4,

CARD domain containing 4; TLR, Toll-like receptor 2; TRAF6, TNF

receptor-associated factor 6; PCN, Primary cortical neuron; XIAP, X-linked

inhibitor of apoptosis protein; AMPK, AMP-activated protein kinase;

CRAMP, antimicrobial peptide Cathelicidin.
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Activation of NLRP3 inflammasome needs a priming step

that leads to up-regulation of NLRP3 and IL-1b in addition to

NLRP3 post-translational licencing. A succeeding activation step

results in the assemblage of the complex and caspase-1-mediated

cleavage of pro-IL-18 and pro-IL-1b, permitting their release.

The activation step can be triggered by a wide array of factors

such as PAMPs and DAMPs, e.g. nigericin toxin, extracellular

ATP, silica and cholesterol crystals (8).

In cooperation with the adaptor ASC protein, NLRP3

establishes the caspase-1 activating complex NLRP3

inflammasome. In its inactivate form, cytoplasmic NLRP3 is

kept in a complex with HSP90 and SGT1. Crystalline uric acid

and extracellular ATP released by injured cells result in the

release of HSP90 and SGT1 from the NLRP3 inflammasome and

recruitment of ASC protein and caspase-1 to this complex

leading to activation of the pro-inflammatory cytokine, IL-1b
(5). Consistent with this function, mutations in the NLRP3 gene

have been found to be associated with elevation of IL-1b
concentrations in the serum (9, 10). Moreover, incorrect

induction of NLRP3 inflammasome has been reported to

stimulate inflammatory or metabolic diseases. Thus, NLRP3 is

regarded as a suitable target for decreasing activity of NLRP3

inflammasome. Recent studies have also shown abnormal

activity of NLRP3 in ischemia/reperfusion (I/R) injuries. I/R

injury is the tissue damage resulting from tissue reperfusion with

blood after a period of ischemia (11). The lack of blood-born

oxygen and nutrients in the course of ischemic period produces a

condition in which the reestablishment of circulation leads to

inflammation and oxidative damage via stimulation of oxidative

stress instead of normal function (11). In the current review, we

have focused on the role of this protein in I/R injuries in the

gastrointestinal, neurovascular and cardiovascular systems.
Gastrointestinal I/R injury

The role of NLRP3 has been assessed in I/R injury in the liver

and intestine (Figure 1). NLRP3 inflammasome activation in

Kupffer cells can lead to I/R injury in liver cells. The NLRP3-

associated hyper-inflammation can be prevented by mitophagy,

a process that preserves mitochondrial homeostasis via removal

of injured mitochondria. An in vivo study has shown significant

inflammatory responses , over-act ivation of NLRP3

inflammasome and enhancement of PTEN-induced putative

kinase1 (PINK1)-facilitated mitophagy in the process of

hepatic I/R. Up-regulation of PINK1 has decreased I/R injury,

production of reactive oxygen species (ROS), NLRP3 activation

and inflammatory responses in the liver in animal models. In

vitro anoxia/reoxygenation challenges could trigger NLRP3

activation in Kupffer cells and promote mitophagy. PINK1-

mediated enhancement of mitophagy could inhibit NLRP3

activation and reverse the Kupffer cells-mediated inflammatory

responses against hepatocytes (14). Another study has found
frontiersin.org
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hyper-activation of NLRP3 in both hepatocytes and

macrophages of aged animals following I/R. NLRP3 silencing

in macrophages has suppressed inflammatory responses and

hepatic tissue injury in both young and aged animals. Notably,

aged macrophages have exhibited hyper-activation of the

STING/TANK- TBK1 signals following I/R. Inhibition of

STING could block hyperactivity of NLRP3 signals and

abnormal production of inflammatory cytokines in the

mtDNA-induced bone marrow-derived macrophages of aged
Frontiers in Immunology 03
animals. Taken together, STING/NLRP3 axis has been shown to

exert critical roles in the induction of inflammatory responses in

aged macrophages (15).

Expression of the specific macrophage subunit of vacuolar

ATPase (ATP6V0D2) has been reported to be up-regulated in

hepatic macrophages after liver I/R surgery. Notably,

ATP6V0D2 silencing has led to enhancement of secretion of

inflammatory factors and chemokines, and subsequent

activation of NLRP3 and exacerbation of hepatic damage.
FIGURE 1

A schematic illustration of the role of NLRP3 Inflammasome involved in the hepatic I/R injury. Mounting evidence has detected that STING/TBK1/
NLRP3 signaling cascade can play a remarkable role in modulating innate immune activation and promoting liver IR injury in aged mice. STING can
regulate the activation of NLRP3 signaling and excessive secretion of proinflammatory cytokines in the mtDNA-stimulated bone marrow-derived
macrophages from aged mice. Moreover, STING upregulation in macrophages can elevate the detrimental role of aging in aggravating liver IR injury
and intrahepatic inflammation (12). Furthermore, another research has illustrated that XBP1 can regulate macrophage cGAS/STING/NLRP3 activation
via elevating macrophage self-mtDNA cytosolic leakage in liver fibrosis. Therefore, macrophage self-mtDNA can play an effective role as an intrinsic
trigger for macrophage cGAS/STING activation that can be modulated through regulating XBP1/mitophagy (13).
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Mechanistically, the intensified activation of NLRP3 has been

accompanied by the ATP6V0D2-regulated autophagic flux.

ATP6V0D2 silencing has reduced establishment of

autophagolysosome and exacerbated hepatic I/R injury via

nonspecific V-ATPase activation (16).

Another study has shown that SET8 lessens I/R injury in liver

via suppression of MARK4/NLRP3 inflammasome route (17).

Hepatic I/R stimuli have been shown to increase expression of

NLRP3 but not ASC. Lower I/R liver injury has been detected in

NLRP3(-/-) mice, but not in ASC(-/-) and caspase-1(-/-) mice.

NLRP3 knock-out mice has also exhibited decreased

inflammatory response, neutrophils infiltration, ROS

production, and apoptosis in the liver after I/R. Further

functional studies have revealed that NLRP3 regulates

chemokine-mediated function and neutrophil recruitment in an

independent manner from its function in inflammasomes (18).

NLRP3 inflammasome has also been found to participate in

the intestinal I/R injury. Down-regulation of NLRP3, ASC,

caspase-1/11, or IL-1b has increased cell survival following

intestinal I/R injury. Additionally, intestinal I/R injury has

resulted in acute lung injury. The pathological features such as

inflammation, ROS production and increased vascular

permeability have been ameliorated by NLRP3 down-

regulation. Additional studies have shown the critical role of

NLRP3 expression in non-bone marrow-derived cells in the

evolution of intestinal I/R-induced acute lung injury. In

addition, activation of NLRP3 inflammasome in endothelial

cells of lung has been shown to contribute to the intestinal I/

R-induced acute lung injury (19).

I/R injury has also been found to disrupt barrier and induce

cell death and pyroptosis. Notably, metformin has been found to

protect intestinal barrier against I/R injury, reduce oxidative

stress and the inflammatory responses, and decrease expression

of NLRP3, cleaved caspase-1, and the N-terminus of GSDMD. In

fact, the protective effect of metformin is exerted through

modulation of TXNIP/NLRP3/GSDMD proteins (20)

(Figure 2). Moreover, the autophagy inducing agent

Rapamycin has been shown to attenuate intestinal I/R induced

NLRP3 inflammasome activity, thus ameliorating inflammatory

responses during the course of intestinal I/R injury (21). Table 1

summarizes the role of NLRP3 in I/R Injury in liver

and intestine.
Neurovascular I/R injury

The role of NLRP3 has also been investigated in

neurovascular I/R injury. An experiment in animal models of

cerebral I/R induced by transient occlusion of middle cerebral

artery and subsequent reperfusion surgery has shown down-

regulation of SPATA2 expression in these models. SPATA2 has

been shown to be co-localized with CYLD in neurons. Down-

regulation of Spata2 has led to increased microglia, up-
Frontiers in Immunology 04
regulation of Tnfa, Il-1b, and Il-18, and elevation of the infarct

size. Moreover, Spata2 knockdown has enhanced activity of

P38MAPK, NLRP3 inflammasome and NF-kB signals (26).

Another study has shown prompt activation of NLRP3

inflammasome in microglia following cerebral I/R injury onset

and subsequent expression of this protein in neurons and

microvascular endothelial cells afterwards. Besides,

mitochondrial dysfunction has been reported to participate in

activation of NLRP3 inflammasome in microglia. Thus,

mitochondrial protectors could block NLRP3 inflammasome

activity in art models of cerebral I/R. Taken together, NLRP3

inflammasome is activated in a cell type-dependent manner at

different phases of cerebral I/R injury (27). Meanwhile, Nrf2

could inhibit activation of NLRP3 inflammasomes via regulating

Trx1/TXNIP complex in cerebral I/R injury (28).

NLRP3 could also affect pathologic processes in acute

cerebral infarction. In fact, ecosapentaenoic acid exerts its

protective effects against acute cerebral infarction-associated

inflammatory responses via suppression of activation of

NLRP3 inflammasome (29). Another study has shown the

impact of IMM-H004 on focal cerebral ischemia is exerted

through modulation of CKLF1/CCR4- mediated NLRP3

inflammasome activation (30). Moreover, injection of IVIg

could suppress NLRP1 and NLRP3 inflammasome-mediated

death of neurons in cerebral I/R (31). Another study has

shown down-regulation of low-density lipoprotein receptor

(LDLR) expression following cerebral I/R injury. Notably,

knockout of this gene in animal models has led to

enhancement of caspase-1-dependent cleavage of GSDMD

leading to severe pyroptosis of neurons. Mechanistically,

defects in LDLR participate in the disproportionate NLRP3-

facilitated maturation and release of IL-1b and IL-18 during

ischemia which aggravates neurological defect and long-term

cognitive function. Obstruction of NLRP3 has stunted

pyroptosis of neurons in Ldlr-/- mice and cultured Ldlr-/-

neurons following experimental stroke. Taken together, LDLR

can modulate NLRP3-mediated pyroptosis of neurons and

inflammatory responses in these cells after ischemic stroke

(32). Similarly, defects in Uncoupling Protein 2 have been

shown to enhances activity of NLRP3 inflammasome after

hyperglycemia-associated exacerbation of cerebral I/R damage

(33). Both chemical and siRNA-mediated inhibition of GSK-3b
could improve neurological scores, decrease size of cerebral

infarct, and reduce levels of NLRP3 inflammasome, cleaved-

caspase-1, IL-1b, and IL-18. In fact, inhibition of GSK-3b
activation could enhance autophagic activity (34). Table 2

shows the role of NLRP3 in neurovascular I/R Injuries.
Myocardial I/R injury

NLRP3 inflammasome-associated pyroptosis is also

involved in myocardial I/R injury. IP3R1 protein that regulates
frontiersin.org
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release of Ca2+ from endoplasmic reticulum has been shown to

regulate pyroptosis through the NLRP3/Caspase-1 axis in

myocardial I/R injury (67). Cardiac I/R injury can be alleviated

through Calpain silencing which affects activity of the LRP3/

ASC/Caspase-1 axis (68). Similarly, Formononetin has been

shown to suppress the ROS-TXNIP-NLRP3 axis to ameliorate

myocardial I/R injury in rats (69). In contrast, uric acid could

aggravate myocardial I/R injury via ROS/NLRP3 pyroptosis

pathway (70) (Figure 3).

Another study has demonstrated that diabetes aggravates

myocardial I/R injury via influencing NLRP3 inflammasome-

associated pyroptosis. Notably, suppression of inflammasome

activation using BAY11-7082 has reduced the myocardial I/R

injury in exposed animals. Consistently, both BAY11-7082 and

the antioxidant N-acetylcysteine could reduce high glucose and

hypoxia/reoxygenation-induced injuries in cardiomyocytes in

vitro . Taken together, high glucose-induced NLRP3

inflammasome activation might depend on ROS production,
Frontiers in Immunology 05
and NLRP3 inflammasome-associated pyroptosis exacerbates

myocardial I/R injury in diabetic animals (72). Table 3 shows

the impact of NLRP3 in myocardial I/R Injury.
Other types of I/R injury

The role of NLRP3 has also been assessed in limb, renal and

testicular I/R injuries (Table 4). For instance, an experiment in

rats has shown that hydrogen-rich saline decreases acute limb I/

R-induced lung injury through decreasing levels of chemerin

and NLRP3 (86).

Moreover, TLR4-associated increase in the activity of the

platelet NLRP3 inflammasome has been reported to promote

aggregation of platelets in a mice model of hindlimb ischemia

(87). Similarly, I/R induced-acute kidney injury has been shown

to be associated with over-expression of NLRP3 is overexpressed

in chronic kidney disease (88). NLRP3 inflammasome is also
FIGURE 2

A schematic diagram of the role of NLRP3 involved in I/R Injury in intestine. Mounting evidence has demonstrated that inappropriate activation
of NLRP3 could play an effective role in the progression of I/R injury in the intestine by creating an intracellular multi-protein complex known as
NLRP3 inflammasome. As an illustration, a recent study has detected that Metformin could protect against intestinal I/R injury and decrease
oxidative stress and the inflammatory response via downregulating pyroptosis-related proteins, containing NLRP3, active caspase-1, N-GSDMD,
and the expression of TXNIP as well as the interaction between TXNIP and NLRP3 (20). Moreover, another research has figured out that
Rapamycin through inducing the process of autophagy could attenuate intestinal I/R induced NLRP3 inflammasome activation (21).
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TABLE 1 Role of NLRP3 in Gastrointestinal I/R Injury.

Disease Supplementation Human/animal study Cell line NLRP3
expression

Target/signaling
pathway

Observation Ref

Hepatic
I/R Injury

– C56BL/6 mice NPCs, KCs Up PINK1, IL-1b, TNF-a,
Caspase-1/3, p62, LC3B,
Cytochrome-c, LC3B-I/
II

PINK1-mediated mitophagy
by decreasing NLRP3
inflammasome activity could
protect against hepatic I/R
injury.

(14)

– Male C57/BL6 Mice BMDMs Up STING, TNF-a, IFN-b,
IL-1b/6/18, MCP-1,
CXCL-10, Caspase-1

Aging through enhancement
of STING-mediated NLRP3
activation in macrophages
could aggravate liver I/R
injury.

(15)

– Male C57 Mice Macrophage,
BMDMs

– ATP6V0D2, p62, ASC,
TNF-a, IL-1b/6/10/18,
LC3-I/II, Caspase-1,

Inhibition of ATP6V0D2 via
impairing Notch1/Hes1
signaling by promoting
NLRP3 activation could
aggravate liver I/R injury.

(16)

– Male C57BL/6J Mice RAW 264.7 Up SET8, MARK4,
IL-1b/18, Caspase-1

SET8 through suppression of
MARK4/NLRP3
inflammasome pathway
could mitigate hepatic I/R
injury.

(17)

– C57BL/6J Mice Hepatocyte Up ALT, AST, ASC, IL-1b/
6, TNF-a, INF-g, Ccl2,
CXCR1, CXCR2, LDH

NLRP3 could regulate
neutrophil and chemokine-
mediated functions and
contribute to hepatic I/R
injury, independently of the
inflammasome.

(18)

Morin (MRN) Male SD Rats; treated with 50 and
100 mg/kg MRN, orally, daily, for
10 days

– Up Nrf2, TLR4, TNF-a,
IL-1b/6, MDA, MPO,
TAC, Bax, Caspase-3

Morin via downregulating
NLRP3 could alleviate
hepatic I/R injury.

(22)

Male C57BL/6J Mice RAW 264.7 Up CMPK2, AIM2, IL-18,
IL-1b, TNF-a, Caspase-
1, ALT, AST

CMPK2 via the NLRP3
signaling pathway could
accelerate liver I/R.

(23)

Octreotide (OTC),
Melatonin
(MLT)

Male Albino Rats; treated with 50
and 75 mg/kg, IP, SC, 0.5 h before
the beginning of ischemia surgery,
MLT 10 mg/kg prior to ischemia
and again directly prior to
reperfusion

– Up TLR-4/6, NF-kB p65,
Bcl-2, Bax, Cytochrome-
c, Caspase-1/9, HMGB-1

OTC and MLT through
inhibition of TLR4/NF-kB/
NLRP3 pathway could
alleviate inflammasome-
induced pyroptosis in hepatic
I/R injury.

(24)

Fisetin Male C57BL/6J Mice; treated with
5, 10, and 20 mg/kg Fisetin, IP, 0.5
h before portal and artery hepatic
occlusion

RAW264.7;
2.5, 5, 10
mmol/L
fisetin during
H/R

Up GSK-3b, AMPK, TNF-
a,
IL-1b/18, Caspase-1,
ALT, AST

Fisetin by regulating GSK-
3b/AMPK/NLRP3
inflammasome pathway
could mitigate hepatic I/R.

(25)

Intestinal
I/R Injury

– C57BL/6J Mice, 6 intestinal
ischemia patients and 6 healthy
control group

LVECs Up IL-1b, IL-18, IL-6,
TNF-a, Caspase-1/3,
E-cadherin

Activation of NLRP3
inflammasome in lung
endothelial cells could
contribute to intestinal I/R
induced acute lung injury.

(19)

Metformin C57BL/6 mice; treated with 20 and
40 mg/kg metformin, IP, at the
beginning of reperfusion, then
applied an optimum I/R injury
model

Caco-2; 1-2
mM for 30
min

Up TXNIP, GSDMD,
I-FABP, TER, ZO-1,
Occludin, LDH,
IL-1b/6, TNF-a

Metformin via the TXNIP-
NLRP3-GSDMD pathway
could protect against
intestinal I/R injury and cell
pyroptosis.

(20)

Rapamycin (RAP),
Chloroquine
(CQ)

Male C57BL/6 Mice; received 3 mg/
kg RAP and 60 mg/kg CQ, IP, 1 h
prior to ischemia

Caco-2; 20
µmol/L CQ

Up TNF-a, IL-6, IL-1b,
Caspase-1, ASC, p62,
LC3-I/II, Beclin-1

Autophagy induction via
inhibiting NLRP3
inflammasome activation
could ameliorate
inflammatory responses in
intestinal I/R injury.

(21)
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TABLE 2 Role of NLRP3 in Neurovascular I/R Injury.

Disease Supplementation Human/animal study Cell line NLRP3
expression

Target/signaling pathway Observation Ref

Cerebral I/R
injury

– Male SD Rats – Up SPATA2, NF-kb, MAPK,
YNF-a,
IL-1b/18, p65, p38

SPATA2 knockdown via
NLRP3 inflammasome
activation and NF-kB/
P38MAPK signaling
could exacerbate brain
inflammation.

(26)

– Male SD Rats PMC, BV-2, PC12,
bEnd3

Up Caspase-1, ASC,
IL-1b/18

Mitochondrial
dysfunction could induce
NLRP3 inflammasome
activation during
cerebral I/R injury.

(27)

– Male SD Rats - Up Nrf2, Trx1, TXNIP, IL-1b/
18, Caspase-1

Nrf2 via regulating Trx1/
TXNIP complex could
inhibit NLRP3
inflammasome
activation.

(28)

CY-09 Male C57BL/6 Mice; treated
with 40 mg/kg CY-09, IP, 1
h before MCAO s

Neuron; 10 mM
CY-09, for 0.5 h
before OGD

Up LDLR, IL-1b/18, GSDMD,
ASC, Caspase-1, p65

LDLR regulates NLRP3-
mediated pyroptosis of
neurons following
cerebral I/R injury.

(32)

– Male C57BL/6 Mice HT22 – UCP2, ASC, SOD2,
IL-1b/18, MDA, Caspase-1,
TXNIP

UCP2 could enhance
NLRP3 activation
following HG-induced
exacerbation of cerebral
I/R injury.

(33)

– Male SD Rats - Up GSK-3b, Caspase-1,
IL-1b, IL-18, p62
LC3B-I/II

Inhibition of GSK-3b
through suppression of
NLRP3 activation via
autophagy could alleviate
cerebral I/R injury.

(34)

– Human; (n=15) blood
samples from patients and
(n=15) healthy control group

HMC3,
HMO6

– CHRFAM7A, TNF-a,
Caspase-1, IL-1b,
IL-6/18, iNOS, Arg1

Overexpression of
CHRFAM7A via
inhibiting microglia
pyroptosis could
attenuate cerebral I/R
injury.

(35)

Salvianolic Acids
(SA)

Male SD Rats; treated with
10 mg/kg SA, IP, after
MACO, treated with the
same dose every 24 h until
the day before rats sacrificing

P0–P2, primary
cortical neuron; 50
mg/mL SAFI for 24
h before OGD, and
then 50 mg/mL
SAFI

Up LDH, LDH, ASC,
IL-1b, Caspase-1, GSDMD

SA by converting M1/
M2 phenotypes and
hindering NLRP3/
pyroptosis axis could
alleviate injury in
microglia.

(36)

Meisoindigo
(MEI)

C57BL/6J Mice; treated with
2, 4, 8, 12 mg/kg MEI, IP,
before MCAO and 2 h after
reperfusion

HT-22, BV2;
(10-150 mM MEI)
at the beginning of
OGD

Up TLR4, p65, NF-kB, IL-1b,
IL-18, AQP4, ASC, Arg-1,
TNF-a, Caspase-1

MEI by impeding
NLRP3 activation and
regulating polarization of
microglia/macrophage
could protect against
focal cerebral I/R injury.

(37)

MCC950 Male Wistar Rats; treated
with 3 mg/kg MCC950, via
tail vein injection, 1 h, and 3
h after reperfusion

HT22, BMVEC;
100 nM MCC950

Up AQP4, GFAP,
IL-1b

NLRP3 inflammasome
inhibition by MCC950
could improve diabetes-
mediated cognitive
impairment.

(38)

– Male C57BL/6J Mice – Up IL-1b,
Caspase-1

Inhibition of NLRP3
inflammasome could
ameliorate cerebral I/R
injury in diabetic mice.

(39)

Acacetin Male C57BL/6 Mice; treated
with 25 mg/kg acacetin after
MCAO for 1 h

– Up TLR4, NF-kb, p65,
Caspase-1, IL-1b, TNF-a,
IL-6

Acacetin via the NLRP3
signaling could protect
against cerebral I/R
injury.

(40)
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TABLE 2 Continued

Disease Supplementation Human/animal study Cell line NLRP3
expression

Target/signaling pathway Observation Ref

Tetrandrine (Tet) Male C57BL/6J Mice; treated
with 30 mg/kg Tet, IP, daily,
for 7 days and 30 min before
and after MCAO

– Up Sirt-1, IL-1b/18, Caspase-1 Tet via Sirt-1 could
alleviate cerebral I/R
injury by suppressing the
activation of NLRP3
inflammasome.

(41)

Bakuchiol (BAK),
Brusatol (Bru)

Male C57BL/6 Mice;
treatment with 2.5 and 5 mg/
kg BAK per day for 5 days

BV-2; 200 nM Bru
for 6 h, then
incubated with 2.5-
5 mM BAK for 2 h,
followed by OGD/R
induction

Up Nrf2, ASC, HO-1
Caspase-1/3,
IL-1b/18,
Histone H3

BAK by modulating
NLRP3 inflammasome
and Nrf2 signaling could
ameliorate cerebral I/R.

(42)

Qingnao Dripping
Pills (QNDP)

Male SD Rats; treated with
0.15 g/kg QNDP, orally, 2 h
after MCAO

SH-SY5Y; 5µg/mL
during OGD

Up Bad, Bcl-XL, NF-kb,
Caspase-1/3, IL-1b, IL-18,
ASC

QNDP via inhibiting
NLRP3 could protect
against cerebral I/R
injury.

(43)

Tomentosin
(TOM)

Male SD Rats; treated with
25 and 50 mg/kg TOM for
consecutive 7 days

SH-SY5Y; 10 mg, 20
mg, 30 mg TOM, for
24 h

Up IL-1b, TNF-a,
IL-4/6/10, VEGF, Caspase-
1, TLR4, LDH, Catalase,
Glutathione peroxidase,
Glutathione, Lipid
peroxidation, Acetylcholine

TOM via TLR4/NLRP3
signaling could inhibit
cerebral I/R injury.

(44)

Qingkailing
(QKL)

Male SD Rats; 3 ml/kg QKL,
IP, injected immediately after
model establishment,
followed by 4 h, and once
every 12 h post-treatment

– Up AMPK, TNF-a,
IL-4/6/10, IL-1b, MDA,
SOD, ASC, Caspase-1

QKL via modulating
AMPK/NLRP3 signaling
could ameliorate cerebral
I/R injury.

(45)

PAP-1 Male SD Rats; treated with
40 mg/kg PAP-1, IP, after
MCAO and reperfusion
operation. Also, treated with
the same dose of PAP-1
every 12 h until the day
before rats sacrificing

P0–P2; 50 nM
PAP-1, for 24 h

Up IL-1b, M1, M2, Caspase-1 Kv1.3 channel blockade
by reformatting M1/M2
phenotypes and
modulating NLRP3
inflammasome activation
could alleviate cerebral I/
R in microglia.

(46)

Adiponectin
(APN)

Male C57BL/6 J Mice;
treated with 2, 20, and 25
mg/g, IP, immediately after
MACO

Primary astrocytes;
50 mM APN

Up AMPK, GSK-3b, Caspase-1/
3, p20,
IL-1b/18, ASC,
Bcl-2, Bax, Nrf2

APN peptide by
regulating AMPK/GSK-
3b could alleviate
oxidative stress and
NLRP3 inflammasome
activation.

(47)

Procyanidins Male SD Rats; treated with
20-80 mg/Kg injected 1 h
before occlusion

BV2,
0.01–100 mM

Up TLR4, NF-kB, Bcl-2, Bax,
p38, Caspase-1,
IL-1b

Procyanidins by
inhibiting the TLR4-
NLRP3 inflammasome
pathway could exhibit
neuroprotective activities
against cerebral I/R
injury.

(48)

Sulforaphane
(SFN), Genipin,
MCC950

Male C57Bl/6N Mice; treated
with SFN, Genipin, MCC950
(25, 2, 50 mg/kg), via IP
injection either directly
before occluding the MCA or
after the 1 h of tMCAO

– Up NLRP1a/b, NLRC4, AIM2,
IL-1b/18,
Caspase-1

Early blockade of NLRP3
by stabilizing the blood-
brain barrier and
mitigating inflammation
could protect from I/R
injury.

(49)

Cepharanthine
(CEP)

Male C57/BL6 mice; treated
with 10 or 20 mg/kg CEP 0.5
h before MCAO and
supplemented 12 h after
MCAO via IP injection

BV-2; CEP (0.25,
0.5, 1, 2.5 mg/mL)
for 30 min

Up ALOX15, Caspase-1,
IL-1b/18, SOD,
MDA

CEP by reducing
oxidative stress via
inhibiting 12/15-LOX
signals and NLRP3
inflammasome-induced
inflammation could
attenuate cerebral I/R
injury.

(50)

Electroacupuncture
(EA)

Male SD Rats; stimulated
with the frequency of 2/15

– Up EA via suppression of
NLRP3 inflammasome

(51)

(Continued)
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TABLE 2 Continued

Disease Supplementation Human/animal study Cell line NLRP3
expression

Target/signaling pathway Observation Ref

Hz and an intensity of 1 mA
for 30 min EA, for 5 days

a7nAChR, Caspase-1,
GSDMD, IL-1b/18, TGF-
b1, TNF-a

could attenuate cerebral
I/R neuroinflammation
in stroke rats.

Butyphthalide
(NBP),
CD21

C57BL/6J mice; treated with
2.5, 5, and 10 mg/kg IV at 1
min, 24 h, and 48 h after
reperfusion

– Up Caspase-1, IL-1b,
IL-6, TNF-a, TLR4, NF-kB

Phthalide derivative
CD21 via inhibiting
NLRP3 could ameliorate
cerebral I/R injury.

(52)

Hispidulin (His) Male SD Rats; treated with
40-80 mg/kg His once daily
for 3 days following I/R, IP
injection

Astrocytes;
His (5-10 mM)
for 2 h

Up Caspase-1, IL-18,
IL-1b, AMPK,
GSK-3b, ASC

Hispidulin via
suppressing NLRP3-
mediated pyroptosis
could exhibit
neuroprotective activities
against cerebral I/R
injury

(53)

Idebenone Male SD Rats; treated with
100 mg/kg Idebenone, IP

Primary microglial
cells, BV2, PC12;
(Idebenone: 0.2-2.0
mM) added after
reoxygenation

– Caspase-1,
IL-1b/18, ROS,
NQO1/2, NOX2

Idebenone via
dampening NLRP3
inflammasome activity
could attenuate cerebral
I/R injury.

(54)

D-Carvone Male Wistar Rats; treated
with 10 and 20 mg/kg D-
Carvone (IP) 15 min before
reperfusion, daily for 15 days

– Up TLR3/4, TNF-a,
IL-1b, Caspase-1,
IL-4/6/10, VEGF, ASC

D-Carvone via
downregulating TLR4/
NLRP3 pathway could
inhibit cerebral I/R
injury.

(55)

Cerebral
Ischemic Stroke
(CIS)

Ki20227 Male C57BL/6 Mice;
pretreatment with Ki20227
(0.002 mg/kg), daily, for 7
days, orally, then mice
administrated once for the
next 24 h after ischemia
induction

– Up CSF1R, TNF-a,
IL-10, Arg-1, iNOS, NF-kB,
Caspase-1

Downregulation of
CSF1R via inhibiting
microglia M1
polarization and NLRP3
could alleviate cerebral
ischemic stroke.

(56)

Genistein
(Gen)

Female C57BL/6J Mice;
treatment with 10 mg/kg
Gen, IP, for 14 days, prior to
MCAO

HT22, N9, primary
mouse microglia,
received Gen for
24 h

Up Caspase-1, IBA-1, IL-1b, Il-
18, TNF-a, LDH

Gen by inhibiting the
NLRP3 in could
attenuate acute CIS.

(57)

Acute Cerebral
Infarction
(ACI)

Eicosapentaenoic
(EPA)

C57BL/6 Mice; treated with
0, 10, 20, and 30 mg/kg EPA,
orally once daily for
2 weeks before experiments
began

BV-2; (0-30 mmol
EPA)

– Caspase-1/3, IL-1b, ASC,
IL-18, MCP-1, TNF-a

EPA via inhibiting
NLRP3 inflammasome
activation could prevent
inflammation induced by
ACI.

(29)

Focal Cerebral
Ischemia
(FCI)

IMM-H004 Male SD Rats; received 2.5,
5, 10 mg/kg IMM-H004

– – CKLF1, CCR4,
IL-1b/18, TNF-a,
ASC, Caspase-1, LDH

IMM-H004 via
modulation of CKLF1/
CCR4-mediated NLRP3
inflammasome activation
could mitigate FCI.

(30)

Intravenous
Immunoglobulin
(IVIg)

Male C57BL/6J Mice; 1 g/kg
IVIg, by infusion into the
femoral vein, after
reperfusion (3 h);
Human Brain Tissues

PCN Up NLRP1, ASC, XIAP,
caspase-1/3/11,
IL-1b/18

Injection of IVIg could
suppress NLRP1 and
NLRP3 inflammasome-
mediated death of
neurons in cerebral I/R.

(31)

Hypoxia
Ischemic Stroke

YC-1 Male SD Rats; treated with 5
mg/kg YC-1 via IP injection
2 hours before MCAO

– Up HIF-1a, Caspase-1,
IL-1b, IL-18, MPO

YC-1 via downregulating
HIF-1a could inhibit
NLRP3 inflammasome-
dependent pyroptosis
and apoptosis.

(58)

Hemorrhagic
Transformation
(HT)

Melatonin Male SD Rats; treated with
15, 50, and 150 mg/kg
melatonin IP injected to rats
at 2 h after MCAO

– Up ROS, IL-1b,
Caspase-1,

Melatonin via
suppressing ROS-
induced NLRP3
activation after cerebral
ischemia could
ameliorate HT in
hyperglycemic rats.

(59)
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TABLE 2 Continued

Disease Supplementation Human/animal study Cell line NLRP3
expression

Target/signaling pathway Observation Ref

Peroxynitrite
(PN)

Male SD Rats; treated with 3
mg/kg uric acid (a
peroxynitrite scavenger) and
16 mg/kg FeTmPyP (a
representative peroxynitrite
decomposition catalyst), IV,
upon reperfusion

b.End3, PC12; (20,
40 mM PN, for 2 h)

Up iNOS, p47phox,
MMP-2/3/9, ASC
Caspase-1, IL-1b

PN via activating NLRP3
inflammasome could
contribute to HT and
poor outcomes in
ischemic stroke.

(60)

Ischemia Brain
Injury
(IBI)

Panax Ginseng
and Angelica
(CPA), ginsenoside
Rd (Rd) and Z-
ligustilide (LIG)

Male SD Rats; treated with
(4.5 and 9 g/kg CPA; orally,
once daily, for 3 days before
MCAO and for 7 days
following MCAO

BV-2; Rd (0.1, 1.0,
10 mmol/l) and LIG
(1, 2.5, 10 mmol/l)
alone or in
combination, for 2
h, and then
exposed to OGD/R

Up Caspase-1, IL-1b, GSMD,
GSMD-NT, LDH, DRP1,

The combination of CPA
through inhibiting
NLRP3 activation and
microglial pyroptosis
could alleviate IBI.

(61)

– SD Rats – Up Caspase-1, IL-1b Activation of NLRP3/
Caspase-1/IL-1b
signaling could enhance
after IBI.

(62)

Progesterone
(PROG)

Male SD Rats; 8 mg/kg
PROG, IP, injected 2 h post-
ischemia followed by S.C
injection at 6 h, and once
every 24 h post-injury for 5
days

– Up HMGB1, TLR4, ASC,
Caspase-1,
IL-1b, IkBa,
LC3-I/II, LC3

PROG via enhancing
autophagy following IBI
could attenuate stress-
induced NLRP3
activation.

(63)

Spinal Cord I/R
Injury

– Male SD Rats PRSCA Up NF-kb, GFAP, p65, p20,
HSPA8, ASC,
Caspase-1, IL-1b/18

Inhibition of HSPA8 via
astrocyte NF-kb/NLRP3
inflammasome axis
could attenuate spinal
cord I/R injury.

(64)

Retinal I/R
Injury

Puerarin Male SD Rats; treated with
25, 50 100 mg/kg puerarin at
1h, 24h, and 48h after I/R

RGCs;
(100 mM puerarin)

– TLR4, ASC, IL-18,
IL-1b, MyD88,
TRAF-6,
Caspase-1

Puerarin through
suppression of the
activation of TLR4/
NLRP3 inflammasome
could ameliorate retinal
ganglion cell damage
induced by retinal I/R.

(65)

Sulforaphane
(SFN)

Female SD Rats; treated with
5, 10, and 20 mg/kg SFN,
orally started 1-week before
acute glaucoma surgery

RGCs Up TNF-a, IL-1b,
MHC-II, ASC, Caspase-3

SFN by suppressing
NLRP3 inflammasome
could alleviate retinal
ganglion cell death.

(66)

– Male Brown Norway Rat – Up TLR2/4, MyD88, TRAF6,
NF-kb, NLRP1, ASC,
Caspase-1/3, IL-1b/18

Retinal I/R could
mediate by TLR4
activation of NLRP3
inflammasome.

(65)
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implicated in the tissue injury and impairment of

spermatogenesis caused by testicular I/R (89). Specific

inhibitors of NLRP3 inflammasome, namely BAY 11-7082

(90) and Brilliant Blue G (BBG) (91) have been found to

suppress effects of NLRP3 in an animal model of testicular I/R

(89). Both agents could significantly reduce expressions of IL-1b
and IL-18, diminish caspase-1 and caspase-3 levels and preserve

spermatogenesis, representing a selective decrease in the activity

of NLRP3 inflammasome (89). Moreover, NLRP3 knock-out

mice has responded to I/R injury with a diminished level of

induction of inflammatory and apoptosis cascade compared

with wildtype animals. Thus, NLRP3 might be an appropriate

target for new drugs for treatment of I/R injury after testicular

torsion (92).
Frontiers in Immunology 10
Discussion

NLRP3 is an essential element in the inflammasome whose

activation by tissue injuries or pathogens leads to cleavage of

caspase-1 by an autocatalytic process and release of

inflammatory factors IL-1b and IL-18 (10). Thus, abnormal

function of NLRP3 has been associated with development of

several immune-related disorders. Consistently, NLRP3

targeting has been suggested as an interesting method for

design of therapeutic modalities for management of NLRP3

inflammasome-related disorders (93). Several in vitro and

animal studies have assessed the role of NLRP3 in

gastrointestinal, neurovascular and cardiac I/R injuries. The

results of these studies indicate critical role of this protein in
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FIGURE 3

A schematic illustration of the role of NLRP3 Inflammasome and its central role in the myocardial I/R injury. Accumulating evidence has
illustrated that Luteolin could have a key role in protecting against myocardial I/R injury as opposed to Uric acid that could aggravate this injury
through ROS/NLRP3 pyroptosis pathway. It has been reported that Luteolin could protect against myocardial I/R injury through TLR4/NF-kB/
NLRP3 inflammasome cascade by downregulating the expressions of NLRP3, ASC, caspase-1, TLR4, MyD88 and the phosphorylations of IKKa,
IKKb, IkBa, and NF-kB (71).
TABLE 3 Impact of NLRP3 in Myocardial I/R Injury.

Disease Supplementation Human/animal
study

Cell line NLRP3
expression

Target/signaling
pathway

Observation Ref

Myocardial
I/R Injury

– SD Rats H9C2 Up IP3R1, ERP44, ASC,
IL-1b/18, Caspase-1,
CK-MB, GSDMD-N

IP3R1 via the NLRP3/Caspase-1
pathway could regulate Ca2+

transport and pyroptosis.

(67)

Myocardial
I/R Injury

– Male C57BL/6 Mice - Up Calpain, ASC,
Caspase-1, CHOP,
GRP78, C/EBP

Calpain silencing via the LRP3/
ASC/Caspase-1 axis could alleviate
myocardial I/R injury in mice.

(68)

– Male SD Rats H9C2 Up CK-MB, LDH, ROS
Caspase-1, IL-1b,

NLRP3 inflammasome activation
could aggravate myocardial I/R in
diabetic rats.

(72)

Formononetin
(FN)

Male SD Rats; treated
with 10 and 30 mg/kg
FN following 60 min
ischemia via IP injection

NRCMs; 1 and
10 µM FN for
2 h

Up TXNIP, Bcl-2, Bax,
Caspase-1, ASC,
TNF-a, IL-1b, IL-6

Formononetin by suppressing the
ROS-TXNIP-NLRP3 pathway
could ameliorate myocardial I/R
injury in rats.

(69)

Potassium Oxonate
(PO)

Male Kunming Mice;
treated with 300 mg/kg
PO for 14 consecutive
days

Cardiomyocyte,
100-400 mg/L

Up Caspase-1/3, ASC,
IL-1b

Uric acid via ROS/NLRP3
pyroptosis pathway could
aggravate myocardial I/R injury.

(70)

Metformin – AMPK, IL-1b, IL-18,
TNF-a, Caspase-1 ACC,

Metformin via AMPK/NLRP3
inflammasome pathway could

(73)
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TABLE 3 Continued

Disease Supplementation Human/animal
study

Cell line NLRP3
expression

Target/signaling
pathway

Observation Ref

SD Rats; treated with
50 µM metformin for
15 min besides I/R injury

NRVMs, 5 mM
metformin, 30
min

Bax, BCl-2, COL-I/III,
CK-MB, cTnI

protect against myocardial
pyroptosis.

Ethyl Pyruvate
(EP)

Male SD Rats; treated
with 50 mg/kg EP via tail
vein 1h before ischemia

H9c2; 10 mM
EP

Up ASC, Caspase-1,
IL-1b, NOX4, CPT1A,
TXNIP, ERK, p38

EP via regulating ROS-related
NLRP3 inflammasome activation
could protect against myocardial
I/R.

(74)

M2 Macrophage-
Derived Exosomes
(M2-exos)

SD Rats; injected M2-
exos 2–3 mg per rat via
the caudal vein 2h before
I/R procedure

NRCMs;
pretreated with
M2-exos

Up miR-148a, TXNIP, TLR4,
NF-kB, ASC, p65, IL-1b,
IL-4/18, lkBa

M2-exos carried miR-148a
through suppression of TXNIP
and the TLR4/NF-kB/NLRP3
inflammasome could alleviate
myocardial I/R injury.

(75)

Scutellarin
(Scu)

SD Rats; treatment with
5, 10, and 20 mg/kg Scu,
IP, 15 min before
vascular ligation

H9c2; 3.125,
6.25, 12.5 µg/
ml Scu, 6 h
before OGD

Up CK-MB, cTnI, Myo, P62,
Beclin-1, LC3BII/I,
TNF-a, IL-1b, IL-18,
Caspase-1, HK-1, Akt

Scu by suppressing NLRP3
inflammasome activation could
protect against myocardial I/R.

(76)

Luteolin
(Lut)

Male SD Rats; treated
with 40, 80, 160 mg/kg
Lut, orally, for 7 days
before the operation

H9c2; 5, 10,
and 20 mM
Lut

Up TLR4, NF-kb, IL-1b/18,
TNF-a, MyD88, ASC,
Caspase-1, CK-MB,
IKKa/b, IkBa

Lut via targeting TLR4/NF-kb/
NLRP3 inflammasome pathway
could modulate myocardial I/R
injury.

(71)

OLT1177
(Dapansutrile)

Male ICR (CD1) Mice;
treated with 6, 60, 600
mg/kg OLT1177, IP, after
60, 120, 180 min
reperfusion

– – Caspase-1 Inhibition of NLRP3
inflammasome by OLT1177 could
reduce infarct bulk and preserve
contractile function after I/R
injury in mice.

(77)

– Male C57BL/6 Mice PMN – TLR4, CRAMP, P2X7R,
cTnI, IL-1b/6, TNF-a

Cathelicidin via activating TLR4
and P2X7R/NLRP3 inflammasome
could aggravate myocardial I/R
injury.

(44)

Puerarin
(Pue)

Male C57BL/6 mice;
treated with 100 mg/kg
Pue, IP, 15 min or 20
min prior to reperfusion

– Up SIRT1, NF-kb, CK-MB,
TNF-a, IL-1b/6/18,
Caspase-1/3, Bcl-2,
Bax, p65

Puerarin by inhibiting
inflammation and the NLRP3
inflammasome could protect
against myocardial I/R.

(78)

Hydrogen gas
(HG)

Male SD Rats; inhaled
2% concentration HG

– Up ROS, MDA, 8-OHdG,
Caspase-1, p20,
ASC, IL-1b, cTnI

HG inhalation by the inhibition of
oxidative stress and NLRP3-
mediated pyroptosis could
alleviate myocardial I/R injury.

(79)

Biochanin A
(BCA)

Male SD Rats; treated
with 12.5, 25, and 50 mg/
kg BCA, IP, every day for
7 days before the
operation

– Up TLR4, NF-kB, CK-MB,
AST, IL-1b, IL-6/18,
TNF-a, MyD88,
lkBa, ASC, Caspase-1

BCA via the TLR4/NF-kB/NLRP3
signaling could attenuate
myocardial I/R injury.

(80)

SRT1720 SIRT1flox/flox, CreERT2,
and wild-type C57BL/6
Mice; treated with 30 mg/
g SRT1720, IP, before
surgery

– Up IL-1b/18, ROS, PI3K,
AKT, PDH, AMPK,
ACC, SIRT1, PDK,
PTEN, CPT-1, PDHK1,
PDH E1a, AMPKa

SIRT1 agonist via pyruvate
dehydrogenase could modulate
cardiac NLRP3 inflammasome
during ischemia and reperfusion.

(81)

Acute
Myocardial
Infarction
(AMI)

IL-17A Wild-type C57BL/6 Mice;
treated with 0, 20, and 50
ng/mL IL-17A for 12 h

– – AMPKa, p38MAPK,
ERK1/2, IL-1b, ACC,
p20, JNK

IL-17A via AMPKa/p38MAPK/
ERK1/2 signaling by activating
NLRP3 inflammasome could
contribute to myocardial ischemic
injury in mice.

(82)

Electroacupuncture
(EA)

Male C57BL/6 Mice;
stimulated with 2/15 Hz
with an intensity level of
2 mA for 20 min, daily,
for 3 days

– Up IL-1b, Caspase-1 EA preconditioning via inhibiting
NLRP3 inflammasome activation
could attenuate AMI in mice.

(83)
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induction of I/R injuries in different tissues. Since I/R injuries are

associated with morbidity and mortality, targeting NLRP3 is a

possible strategy for reduction of disease burden. In fact,

inhibition of NLRP3 inflammasome activity can ameliorate

inflammatory responses in intestinal or hepatic I/R injury.

NLRP3 inflammasome can also aggravate pathologic events in

ischemic brain injury, spinal cord injury and retinal injury. Thus,

modulation of this cellular mechanism can be an effective

strategy for treatment of a wide variety of disorders,

particularly those associated with aging.

A number of known protective agents against cerebral

injuries such as salvianolic acids, meisoindigo, acacetin,

tetrandrine, bakuchiol, tomentosin and qingkailing have been

shown to exert their effects through modulation of expression of

NLRP3. Similarly, a number of substances such as

formononetin, metformin, ethyl pyruvate, scutellarin, luteolin,

OLT1177 (Dapansutrile), puerarin and biochanin have been

found to protect against myocardial I/R injury via suppression

of NLRP3. Thus, targeting NLRP3 is a promising strategy for

management of different types of I/R injury.

Previous studies have reported association between NLRP3

genetic variants and risk of inflammatory conditions such as

rheumatoid arthritis (94) and inflammatory bowel diseases (95).

However, the exact impacts of these variants on I/R injuries have
Frontiers in Immunology 13
not been identified yet. Identification of the role of these variants

in induction of I/R injuries would facilitate recognition of

individuals being at risk of myocardial/cerebral injuries.

Future studies are needed to find novel substances for

amelioration of NLRP3-mediated I/R injuries. Moreover, the

functional interactions between NLRP3 and other molecules that

contribute in the I/R injuries should be identified to further

design more effective therapies for this kind of tissue injuries.
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TABLE 3 Continued

Disease Supplementation Human/animal
study

Cell line NLRP3
expression

Target/signaling
pathway

Observation Ref

Ischemic
Heart
Disease
(IHD)

Resveratrol
(RSV)

Male C57BL/6J Mice;
treated with 320 mg/kg
RSV, orally, at 8 a.m and
5 p.m, 1 week before MI
surgery

NRCMs, CFs,
Macrophage,
-

Up P16/19/20/53, SIRT1,
MMP-2/9, Caspase-1/3,
IL-1b, IL-6, TNF-a, Bax

RSV via targeting NLRP3
inflammasome activation could
inhibit ischemia-induced
myocardial senescence signals.

(84)

Ischemic
Stroke

Vinpocetine
(Vinp)

Male C57BL/6 Mice;
treated with 5 and 10
mg/kg Vinp, IP, 1 h after
reperfusion

– Up IL-1b, IL-18, NF-kB,
ASC, Caspase-1,

Vinp via inhibiting NLRP3
inflammasome expression could
attenuate ischemic stroke in mice.

(85)
frontiersin
TABLE 4 Role of NLRP3 in other types of I/R Injury.

Disease Supplementation Human/animal study Cell
line

NLRP3
expression

Target/
signaling
pathway

Observation Ref

Limb I/R
Injury
(LI/R)

Hydrogen-Rich
Saline (HRS)

Male Wistar Rats; treated with 2.5 and 10
mL/kg HRS, IP, immediately after the
femoral artery occlusion

Up CHEMERIN,
IL-6, TNF-a,
MDA, SOD

HRS decreases acute limb I/R-induced lung
injury through decreasing levels of
chemerin and NLRP3.

(86)

Femoral
Artery
Ligation
(FAL)

– Male C57BL/6 Mice – Up TLR4, IL-1b,
Caspase-1

The platelet NLRP3 inflammasome could
promote platelet aggregation.

(87)

Renal I/R
Injury

– Male C57BL/6J Mice, Human Kidney Biopsy
Specimens

Up – NLRP3 is overexpressed in chronic kidney
disease after I/R induced-acute renal injury.

(88)

Testicular I/
R Injury

– Male C57BL/6J Mice,
KO Mice

– – Caspase-1/3,
IL-1b/18

NLRP3 inflammasome participates in the
impairment of spermatogenesis following
testicular I/R.

(89)
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