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Non-tuberculous mycobacteria (NTM) are ubiquitous environmental microorganisms
capable of a wide range of infections that primarily involve the lymphatic system and
the lower respiratory tract. In recent years, cases of lung infection sustained by NTM have
been steadily increasing, due mainly to the ageing of the population with underlying lung
disease, the enlargement of the cohort of patients undergoing immunosuppressive
medications and the improvement in microbiologic diagnostic techniques. However,
only a small proportion of individuals at risk ultimately develop the disease due to
reasons that are not fully understood. A better understanding of the pathophysiology of
NTM pulmonary disease is the key to the development of better diagnostic tools and
therapeutic targets for anti-mycobacterial therapy. In this review, we cover the various
types of interactions between NTM and lymphoid effectors of innate and adaptive
immunity. We also give a brief look into the mechanism of immune exhaustion, a
phenomenon of immune dysfunction originally reported for chronic viral infections and
cancer, but recently also observed in the setting of mycobacterial diseases. We try to set
the scene to postulate that a better knowledge of immune exhaustion can play a crucial
role in establishing prognostic/predictive factors and enabling a broader investigation of
immune-modulatory drugs in the experimental treatment of NTM pulmonary disease.

Keywords: non-tuberculous mycobacteria, adaptive immunity, immune checkpoint inhibitors, immune exhaustion,
immune dysfunction
INTRODUCTION

Non-tuberculous mycobacteria (NTM) are ubiquitous microorganisms that can cause severe
infections, involving in 90% of cases the lungs (NTM-LD) (1). Cases of NTM-LD are increasing
worldwide, with an incidence ranging from 8.6 to 17.7 cases per 100,000 person-year (2, 3). Once
considered restricted to immunocompromised subjects, NTM infections are now identified also in
otherwise healthy individuals (4).
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Despite being environmental microorganisms, NTM cause
disease only in a small subset of individuals at risk (5–7). The
reasons behind this pleomorphic expression are not completely
understood and have been linked to several factors. Among
pathogen-related factors, some species of NTM have high
pathogenicity, with M. malmoense and M. kansasii being
almost invariably associated with disease, whereas others like
M. gordonae do not cause pathology in the host (8). Host
predisposing factors have been also identified, with female
gender, history of cigarette smoking, and concomitant chronic
lung disease as bronchiectasis, chronic obstructive pulmonary
disease, silicosis or cystic fibrosis being among the constitutive or
acquired elements associated with the development of NTM-LD
(9). Also host factors related to the immune system, like
deficiencies in CD4+ T cell function due to HIV infection,
anti-tumour necrosis factor (TNF) therapy, and inherited
deficiencies in the production or response to interferon-gamma
(IFN-g) have been associated with disseminated NTM
infection (10).

The aim of this review is to provide a global overview of the
cell-mediated immunity directed toward NTM infection,
focusing on lymphoid cells belonging to both innate and
adaptive immunity.
THE ROLE OF INNATE LYMPHOID CELLS

The innate lymphoid cell (ILC) family is composed of natural
killer (NK) cells, ILC1, ILC2, ILC3, and lymphoid tissue-inducer
cells. ILCs are only a small proportion of the total immune cells
in the lung, but they have been found to promote lung
homeostasis and are emerging as contributors to a variety of
chronic lung diseases (11).

NK Cells
Natural killer (NK) cells are a class of innate lymphoid cells
exerting both cytotoxic and immune regulatory activities and are
identified among the lymphocyte subset by the expression of the
surface marker CD56 in the absence of CD3 (12–14). Their
subset with low CD56 expression (NKdim) targets cells
characterized by modified, downregulated, or absent host
major histocompatibility complex class 1 molecules expression.
Instead, the subset with high CD56 expression (NKbright)
produces immunoregulatory cytokines like TNF-a or IFN-g.
The activity of NK cells is finely tuned by the balance of
signals provided by activating (CD16, NKG2C/D, NKp30,
NKp44) or inhibitory (NKG2A, TIGIT, KIR3DL1, KIR3DL2)
receptors. NK cells, and especially NKdim, are well represented in
the lung where they play major effector and immunoregulatory
roles to ensure the self-integrity of the organ (15).

The role played by NK cells in the context of NTM-immunity
is unclear, despite it is possible to speculate a relevant function
related to their ability to kill cells infected by intracellular
pathogens and their relevant production of IFN-g, a key
cytokine involved in the control of mycobacterial infections
(16). In 1991, Bermudez and Young demonstrated in an in-
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vitro model that NK cells have an important role in inducing the
killing in macrophages infected with M. avium complex, both
directly and by stimulation of macrophages through TNF-a (16).
Moreover, in a mouse-model, Feng et al. showed that the
depletion of NK cells through anti-NK antibodies leads to
uncontrolled multiplication of M. avium complex, suggesting
that NK cells are crucial for the control of the infection and their
absence cannot easily be abrogated by the immune system (17).
Similarly, Lai et al. observed that NK cell depletion is associated
with increase in bacterial load and mortality in a mouse model of
NTM-LD due to M. kansasi. NK cell depletion exacerbated
NTM-induced pathogenesis by reducing macrophage
phagocytosis, dendritic cell development, cytokine production,
and lung granuloma formation. Similar pathological phenomena
were observed in IFN-g-deficient (IFN-g-/-) mice following NTM
infection and the adoptive transfer of wild-type NK cells into
IFN-g-/-mice considerably reduced NTM pathogenesis.
Furthermore, the injection of recombinant IFN-g prevented
NTM-induced pathogenesis in IFN-g-/-mice, overall suggesting
that IFN-g production by NK cells activates and shapes innate
and adaptive immune responses against NTM (18). On this
scenario, IFN-g production appears as the most important
contribution of NK cells against NTM infection. In a mouse
model of severe combined immunodefic iency , the
administration of antibodies able to abrogate NK-mediated
cytolysis did not affect M. avium infection, whereas the
neutralization of IFN-g led to a reduction in macrophage
activation and subsequent exacerbation of mycobacterial
growth (19).

Overall, NK cells appear to be important players in the
immune response against NTM in the lung, especially through
the production of the immunomodulatory cytokine IFN-g. The
understanding of their role is still incomplete and newer and
more comprehensive investigations are needed.

Innate Lymphoid Cells
Innate lymphoid cells (ILCs) are a group of innate immune
lymphocytes, subclassified into three main classes originating
from a common innate lymphoid progenitor cell (20).

Type 1 ILCs (ILC1) mediate a type 1 immune response
through the production of IFN-g and TNF-a (21). Although
found in most human tissues, ILC1 are predominant in salivary
glands, liver and the gastrointestinal tract, where they are
supposed to activate against tumour cells and intracellular
pathogens (22). Type 2 ILCs (ILC2) mediate type 2 immunity
by the production of IL-4, IL-5 and IL-13 and have been
associated with airway hyperactivity and allergic diseases (23).
Type 3 ILCs (ILC3) are proposed to be equivalent to Th17
lymphocytes due to their production of IL-22 and/or IL-17
cytokines and are mainly involved in the gut microbiota-host
homeostasis (24).

Experimental data have shown an involvement of ILCs in M.
tuberculosis (Mtb) infection with a possible role in determining
the outcome of the disease.

In a recent study, Corran et al. investigated local activation of
lung resident ILCs in a murine model of Mtb infection. They
June 2022 | Volume 13 | Article 927049
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reported thatMtb had a profound impact on ILC phenotype and
induced a differentiation of ILC precursors toward an IFN-g-
producing subset (ILC1-like cells) (25).

Ardain et al. showed both depletion of ILC subgroups,
especially ILC1 and ILC2, in the peripheral blood of patients
with ongoing tuberculosis and their restoration after clearance of
Mtb. The authors speculated that circulating ILCs are not lost
from the blood due to cell death, but they migrate to the site of
infection. In confirmation of this hypothesis, the authors
demonstrated resident ILCs in lung biopsies of Mtb-infected
participants using established markers. Consistently with these
findings, ILC3 accumulation in the lungs of animal models was
postulated as instrumental to massive macrophage recruitment
in response to mycobacterial infection and mice lacking ILC3
showed reduced macrophage accumulation and poor infection
control (26, 27).

Regarding NTM, no data are currently available about the
role of ILC, even though is possible to postulate a lung
recruitment and activation of them in the early stages of
NTM-LD.
UNCONVENTIONAL T CELLS

The family of unconventional T cells is composed of various
subsets of innate-like effectors, which play a role in the protection
against infectious non-self by mounting rapid immune responses
and showing immunoregulatory capabilities. In particular, the
subsets of unconventional T cells that have been better
characterized are natural killer T (NKT) cells, mucosal-
associated invariant T (MAIT) cells, and gd T cells.

These subsets are defined by the expression of highly
evolutionarily conserved semi-invariant ab or gd T-cell
Receptors (TCR), which allow unconventional T cells to sense
lipidic antigens, small molecules derived from microbial
metabolism and other non-polymorphic molecules (28, 29).
Furthermore, each unconventional TCR is able to recognize
multiple antigenic specificities, aiming predominantly at
pattern recognition of structures that are present across
microbic species and are highly conserved (30). All
unconventional T cells develop from common T cells
precursors in the thymus, where they acquire the capability of
moving to barrier tissues (28). Here, unconventional T cells can
both mount immune responses based on the release of massive
amounts of cytokines and stimulate the differentiation of CD4+
or CD8+ T-cell lineages (31).

Natural Killer T Cells
Natural killer T (NKT) cells constitute a subset of
unconventional ab T lymphocytes (32). Their peculiarity
consists of the expression of a highly evolutionarily conserved
ab TCR, which is activated by the stimulation of lipidic and
glycol-lipidic antigens presented by antigen-presenting cells
(APC) through major histocompatibility complex (MHC) class
I-like CD1d molecules (29).
Frontiers in Immunology | www.frontiersin.org 3
Based on differences in the TCR structure, NKT cells are
classified into two subsets. The NKT1 subset (also referred to as
iNKT as in invariant NKT cells) is characterized by the
expression of the semi-invariant TCR, which exposes Va14-
Ja18 chains paired with Vb11 sequences in humans (31, 33). The
NKT2 subset, on the other hand, express a broader TCR
repertoire (34).

During their maturation, NKT cells undergo extensive
expansion and acquire the capability of migrating towards
barrier-like tissues, where it was demonstrated the majority of
peripheral NKT cells reside (33, 35, 36). In contrast to NKT cells,
conventional T cells respond to the stimulation by MHC class I
and II molecules, which are highly polymorphic and, by random
rearrangements of genes coding for TCRa and TCRb chains, can
express an impressing diversity, theoretically recognizing peptide
antigens from any given microbe. Conventional T cells are
capable of exerting this function at the expense of any antigen-
specific clone being rare and therefore require clonal expansion
before being able to generate a sufficiently large population of
effector T cells (31).

On the other hand, NKT cells show a less diverse TCR, which
responds to molecular structures that are shared by different
pathogens, rather than to specific peptide antigens (37). As
already mentioned, NKT cells already went through expansion
when egressing the thymus and are then able to express a rapid
“first-line” immune response to pathogens encountered in
barrier tissues (33).

About the role of NKT cells in the defence against NTM no
data is available. Nonetheless, evidence gathered studying Mtb
can be probably exported due to the similarities between these
pathogens. As stated above NKT cells have the ability to
recognize lipidic and glycol-lipidic antigens presented by APC.
For example, diacyl-glycerols (DAGs) and phosphatidyl-
inositol-mannoside (PIM4), expressed on the surface of both
Mtb and NTM, are known to be important NKT cell bacterial
antigens (35). Mtb and NTM share many of these molecules in
their structure. An example is lipoarabinomannan, a major
structural component of cell membrane of mycobacteria as
well as an important virulence factor for Mtb (38). Responses
against antigens of this class have been described for NKT cells
(39–43).

Clinical features have been linked with these responses, with
the presence of NKT cells both in peripheral blood and
bronchoalveolar lavage fluid, strongly activated by
lipoarabinomannan, being associated with the ability to control
Mtb infection in an ex-vivo study (44). Moreover, the expression
of CD1d, the MHC molecules required for the presentation of
antigens to NKT cells, has been described on macrophages and
dendritic cells from Mtb granuloma, suggesting a crucial role of
these lipid-specific T cells in the shaping of the immune response
toward this pathogen (45). NKT cells express their effector
functions by massive release of cytokines, particularly IL-4 and
IFN-g, the latter of which was described as central in the
regulation of cell-mediated response toward NTM (35, 46). In
addition to enhancing macrophage intracellular killing
capabilities, IFN-g and IL-12 were found to be important in
June 2022 | Volume 13 | Article 927049
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stimulating the recruitment of CD8+ T cells and the
differentiation of CD4+ T cells into T-helper 1 cells. These
findings are consistent with the role of NKT in bridging innate
and adaptative immune responses toward NTM (35).

Mucosal-Associated Invariant T Cells
Mucosal-associated invariant T (MAIT) cells are a
subpopulation of innate-like T lymphocytes, which express an
invariant TCRa chain and display effector-like characteristics in
the immune response to several pathogens. More specifically,
MAIT cells are defined by the expression of the iVa7.2- Ja33
TCRa chain, coupled with a limited number of Vb chains (e.g.
Vb2 or Vb13) (47–49). MAIT cells recognize vitamin B-based
antigens presented by the non-polymorphic MHC class I related-
1 molecule (MR1).

The first in vivo evidence of the antimicrobial role of MAIT
cells came by Le Bourhis et al., which showed that MR1-deficient
mice were exposed to increased bacterial burden in comparison
to mice expressing wild type levels of MAIT cells when injected
intra-peritoneally with E. coli and M. abscessus (50). It is worthy
to notice that the stimulation of MAIT cells might also be
independent of the interaction between MR1 and TCR and, in
this case, is mediated by cytokines. The MR1-independent
pathway of MAIT cells activation was found to be relevant in
the MAIT cells-mediated response against viruses and NTM
(51). To demonstrate that, in 2012, Chua co-cultured MAIT cells
and BCG-infected macrophages in the presence of anti-MR1
antibodies and still observed MAIT cells-mediated response,
resulting in the production of IFN-g and IL17-A, and the
consequent enhancement of intracel lular kil l ing of
mycobacteria (52). Furthermore, in 2019 Suliman et al.
confirmed that MAIT cells activation against BCG was largely
mediated by both IL-12 and IL-18, and to a much lesser extent by
MR1-TCR triggering (53).

Interestingly, lower frequencies of peripheral blood MAIT
cells have been observed in patients with active M. avium
complex pulmonary infection, and particularly with cavitary
disease, when compared to healthy donors (54). These lower
frequencies of peripheral blood MAIT cells were observed also
during NTM-LD due to other mycobacterial species and were
significantly correlated with several clinical and biochemical
variables like sputum AFB positivity, extent of disease,
haemoglobin levels, lymphocyte counts, CRP and ESR levels
(48). The same study also described a reduced production of
IFN-g by MAIT cells from NTM patients, underlying the
importance of this cytokine in the pathogenesis of NTM-LD.
Finally, an exciting therapeutic role for MAIT cells has been
suggested by Wakao et al. Employing a Sendai virus harbouring
standard reprogramming factors, they were able to reprogram
MAIT cells in to induced pluripotent stem cell (iPSC). Under T
cell-permissive conditions, these iPSCs efficiently re-
differentiate into MAIT-like lymphocytes that, after
incubation with E. coli-fed monocytes, show enhanced
production of a broad range of cytokines, including IFN-g,
(of which about a 20-fold increase was observed), IL-2, IL-17,
IL-10 and TNF-a . Following adoptive transfer into
immunocompromised mice, these derived MAIT cells
Frontiers in Immunology | www.frontiersin.org 4
migrated to the bone marrow, liver, spleen, and intestine and
protected the recipient against Mycobacterium abscessus (55).

Gamma-Delta T Cells
The family of gd T lymphocytes constitute a subset of
unconventional T cells that express on their surface a peculiar
invariant or semi-invariant TCR heterodimer, composed of one
Vg9 and one Vd2 glycoproteic chains (56). This family of T cells
is thought to be less frequent than canonical ab T cells in
peripheral blood, while taking their place preferentially in
peripheral mucosal tissues, the skin and presumably the lung
and the peritoneal cavity (57).

Here gd T cells express effector capabilities by rapidly
producing an array of cytokines, primarily IL-17. In these
settings, IL-17 production is initiated by gd T cells after
recognition of poorly defined polymorphic structures, via their
semi-invariant TCR, without the need for presentation by APCs.
Some authors also demonstrated that stimulation with
inflammatory cytokines, mainly IL-23 and IL-1 produced by
bystander dendritic cells, is possible and does not require TCR
engagement (58, 59). By doing so gd T cells represent a crucial
innate source of immunoregulatory cytokines in first-line
response to pathogens. In this regard, it is ultimately not
surprising that gd responses to mycobacteria were described as
early as 1989 (60). Of note, it was also reported more recently the
possibility for gd T cells to differentiate in secondary lymphoid
organs to produce IL-17 after antigen-specific engagement of
their TCR. This was described by Chien et al. in 2012 as an
“inducible” IL-17 production by gd T cells, as opposed to the
“innate” IL-17 production we mentioned above (61). In addition,
is well known the opportunity for gd T cells to stimulate CD4+
Th1-dependent immunity: this is consistent with the notion of gd
T cells being one of the most complex components of the innate
immune system, capable also to play a role in adaptive
immunity (56).

The role of gd T cells in NTM-LD is not clearly defined, due to
a paucity of studies assessing their characteristics and dynamics.
As stated above, gd T cells are early recruited at the site of
infection and produce cytokines that will shape the response
against the pathogen. This was confirmed in a calf-model of
Mycobacterium avium subspecies paratuberculosis infection,
where gd T cells were early recruited at the site of infection,
their prevalence decreased during the infection, and produced
significant amount of IFN-g (62). In addition, in a ruminant
model, early Mycobacterium bovis infection led to an increase in
numbers of activated gd T cells in both the lung and blood,
without an apparent expansion of total circulating gd T cells (63).
In humans, gd T cells are supposed to be the immune cytotypes
devoted to respond mainly to fragments of mycobacteria. Indeed,
in a study that compared the proliferation of distinct human T
cell subsets in response to live, killed or soluble extracts of Mtb
andM. avium complex, when soluble bacterial extracts were used
as stimulators, a preferential proliferation of gd T cells,
expressing predominantly Vg9+ and Vd2+ T cell receptor
chains, was recorded (64). Finally, ex-vivo studies performed
among HIV patients with disseminated M. avium complex
infections highlighted an expansion of gd T cells in the
June 2022 | Volume 13 | Article 927049
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peripheral blood (65, 66). These results must be interpreted with
caution, considering that they were obtained in severely
immunocompromised patients where the expansion of gd T
cells population can represent a deficiency in other
cellular subsets.
CONVENTIONAL T CELLS AND IMMUNE
EXHAUSTION

A crucial branch of adaptive immunity involved in the control of
mycobacterial infections is represented by T lymphocytes, both
CD8+ and CD4+. In the advanced stages of the human
immunodeficiency virus (HIV) infection, severe and
disseminated mycobacterial infections are a common
manifestation. This is related to the complex impairment of
the immune system due to HIV infection, involving CD4 T cells
and myeloid cells such as macrophages. Particularly, the loss of
appropriate and efficient CD4 T-cell responses associated with
type 1 cytokine secretion (IFN-g and TNF-a), is essential to
controlling these intracellular pathogens (67). The importance of
these pathways is corroborated by the association between
defects in the IFN-g pathway, due to mutations involving the
IFN receptor, and NTM infection (68, 69).

Recently, another immune dysfunction regarding T
lymphocytes has been associated with NTM infection. This
condition is called immune exhaustion (IE) and it is defined by
poor effector function (e.g. reduced IFN-g production) and a
sustained expression of inhibitory receptors (cytotoxic T-
lymphocyte-associated protein 4 [CTLA-4], programmed cell
death protein 1 [PD-1], and T-cell immuno- globulin domain
and mucin domain 3 [TIM-3]), on the surface of T lymphocytes,
which prevents optimal control of infections and tumours (70).
IE is induced by several mechanisms like cell-to-cell signals
including prolonged TCR engagement and co-stimulatory and/
or co-inhibitory signals, soluble factors such as excessive levels of
inflammatory cytokines and suppressive cytokines, and tissue
and microenvironmental influences driven by changes in the
expression levels of chemokine receptors, adhesion molecules
and nutrient receptors (71). IE has been initially described in the
setting of chronic viral infection, but it has been subsequently
observed also in several tumours (72). Currently, innovative
drugs called immune checkpoint inhibitors, able to re-establish
a correct immune response toward the neoplastic antigen, are
widely employed and are reshaping the landscape of cancer
treatment with outstanding results (73).

A growing bulk of evidence is accumulating, highlighting how
IE features can be identified in NTM-infected patients. Shu et al.
showed that patients with M. avium complex-induced lung
disease (MAC-LD) had a weak in vitro peripheral blood
mononuclear cells (PBMC) response to NTM antigens, assessed
in terms of IFN-g production, and a higher expression of PD-1
and apoptosis markers on these cells. Interestingly, during
antimycobacterial treatment, TNF-a and IFN-g production by
PBMC increased, supporting the notion of a relevant impact on T
Frontiers in Immunology | www.frontiersin.org 5
cell function by decreasing antigenic burden. Moreover, the
partial block of PD-1 and the PD ligand with antagonizing
antibodies significantly increased the cytokine production of
IFN-g and decreased the expression of apoptosis markers on T
lymphocytes, highlighting how immune checkpoint pathways
modulate T cell responses during MAC-LD (74). These results
have been corroborated by Han et al., who highlighted an
increase in PD-1, CTLA-4, and TIM-3 expression on CD4+ T
cells in MAC-LD individuals after NTM-antigens stimulation
(75) andWang et al., who showed that in patients with NTM-LD,
TIM-3 expression increased over CD4+ and CD8+ T cells and
correlated with cell apoptosis and a reduction in specific cytokine
production (IL-2, INF-g, TNF-a) (76). In addition, Shu et al.
found a higher number of PD-1+CD4+ lymphocytes and
myeloid-derived suppressor cells in MAC-LD patients
compared to controls and associated these alterations with a
higher burden of mycobacterial bacilli, again stressing the
importance of antigenic burden in the development of IE
features (77). Finally, Lutzky et al. suggested that different
phenotypes of IE can be present in patients with NTM-LD,
related to the host factors associated with the development of
the infection. Indeed, comparing cystic fibrosis patients and
elderly patients with Mycobacterium abscessus complex
infection to healthy controls, they highlighted a unique surface
T cell phenotype with a marked global deficiency in TNFa
production in the first group and a different phenotype
expressing exhaustion markers and dysregulation in type 1
cytokine release in the latter (78). Table 1 provides a summary
of the studies investigating conventional T cell immune
exhaustion in NTM-LD.

An indirect additional element suggesting how IE is involved
in NTM pathophysiology derives from several case reports
describing patients who experienced recrudescence of NTM-
LD while receiving cancer treatment with immune checkpoint
inhibitors (79, 80). The hypothesis is that the immune system of
these patients, under the impact of immune checkpoint
inhibitors, mounted a vigorous response against a pre-existing
but clinically silent NTM infection, leading to clinical
manifestations and disease. This also suggests that the blockade
of immune checkpoints might be carefully evaluated to avoid
immunopathology in the host, deriving from a re-established
optimal T cell function. This note of caution is supported by the
recent data provided by Kaufmann et al., who showed that in a
macaque animal model of Mtb infection the administration of
anti-PD1 antibodies led to worse disease and higher granuloma
bacterial loads compared to isotype control-treated monkeys.
PD-1-mediated co-inhibition seems required for control of Mtb
infection in macaques, perhaps due to its role in dampening
detrimental inflammation as well as allowing for normal CD4 T
cell responses (81).

Taken together, these data suggest that lymphocytes IE is
recognizable during NTM-LD and that it has a crucial, yet not
completely understood, role in the disease. Future research
should address its possible employment as prognostic/
predictive factor and the coadministration of immune
checkpoint inhibitors with standard antibacterial therapy in
June 2022 | Volume 13 | Article 927049
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order to achieve quickly and in a more stable manner the control
of the disease (82).
CONCLUSIONS

A complete understanding of the lymphoid, cell-mediated,
immune responses toward NTM causing pulmonary disease is
far to be completed. Only a scarce number of studies have
investigated the different cytotypes during this condition, and a
Frontiers in Immunology | www.frontiersin.org 6
large bulk of data are translated from study performed in animal
models or involving the “cousin” pathogen Mtb. The lack of
information about the interaction between NTM and the
immune system actors analysed in our review probably
hampers our capacity of understanding the pathophysiology
leading to NTM-LD development and also the possibility of
developing newer diagnostic and therapeutic tools.

The most promising area in this field appears T cell immune
exhaustion. Measuring the expression of immune exhaustion
markers on the surface of NTM-specific T cells or their
TABLE 1 | Summary of studies investigating conventional T cell immune exhaustion in NTM-LD.

Study ID Patients included NTM
species

Phenotypic properties Functional properties

Shu et al.
Scientific
Reports,
2017

80 participants:
- 50 MAC-LD
- 30 HC

MAC Lymphocytes of patients with MAC-LD have
higher PD-1, PD-L1 and apoptosis markers
expressions than those of healthy controls.

Patients with MAC-LD had lower TNF-a and
IFN-g responses compared to HC in PBMC
stimulation assays with MAC bacilli.
MAC therapy improved the secretion of TNF-a
and IFN-g.
Partially blocking PD-1 and the PD-L1 with
antagonizing antibodies significantly increased the
cytokine production of IFN-g of MAC-LD.

Han et al.
Journal of
Clinical
Medicine,
2020

91 participants:
- 71 MAC-LD
- 20 HC

MAC In patients with MAC-LD, CD4+ T cells and CD4
+IL-17+ T cells frequencies decreased and CD4
+IL-4+ T cells and CD4+CD25+Foxp3+ T cells
(Tregs) increased after MAC stimulation
compared to HC PBMC.
MAC-LD patients have an increased PD-1,
CTLA-4, and TIM-3-expression on T cells in
response to MAC-stimulation compared to HC
in PBMC.

Patients with MAC-LD had lower IFN-g, IL-17A,
IL-10 production compared to HC in PBMC
stimulation assays with MAC bacilli.

Wang et al.
Frontiers in
Immunology,
2021

93 participants:
- 47 MAC-LD
- 46 HC

MAC Patients with MAC-LD have a higher TIM3+
expression on CD4+ and CD8+ T cells
compared to HC.

Patients with MAC-LD had higher cell apoptosis
and specific cytokine attenuation (↓ secretion of
IL-2, TNF-a, IFN-g) compared to HC in PBMC
stimulation assays
MAC therapy (11 patients) decreased the TIM3+
expression on CD4+T and CD8+T cells after 2
months.

Shu C.C.
et al.
Journal of
Clinical
Medicine,
2019

96 participants:
- 46 MAC-LD
- 23 MABS-LD
- 27 HC

MAC
MABS

In the MAC-LD group, frequencies of PD-1+CD4
+ T cell were higher than in HC and in MAB-LD
patients.
In the MAC-LD cohort were identified MAC
subspecies: patients with M. intracellulare and
M. avium have higher expression of PD-1 on
CD4+ T cell compared to other subspecies (M.
chimera and M.timonense) in the same cohort.
No intergroup differences regarding CTLA-4
+CD4+ and Treg cells frequencies.
The proportion of MDSCs was higher in the
MAC-LD and MAB-LD groups than among HC.

No functional properties are available: this article
analysed association of phenotypic properties
with clinical features and radiographic outcomes.

Lutzky VP
et al.
Frontiers in
immunology,
2018

34 participants:
- cohort of 24 CF patients: (CFAct) 7
with active pulmonary MABS infection;
(CFPast) 8 with previous diagnosis of
MABS infection; (CFControl) 9 with no
history of or current NTM infection
- cohort of 10 elderly patients: who had
active or past NTM infection; HC

MABS - Comparison of Tregs (CD4+ CD25+ FOXP3+):
! higher percentages in CFAct and CFPast
groups compared to the CFControl
! in elderly cohort were higher in NTM patients
compared to healthy controls.
- CD25+, CTLA-4, and PD-1 on CD4+ T cells
revealed a common fingerprint in CFAct and
CFPast groups which was distinct from the
CFControl group
- no difference between CF patients with active
or past NTM-PD and HC in terms of T cell
fingerprint

- Post-mitogen stimulation TNFa-producing CD4
+ T cells were significantly lower in both CFAct
and CFPast groups compared to the CFControl
group
- Increased IFNg secretion was seen in both CD4
+ and CD8+ T cells in the CF NTM cohort
compared to healthy controls; in the elderly NTM
cohort, there was no significant increase in IFNg-
secreting cells in both CD4+ or CD8+ T cells.
NTM, non-tuberculous mycobacteria; MAC, M. avium complex; MAC-LD, MAC - lung disease; MABS, M. abscessus complex; HC, healthy controls; PBMC, peripheral blood
mononuclear cells; MDSCs, Myeloid-derived suppressor cells; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; PD-1, programmed cell death protein 1; TIM-3, T-cell
immunoglobulin domain and mucin domain 3; CF, cystic fibrosis.
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production of immunomodulatory cytokines should be
investigated as an instrument to quantify objectively the immune
dysfunction of NTM-LD patients and to follow the response to the
antimycobacterial therapy. Moreover, also the administration of
immune checkpoint inhibitors, able to restore the function of
exhausted T cells, should be investigated as adjuvant therapeutic
approach during the treatment of NTM-LD. To avoid detrimental
immunopathology deriving from a re-established optimal T cell
response, it will be probably necessary to reduce the antigenic
burden through canonical antimycobacterial treatment before the
administration of immune checkpoint inhibitors.

The progress made by immunology in the last years, with the
widespread availability of sophisticated instruments able to dissect
Frontiers in Immunology | www.frontiersin.org 7
the immune responses at the single-cell level, will probably help in
understanding how we deal with NTM and why only a discrete
subgroup of individuals develop the disease, a task indispensable
considering the growing clinical relevance of NTM-LD and the
paucity of diagnostic and therapeutic instruments.
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