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Chimeric antigen receptor T (CAR-T) cell therapy represents a major breakthrough in
cancer treatment, and it has achieved unprecedented success in hematological
malignancies, especially in relapsed/refractory (R/R) B cell malignancies. At present,
CD19 and BCMA are the most common targets in CAR-T cell therapy, and numerous
novel therapeutic targets are being explored. However, the adverse events related to CAR-T
cell therapy might be serious or even life-threatening, such as cytokine release syndrome
(CRS), CAR-T-cell-related encephalopathy syndrome (CRES), infections, cytopenia, and
CRS-related coagulopathy. In addition, due to antigen escape, the limited CAR-T cell
persistence, and immunosuppressive tumor microenvironment, a considerable proportion
of patients relapse after CAR-T cell therapy. Thus, in this review, we focus on the progress
and challenges of CAR-T cell therapy in hematological malignancies, such as attractive
therapeutic targets, CAR-T related toxicities, and resistance to CAR-T cell therapy, and
provide some practical recommendations.

Keywords: CAR-T cell, hematological malignancies, CAR-T related toxicities, antigen escape, immunosuppressive
tumor microenvironment, combinatorial therapy
INTRODUCTION

Traditionally, the treatment of hematological malignancies mainly includes chemotherapy,
radiotherapy, and hematopoietic stem cell transplantation (HSCT). However, with advances in
tumor immunology, immune targeted therapy, such as monoclonal antibodies, bispecific
antibodies, antibody-drug conjugates, and chimeric antigen receptor T (CAR-T) cell therapy, has
opened a new avenue for the treatment of malignancies. In particular, CAR-T cell therapy
has revolutionized the treatment of hematological malignancies and achieved unprecedented
responses in recent years, especially in relapsed/refractory (R/R) B-cell acute lymphocytic
leukemia (B-ALL), non-Hodgkin lymphoma (NHL), and multiple myeloma (MM). At present,
there are six CAR-T cell products approved by the US Food and Drug Administration (FDA) for the
treatment of R/R B cell malignancies, including tisagenlecleucel (Kymriah; Novartis), axicabtagene
ciloleucel (Yescarta; Gilead), brexucabtagene autoleucel (Tecartus; Gilead), lisocabtagene
maraleucel (Breyanzi; Bristol Myers Squibb), idecabtagene vicleucel (Abecma; Bristol Myers
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Squibb and Bluebird Bio), and ciltacabtagene autoleucel
(Carvykti; Legend and Janssen), which target the most
common target antigens CD19 and B cell maturation antigen
(BCMA) (Table 1 landmark clinical trials). In addition, there
are a considerable number of novel targets which are
being explored.

However, despite the remarkable breakthrough of
CAR-T therapy in B cell malignancies, severe toxicities
associated with CAR-T cell therapy may compromise its
efficacy and could even progress into life-threatening
conditions, such as multiple organ dysfunction, sepsis, and
disseminated intravascular coagulation (DIC). Cytokine release
syndrome (CRS) is the most common complication, which is a
systemic inflammatory response induced by the overactivation of
CAR-T cells and endogenous immune cells, such as
macrophages and dendritic cells. Its manifestations are diverse
and partially similar with infections. Moreover, severe CRS is
correlated with the increased risk of CAR-T-cell-related
encephalopathy syndrome (CRES) and coagulopathy (9). Thus,
clarifying their underlying mechanisms could facilitate
the prevention and management of these adverse events.
In addition, the resistance after CAR T-cell therapy
cannot be ignored.

Thus, this review aims to introduce the advances and
challenges in CAR-T cell therapy, such as attractive therapeutic
targets, toxicities related to CAR-T cell therapy, and resistance to
CAR-T cell therapy, and explore their underlying mechanisms
and effective treatment strategies in order to facilitate the
application and management of CAR-T cell therapy.
OVERVIEW OF CAR-T CELL THERAPY

To manufacture CAR-T cells, T cells are collected from
peripheral blood of patients or donors and then genetically
Frontiers in Immunology | www.frontiersin.org 2
engineered in vitro to express chimeric antigen receptor
(CAR). Thus, CAR-T cells recognize specific surface antigens
on tumor cells without antigen processing and presentation,
which indicates that antigen recognition by CAR-T cells is
independently of major histocompatibility complex (MHC)
restriction. After genetic modifications, they undergoextensive
expansion in vitro. Then the patients receive lymphodepleting
chemotherapy to make room for these adoptive CAR-T cells, and
subsequently these genetically engineered CAR-T cells are re-
infused into the patients. These CAR-T cells specifically
recognize target antigens and rapidly proliferate to exert anti-
tumor effects in vivo.

The CAR structure consists of an extracellular antigen-
recognition domain, a transmembrane domain, and an
intracellular signaling domain. The extracellular domain, a
single-chain variable fragment (scFv), is able to specifically
recognize tumor surface antigens. Typically, tumor antigens
are categorized into tumor-associated antigens (TAAs) and
tumor specific antigens (TSAs), and most of they are TAAs.
Once TAAs are identified by scFv, CAR-T cells are activated
and transmit activation signals to the intracellular domain. The
first-generation CAR construct contains an antigen-recognition
domain scFv and an intracellular CD3z activation domain. Due
to the absence of costimulatory signals, they exhibit the
limited proliferative capacity and anti-tumor effects. The
second-generation CAR construct adds a costimulatory
domain, such as CD28, 4-1BB, OX40, or ICOS, which enables
themselves to possess the better proliferative capacity and
release more cytokines. Currently, these commercial CAR-T
cell products both utilize the second-generation CAR construct.
The third-generation CAR construct encompasses two distinct
costimulatory molecules, such as CD28 and 4-1BB. The fourth-
generation CAR construct, also named TRUCK or armored
CAR, is additionally modified to secrete cytokines or express
suicide genes, such as IL-7, IL-12, IL-15, IL-21, and iCaspase-9
TABLE 1 | Landmark clinical trials of FDA-approved CAR-T cell products.

CAR-T
products

Target Company Year Clinical trial Indications Response Toxicities (Grade 3/4) Reference

tisagenlecleucel CD19 Novartis 2017 ELIANA R/R B-ALL ORR 81%, CR
60%

CRS (46%), CRES (13%)
cytopenia (61%)

Maude SL
et al. (1)

2018 JULIET R/R DLBCL ORR 52%, CR
40%, PR 12%

CRS (22%), CRES (12%)
cytopenia (32%)
infections (20%)

Schuster
SJ et al. (2)

2021 ELARA R/R FL ORR 86%, CR
69%

CRS (49%), CRES (37%)
infections (5%)

Fowler NH
et al. (3)

axicabtagene
ciloleucel

CD19 Gilead 2017 ZUMA-1 R/R DLBCL, transformed
FL,
PMBCL, and HGBCL

ORR 82%, CR
54%

CRS (13%), CRES (28%),
cytopenia (78%)

Locke FL
et al. (4)

brexucabtagene
autoleucel

CD19 Gilead 2020 ZUMA-2 R/R MCL ORR 85%, CR
59%,

CRS (15%),
CRES (31%), cytopenia
(94%), infections (32%)

Wang M
et al. (5)

lisocabtagene
maraleucel

CD19 Bristol Myers Squibb 2021 TRANSCEND R/R DLBCL, HGBCL,
PMBCL, and FL grade 3B

ORR 73%, CR
53%

CRS (2%), CRES (10%),
cytopenia (60%)

Abramson
JS et al. (6)

idecabtagene
vicleucel

BCMA Bristol Myers Squibb
and Bluebird Bio

2021 KarMMa R/R MM ORR 73%, CR
33%

CRS (5%), CRES (3%),
cytopenia (89%)

Berdeja JG
et al. (7)

ciltacabtagene
autoleucel

BCMA Legend and Janssen 2022 CARTITUDE-
1

R/R MM ORR97%, CR
67%

CRS (4%), CRES (9%),
cytopenia (95%)

Munshi NC
et al. (8)
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(10, 11) (Figure 1). The fourth-generation CAR-T cells may be
more effective in eliminating tumor cells by activating the
endogenous immune responses. However, the characteristics
of fourth-generation CAR-T cells are largely unknown. In
addition, the 2020 American Society of Hematology (ASH)
annual meeting announced two studies about FasT CAR-T
cells, including CD19-CD22 FasT dual-targeting CAR-T cells
(GC022F) in B-ALL patients and BCMA-CD19 FasT dual-
targeting CAR-T cells (GC012F) in R/R MM patients (12,
13). These FasT CAR-T products were manufactured in 24 to
36 hours and showed superior efficacy in preliminary studies,
indicating that they might be more suitable for rapidly
progressive B cell malignancies.

At present, all commercial CAR-T cell products are
manufactured using autologous T lymphocytes, but high
manufacturing costs, relatively longer manufacturing cycle, and
decreased number and function of lymphocytes after multiline
chemotherapies have restricted their further application.
However, it seems that universal CAR-T (UCAR-T) cells
which are derived from healthy donors are able to overcome
these limitations. The large-scale production of UCAR-T cells
makes them “off-the-shelf” products, which could reduce
manufacturing costs and increase their accessibility.
Unfortunately, these allogeneic UCAR-T cells could induce
graft versus host disease (GVHD) (14). Furthermore, the host
immune system is able to reject these donor-derived UCAR-T
cells and impairs their persistence. In addition, due to the
excellent natural killing functions of NK cells and their
abundant sources, such as NK92 cell line, cord blood,
peripheral blood, and induced pluripotent stem cells, as well as
no induction of GVHD, CAR-NK cells are currently being
explored (15).
Frontiers in Immunology | www.frontiersin.org 3
ATTRACTIVE TARGETS FOR CAR-T CELL
THERAPY IN HEMATOLOGICAL
MALIGNANCIES

Currently, CD19 and BCMA are the most common targets in
CAR-T cell therapy. Although anti-CD19 CAR-T cell therapy
and anti-BCMA CAR-T cell therapy have achieved outstanding
outcomes in B cell malignancies, relapse after CAR-T cell
therapy is frequently observed. In addition, due to the
antigenic heterogeneity of acute myeloid leukemia (AML) as
well as the lack of CD19 expression in Hodgkin lymphoma (HL)
and T cell malignancies, a number of potential targets are
currently being investigated (Figure 2).

Targets for CAR-T Cell Therapy in B Cell
Lymphoblastic Leukemia/Lymphoma
The CD19 is one of the most important target antigens in B cell
malignancies, including B-ALL and NHL. In recent years, anti-
CD19 CAR-T cell therapy has achieved rapid and durable
responses in patients with R/R B-ALL and NHL (1–6, 16), and
has dramatically altered the therapeutic landscape of B cell
malignancies. Until now, four anti-CD19 CAR-T cell products
have been approved by FDA for the treatment of R/R B-ALL and
NHL (17). Despite the outstanding clinical results of anti-CD19
CAR-T therapy, CD19 antigen loss is frequently observed (18).
Thus, the alternative targets for CAR-T cell therapy in R/R B-
ALL and NHL have been explored.

CD20 is overexpressed in over 90% of B cell lymphomas and
identified as an attractive target for CD20 positive B cell
lymphomas, and the anti-CD20 monoclonal antibody rituximab
has showed the excellent effect on NHL over the past few years. In
an early clinical trial, the overall response rate (ORR) of anti-CD20
FIGURE 1 | Four generations of CAR constructs. The first-generation of CAR consists of the antigen recognition domain scFv and an intracellular T cell activation
domain CD3z. The second-generation CAR adds a costimulatory molecule, such as CD28, 4-1BB, OX40 or ICOS, which enables the T cells to obtain a superior
proliferative capacity and secrete large amounts of cytokines. The third-generation CAR contains two distinct costimulatory domains, such as CD28 and 4-1BB. The
fourth-generation of CAR, also known as TRUCK or armored CAR, is additionally equipped with safety switches or engineered to secrete cytokines in order to
regulate the persistence or the function of CAR-T cells, such as iCaspase-9, IL-7, IL-15, IL-21.
June 2022 | Volume 13 | Article 927153
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CAR-T cell therapy in DLBCL patients was 86% (19). In
subsequent phase 1 and 2 trials, the anti-CD20 CAR-T cells
were administrated to 17 R/R NHL patients, and 54.5% of
patients achieved complete remissions (CRs) and 12 patients
remained in remission with a median follow-up of 20 months
(20). To prevent antigen escape, the combination of anti-CD19
and anti-CD20 CAR-T cells for the treatment of R/R DLBCL was
investigated, and this combinational therapy was demonstrated to
be safe and feasible (21). CD22 is highly expressed on most B cell
malignancies, including B-ALL and DLBCL (22, 23). In particular,
it is restrictively expressed on normal B cells and not expressed on
hematopoietic stem cells, so it is an ideal target for CAR-T cell
therapy in R/R B-ALL and DLBCL. In several clinical trials, the
anti-CD22 CAR-T cell therapy has shown excellent efficacy in R/R
B-ALL and R/R DLBCL patients who have failed in previous anti-
CD19 CAR-T cell therapy (24–26). In addition, the humanized
anti-CD22 CAR- T cells exhibits potent activity against leukemia
cells with low CD22 expression (27).

Targets for CAR-T Cell Therapy in T Cell
Lymphoblastic Leukemia/Lymphoma
Patients with R/R T-cell acute lymphoblastic leukemia (T-ALL)
and T cell lymphomas often have poor prognosis. Compared
with the outstanding clinical outcomes of anti-CD19 CAR-T cell
therapy in B cell malignancies, the efficacy and safety CAR-T cell
Frontiers in Immunology | www.frontiersin.org 4
therapy in T cell malignancies are largely unknown and
under investigation. CD7 is highly expressed in 95% of T-ALL
patients and represents a desirable target for the treatment of T-
ALL (28). In an open-label and single-arm clinical trial, 2 R/R T-
ALL patients were treated with allogeneic anti-CD7 CAR-T cell
therapy. One patient remained in remission for over 1 year, while
the other relapsed 48 days after CAR-T cell infusion (28). In
another phase I clinical trial, 20 R/R T-ALL patients received
donor-derived anti-CD7 CAR-T cell infusion, and 90% of
participants achieved CRs (29). In addition, a case study
reported that an 11-year-old T-ALL patient who didn’t
respond to induction failure was treated with autologous anti-
CD7 CAR-T cell therapy, and he achieved remission on day 17
and subsequently underwent HSCT (30). CD5 is expressed in
approximately 85% of T cell malignancies, such as T-cell
lymphoblastic lymphoma (T-LBL) and peripheral T-cell
lymphoma (PTCL). A recent study has demonstrated that anti-
CD5 CAR-T cells effectively eliminated malignant T cells (31). In
a phase I clinical trial, a refractory T-LBL patient with central
nervous system (CNS) infiltration received the anti-CD5 CAR-T
cell therapy and achieved CR within 4 weeks (32). Additionally,
anti-CD4 CAR-T cells showed superior activity against T cell
malignancies in preclinical studies (33). However, all three
targets CD4, CD5 and CD7 are expressed on normal T cells,
so targeting them may result in the depletion of normal T cells
FIGURE 2 | Potential therapeutic targets in hematological malignancies. A variety of attractive targets for CAR-T cell therapy in hematological malignancies, including
T and B cell leukemia/lymphoma, HL, AML, and MM.
June 2022 | Volume 13 | Article 927153
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and the fratricide of CAR-T cells (34). Malignant T cells express
T cell receptor b-chain constant domains 1 (TRBC1), so anti-
TRBC1 CAR-T cells are able to selectively eliminate TRBC1
positive malignant T cells. Importantly, it could retain a majority
of normal T cells in vivo (35). CD99 is highly expressed in newly
diagnosed T-ALL patients, and it represents a novel target for T-
ALL (36). Furthermore, chemokine receptor CCR9 is expressed
in over 70% of T-ALL patients, and only on less than 5% of
normal T cells. In addition, it is correlated with multidrug
resistance and poor prognosis. Thus, it represents an ideal
target for CCR9 positive T-ALL. In preclinical studies, anti-
CCR9 CAR-T cells exhibited potent anti-leukemic activity and
were resistant to fratricide (37).

In addition, CD30 is highly expressed in anaplastic large-cell
lymphoma (ALCL) and is variably expressed in PTCL subtypes.
In particular, CD30 is restrictively expressed on normal T cells.
Thus, CD30 is an ideal target for these lymphoma subtypes, and
the anti-CD30 antibody-drug conjugate brentuximab vedotin
(BV) has shown a high response rate in newly diagnosed PTCL
patients (38, 39). Given the encouraging clinical efficacy of BV,
the anti-CD30 CAR-T cells were developed and exhibited
remarkable cytotoxicity against CD30 positive lymphomas in
preclinical studies (40, 41).

Targets for CAR-T Cell Therapy in
Hodgkin Lymphoma
Anti-CD19 CAR-T cell therapy has shown excellent results in R/
R B cell NHL. However, HL lacks the expression of CD19.
Interestingly, CD30 is universally expressed in classical HL.
Currently, several clinical trials have been carried out to
evaluate the safety and efficacy of anti-CD30 CAR-T cell
therapy in R/R HL (42–45). In a clinical trial from China, 5 of
6 HL patients achieved CRs after the infusion of the third-
generation anti-CD30 CAR-T cells, and the long-term remission
lasted over 24 months in 3 patients (45). In another phase 1/2
clinical trial, 27 patients were treated with the anti-CD30 CAR-T
cells and 67% of patients achieved CRs within 6 weeks, but 63%
of patients experienced disease progression with a median
follow-up of 9.5 months (46). In addition, the expression of
CD30 in HL was down-regulated after anti-CD30 CAR-T cell
therapy (47).

Targets for CAR-T Cell Therapy in Acute
Myeloid Leukemia
AML is the most common acute adult leukemia. Unfortunately,
due to antigenic heterogeneity, the CAR-T cell therapy in AML
has not achieved the same success as ALL. Recently, CD123,
CD33, CD38, CD70, C-type lectin-like molecule-1(CLL-1),
leukocyte immunoglobulin-like receptor-B4 (LILRB4), FMS-
like tyrosine kinase 3 (FLT3) and sialic acid-binding
immunoglobulin-like lectin 6 (Siglec-6) have been explored.
CD123 and CD33 are highly expressed on leukemic stem cells
in over 80% of AML patients, but they are expressed on
hematopoietic stem cells as well (48). Accordingly, targeting
them could increase the risk of long-termmyelosuppression (49).
To decrease hematological toxicity, a rapidly switchable universal
Frontiers in Immunology | www.frontiersin.org 5
anti-CD123 CAR-T cells were prepared (50, 51). In a small study,
3 R/R AML patients were treated with this universal anti-CD123
CAR-T cells, and all of them achieved a clinical response with the
rapid hematologic recovery after the withdrawal of switch-
mediated co-stimulation (52). In another phase 1 trial, 3 R/R
AML patients received autologous anti-CD33 CAR-T cell
infusion. Unfortunately, all of them died from disease
progression (53). CD38 is expressed on most AML blast cells,
and anti-CD38 CAR-T cell therapy was demonstrated to be
effective in relapsed AML after allogeneic HSCT (54). CLL-1,
which has been identified as an myeloid cell surface marker, is
overexpressed on leukemic stem cells (55). Importantly, it is
absent on hematopoietic stem cells. The CLL-1-targeted CAR-T
cells specifically eliminated CLL-1 positive leukemia in
preclinical studies (56, 57). CD70 is expressed on AML
blasts but not on normal myeloid cells, making it a promising
target for the treatment of AML (58, 59). Currently, the safety
and efficacy of anti-CD70 CAR-T cel l therapy are
under investigation. In addition, LILRB4 is highly expressed on
monocytic AML cells, and it is an attractive target for monocytic
AML (60). Siglec-6 is expressed in approximately 60% of AML
patients and absent on normal hematopoietic stem and
progenitor cells. In preclinical studies, Siglec-6 CAR T
cells effectively eliminated AML blasts in an AML
mouse xenotransplantation model (61). Thus, it could serve as
a well-validated target for CAR-T cell therapy in AML. In
addition, nucleophosmin 1 (NPM1) mutations have been
observed in 30%-35% of AML patients, and they are
considered to be initiating mutations in leukemic cells.
In preclinical mouse models, CAR-T cells targeting a
nucleophosmin neoepitope which is presented by HLA-A2
exhibited potent specific anti-leukemia activity (62).

FLT3 is a transmembrane tyrosine kinase expressed on
malignant blasts in approximately 30% of AML patients.
FLT3 mutations include point mutations and an internal
tandem duplication (ITD), and FLT3‐ITD is correlated
with poor prognosis. In preclinical studies, the FLT3-targeted
CAR-T cells successfully eliminated FLT3 positive AML cells
(63, 64), and the FLT3 inhibitor crenolanib promoted their
anti-tumor effects (64). Unfortunately, FLT3 is also expressed
on normal hematopoietic stem and progenitor cells, so the
FLT3-targeted CAR-T cells may affect normal hematopoiesis
(64, 65).

Targets for CAR-T Cell Therapy in
Multiple Myeloma
MM remains an incurable plasma cell malignancy. With the
application of novel agents, such as proteasome inhibitors,
immunomodulatory drugs, and anti-CD38 monoclonal antibodies,
MM patients have significantly improved survival outcomes (66).
However, almost all MMpatients inevitably relapse. BCMA is highly
selectively expressed on malignant plasma cells, so it represents one
of the most promising therapeutic targets for MM. At present, anti-
BCMA CAR-T cell therapy has been demonstrated to be effective in
R/R MM and achieved unprecedented responses (7, 8, 67–69), and
two anti-BCMA CAR-T cell products, idecabtagene vicleucel and
June 2022 | Volume 13 | Article 927153
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ciltacabtagene autoleucel, have been approved by the FDA for the
treatment of R/R MM (7, 70). Furthermore, the anti-BCMACAR-T
cell therapy is effective in R/R MM patients with extramedullary
disease (71–73). However, some MM patients still relapse after anti-
BCMA CAR-T therapy, and BCMA expression is downregulated
under therapeutic pressure. Therefore, new target antigens are
required (74).

Currently, several potential target antigens have been
investigated, such as CD38, CD138, CD229, SLAMF7, a
proliferation-inducing ligand (APRIL), and G protein-coupled
receptor, class C group 5 member D (GPRC5D). CD138 is highly
expressed on MM cells and promote their survival and
proliferation. In a preclinical study, anti-CD138 CAR-T cells
effectively eliminated MM cells (75). In a small clinical trial, 5
patients received anti-CD138 CAR-T cell therapy, and 4 of them
had a clinical response and remained stable for at least three
months (76). CD38 is not only highly expressed on MM cells, but
also expressed on hematopoietic cells and activated lymphocytes
cells (77). Unfortunately, although the anti-CD38 CAR-T cells
exhibited significant anti-tumor effects in mouse models, they
impaired normal hematopoietic cells and lymphocytes (78).
Clinically, CD38 is frequently combined with other targets,
such as BCMA and CD138, to produce bispecific CAR-T cells,
thereby reducing the risk of antigen escape (79, 80). CD229 is
a surface antigen highly expressed on MM cells (81). The anti-
CD229 CAR-T cells effectively eliminated MM cells in preclinical
studies (82). SLAMF7, also known as CS1, is highly expressed in
over 95% of MM patients. Similar to CD38, SLAMF7 is also
expressed on normal lymphocytes, including activated T cells,
NK cells, and B cells (83). Thus, SLAMF7 CAR-T cells could kill
normal lymphocytes and increase the risk of CAR-T cell
fratricide (84). Currently, the clinical trial of SLAMF7 CAR-T
cells is ongoing (85). APRIL is a natural ligand which could
directly bind to BCMA and transmembrane activator and CAML
interactor (TACI). Thus, APRIL-targeted CAR-T cells recognize
both BCMA and TACI expressed on MM cells, which may
decrease the risk of antigen escape (86), and preserving its
trimeric conformation could improve the anti-tumor activities
(87). In addition, TGPRC5D is expressed on more than 50% of
CD138 positive malignant plasma cells in bone marrow of MM
patients, which also represents a potential target for the
treatment of MM (88).
TOXICITIES RELATED TO CAR-T CELL
THERAPY AND THEIR UNDERLYING
MECHANISMS

Although CAR-T cell therapy has achieved great success in
hematological malignancies, the adverse events related to CAR-
T cell therapy remain to be a major challenge, such as CRS,
CRES, B cell aplasia, cytopenia, and CRS-related coagulopathy.
Without active and effective interventions, these complications
might be life-threatening. In order to effectively manage these
complications, it is important to explore their underlying
mechanisms and recognize them in early stages.
Frontiers in Immunology | www.frontiersin.org 6
Cytokine Release Syndrome
CRS is one of the most common toxicities of CAR-T cell therapy.
The incidence of CRS depends on a variety of factors, including
disease characteristics, CAR structure, tumor burden, and CAR-
T cell doses (89). The clinical manifestations of CRS are diverse,
but they are frequently characterized by fever, fatigue,
myalgia, poor appetite, hypoxia, hypotension, and even
organ dysfunction. If left untreated, it might rapidly progress
into life-threatening conditions, such as hemodynamic instability
and multiple organ dysfunction. However, the recent study
revealed that the patients with ≥ grade 2 CRS had higher rates
of remission and longer progression-free survival (PFS)
compared with those with < grade 2 CRS, which indicates that
appropriate CRS might facilitate the efficacy of CAR-T therapy
(90). Because CRS are primarily mediated by IL-6, IL-6 receptor
antagonist tocilizumab is mainly recommended to relieve the
clinical symptoms of CRS. According to different CRS grading,
different treatment regimens are adopted. The symptomatic
treatment and the supportive treatment are indicated for grade
1 CRS. Tocilizumab and corticosteroids are recommended for
grade 3 and 4 CRS as well as grade 2 CRS accompanied by severe
symptoms. Moreover, IL-1 is another important cytokine
involved in CRS and CRES, and IL-1 receptor antagonist
anakinra has been demonstrated to ameliorate both CRS and
CRES (91–95). Furthermore, GM-CSF deficiency or inhibition
not only can alleviate CRS and CRES by inhibiting
the local infiltration of myeloid cells and T cells, but also
enhance the anti-tumor effects of CAR-T cells (96, 97).
Besides, the severity of CRS is positively associated with the
patient’s tumor burden (89). To reduce tumor burden,
traditional chemotherapy and radiotherapy could serve as the
effective bridging strategies before CAR-T cell infusion.

The detailed mechanisms of CRS remain incompletely
understood. After recognizing target antigens, CAR-T cells are
rapidly activated and secrete a large amount of granzyme,
perforin, IFN-g, and TNF-a. Perforin forms pores on tumor
cell membrane and allows granzyme B to enter tumor cells.
Granzyme B activates GSDME which is widely expressed on
CD19 positive malignant B cells, resulting in tumor cell
pyroptosis and the release of danger associated molecular
patterns (DAMPs), such as high-mobility group box 1
(HMGB1) (98–101). Then DAMPs recruit and activate
endogenous innate immune cells, such as macrophages and
dendritic cells, thereby amplifying inflammatory responses and
increasing the release of cytokines, including IL-1b and IL-6.
Currently, it has been demonstrated that macrophages and
monocytes rather than CAR-T cells are the major sources of
these cytokines and contribute to CRS (91, 92, 102, 103). In
addition, the CD40 and CD40 ligand (CD40L) interactions
between CAR-T cells and host antigen-presenting cells (APCs)
as well as tumor cells also play an important role in immune
activation and the release of cytokines (104–106). CD40 is
expressed on multiple APCs, including B cells, macrophages,
dendritic cells (DCs), and monocytes, and highly expressed in a
variety of hematological malignancies, such as NHL, AML, MM
(105–108). CD40L is highly expressed on activated T cells,
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including CAR-T cells (104, 109). The contact-dependent CD40/
CD40L interactions enhance the antigen presentation of APCs
and CD40 positive malignancies and promote their secretion of
cytokines, such as IL-1b, IL-6, and TNF-a (110, 111) (Figure 3).
In addition, because endothelial cells act as conditional innate
immune cells and express CD40, the CD40/CD40L
interactions also participate in the activation of endothelial cells.

Since lymphoma lesions are mostly localized, CRS in
lymphoma exhibits some distinct manifestations, such as local
CRS, which is characterized by local redness, swelling, and heat.
Then, CAR-T cells persistently expand and overflow into the
circulation, and experience redistribution as well as mediating
tissue damage. Finally, inflammation subsides and the impaired
tissues are gradually repaired (112). Thus, the early management
of local CRS is helpful to reduce the occurrence of subsequent
systemic CRS.

CAR-T-Cell-Related Encephalopathy
Syndrome
CRES, also known as CAR-T cell-related neurotoxicity, is another
common toxicity during CAR-T cell therapy. It usually occurs
simultaneously with CRS or later than CRS. The manifestations of
CRES include headache, dizziness, delirium, seizures and cerebral
edema. Due to the lack of suitable animal models, the underlying
pathological mechanisms of CRES are not fully understood. Severe
CRS, high tumor burden, and excessive CAR-T cell expansion
might be correlated with the increased risk of CRES. Currently,
immune-mediated endothelial activation is a well-established
Frontiers in Immunology | www.frontiersin.org 7
mechanism involved in the occurrence of CRES (113–115).
Upon the recognition of target antigens, CAR-T cells rapidly
expand and secrete cytokines to activate endogenous immune
cells, such as macrophages, which in turn release large amounts of
cytokines and activate cerebral microvascular endothelial cells,
eventually resulting in the disruption of tight junctions and the
increased blood-brain barrier (BBB) permeability (114, 115).
Then, the high concentrations of serum cytokines enter the BBB
by passive diffusion, and the elevated levels of pro-inflammatory
cytokines in CSF seem to be associated with CRES, including IL-
1b, IL6, IL-8, IFN-g, GM-CSF, MCP-1, and granzyme B (116–
118). In addition, it has been demonstrated that T cells and
macrophages, including CAR-T cells, could infiltrate into the
CNS due to the disruption of the BBB (118–121). These
infiltrated immune cells and cytokines could induce the
activation of microglia which are brain-resident macrophages,
further amplifying local inflammatory responses and eventually
resulting in neurotoxicity (115, 119, 122–124). Thus, immune-
mediated endothelial injury is a trigger factor for CRES (113–115,
125). As tocilizumab couldn’t cross the BBB, it exhibits the
limited efficacy in the management of CRES. Given the
increased CNS penetration of corticosteroids, it is recommended
for the treatment of CRES, and it could not affect the proliferation
and the anti-tumor effects of CAR-T cells (126).

B/T Cell Aplasia and Infections
CD19 and CD20 are expressed on multiple differentiated B-
lineage cells as well as malignant B cells, and represent attractive
FIGURE 3 | The mechanisms of CRS. After the recognition of target antigens, CAR T-cells rapidly proliferate and release multiple cytotoxic molecules, such as
granzyme, perforin, IFN-g, and TNF-a, and upregulate the expression of CD40L and Fas ligand (FasL), and eventually induce pyroptosis and apoptosis of tumor cells.
Besides, the CD40/CD40L interactions between tumor cells and CAR T-cells promote Fas-mediated apoptosis. Then the lysed tumor cells release large amounts of
DAMPs, such as HMGB1, which could activate innate immune cells, including macrophages and dendritic cells, further amplifying inflammatory responses. In
addition, the CD40/CD40L interactions participate in the activation of various immune cells, including T cells, B cells, macrophages, dendritic cells, and conditional
innate immune cells such as endothelial cells. The activated CAR-T cells with the increased expression of CD40L could activate macrophages and endothelial cells
and promote their production of pro-inflammatory cytokines in a CD40-dependent manner. The cytokines released from activated immune cells could bind to their
receptors on endothelial cells and then mediate endothelial dysfunction, resulting in capillary leakage and the release of procoagulant factors.
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targets for CAR-T cell therapy in B-ALL and lymphoma. BCMA,
a plasma cell-selective protein, is highly expressed onMM cells as
well as mature B cells and normal plasma cells. Thus, CD19‐
targeted, CD20‐targeted and BCMA‐targeted CAR T cells exhibit
superior anti-tumor activity in B cell malignancies (1, 3, 67, 127),
but they attack normal B cells as well, which could result
in impaired humoral immunity, such as B cell aplasia and
h ypo g ammag l o bu l i n em i a ( 1 2 8– 1 3 1 ) . Mo r e o v e r ,
lymphodepleting chemotherapy prior to CAR-T cell infusion
could also impair host immunity. Due to impaired host
immunity, these individuals are more susceptible to infections
(132). It has been demonstrated that most of infection events
occur during the first 30 days of CAR-T cell infusion, and
the bacterial infection predominates, mainly including
bloodstream infection and respiratory infection (133). In a
phase 1/2 study, 31% of the patients who received the anti-
CD19 CAR-T therapy experienced infections between day 31
and day 180 (134). Thus, the long term follow-up and the
detection of gamma globulin levels might be helpful. To
restore humoral immunity, immunoglobulin supplementation
is essential for these immune-compromised individuals. In
addition, the high-dose CAR-T cell infusion seems to be
associated with the infections after CAR-T cell infusion (134,
135). Thus, CAR-T cells can be administrated in a dose-
escalation regimen. Furthermore, CAR-T cell therapy increases
the risk of HBV reactivation in patients with resolved HBV
infections due to persistent B-cell aplasia, so antiviral
prophylaxis and regular monitoring of the virus are
recommended (128, 136, 137). Unfortunately, with the
application of CAR-T cell therapy in T cell malignancies, T cell
aplasia might be observed because a majority of target antigens
are co-expressed on normal T cells (34).

However, it is difficult to differentiate between CRS and
infections due to the similar clinical manifestations, such as
pyrexia and the elevated levels of pro-inflammatory cytokines
and C-reactive protein (CRP). Moreover, CRS is likely to occur
simultaneously with infections. In order to avoid the life-
threatening infections during CAR-T cell therapy, the
early recognition and management of infections is important.
Nevertheless, it is usually not timely to identify the infection by
blood culture (133). Thus, the detection of special biomarkers or
the establishment of a prediction model for infection is critical.
IL-6 is one of the key cytokines involved in the infection-induced
cytokine storm and CAR-T cell therapy-induced CRS. Typically,
the elevation of serum IL-6 associated with CRS occurs within 3
weeks after CAR-T cell infusion, so the “double peaks of IL-6” is
identified as one of the characteristics of life-threatening
infections. Compared with blood culture, it seems that
employing the “double peaks of IL-6” pattern to predict the
life-threatening infection is faster (135). When infection is
suspected, empiric anti-infective treatment should be initiated
immediately once blood and sputum samples are collected for
the detection of pathogenic microorganisms, especially
in neutropenic patients. In addition, Herpesvirus infections
have been occasionally observed in several clinical trials (138–
140). To prevent herpesvirus infections, it’s recommended that
Frontiers in Immunology | www.frontiersin.org 8
acyclovir 400 mg should be prophylactically administrated twice
daily from lymphodepletion chemotherapy to at least 6 months
post CAR-T cell infusion (141).

Cytopenia
Cytopenia is frequently observed during CAR-T cell therapy and
lasts for several days to months, including anemia,
thrombocytopenia, and leukopenia, and the incidence of
cytopenia range from 30% to 100% in clinical trials (2, 29, 72,
79, 142, 143). It has been demonstrated that cytopenia is
associated with severe CRS (144–146). Under inflammatory
conditions, CD40 is significantly up-regulated on granulocytic
progenitor/precursor cells which also express low levels
of CD40L, and the CD40/CD40L interactions between
granulocytic progenitor/precursor cells significantly promote
their own apoptosis (147). In addition, the pro-inflammatory
cytokines, such as IL-1, TNF-a, and HMGB1, could suppress
erythropoietin production (148, 149), and the activated
macrophages could destroy erythrocytes (150). The limited
hematopoietic capacity mediated by prior chemotherapy and
HSCT might be involved in cytopenia as well (151–153).
Furthermore, some target antigens are co-expressed on normal
hematopoietic stem or progenitor cells, so CAR-T cells could
directly mediate the destruction of hematopoietic cells (48, 49).
Clinically, red blood cell and platelet transfusions and
hematopoietic growth factors, such as granulocyte colony-
stimulating factor (G-CSF) and thrombopoietin (TPO), as well
as TPO receptor agonists and sirolimus, are able to ameliorate
cytopenia (154, 155).

CRS-related Coagulopathy
As a newly identified toxicity, coagulopathy is frequently
observed within 1 month after CAR-T cell infusion (156, 157).
Its severity shows a positive correlation with CRS grade as well as
the levels of IL-6 (9), so it’s also known as CRS-related
coagulopathy. The recent studies have reported that the
incidence of coagulopathy during CAR-T therapy is
approximately 50% (9, 156). There are multiple abnormal
coagulation parameters in patients with CRS-related
coagulopathy, mainly characterized by the elevated levels of D-
dimer, the increased fibrinogen degradation products, and the
decreased levels of fibrinogen as well as the prolonged
prothrombin time. The progress of CRS-related coagulopathy
can be divided into three stages, including hypercoagulable stage,
consumptive hypo-coagulable stage, and hyperfibrinolysis stage
(9). At hypercoagulable stage, the patients mainly present with
excessive micro-thrombosis, which can be treated with
anticoagulant drugs, such as low-molecular-weight heparin. At
consumptive hypo-coagulable stage, the individuals exhibit
bleeding, accompanied by the decreased fibrinogen levels
and the prolonged APTT and PT, so replacement treatment is
required. At hyperfibrinolysis stage, the fibrinogen level
is substantially decreased and the level of D-Dimer is
significantly up-regulated. Once the fibrinogen level
in plasma is lower than 1.5 g/L, the fibrinogen concentrate or
cryoprecipitate replacement should be administrated (Table 2
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toxicities related to CAR-T cell therapy) Given that cytokine
storm plays an essential role in CRS-related coagulopathy, the
early and effective management of CRS might be helpful
to reduce the incidence of coagulopathy. Without
timely and effective intervention, a part of patients with
coagulopathy may further develop disseminated intravascular
coagulation (DIC), accompanied by the poor prognosis (9,
156, 158).

The mechanisms of CRS-related coagulopathy remain unclear.
The activated platelets, monocytes, and endothelial cells as well as
the CD40/CD40L interact ions between them may
collectively contribute to CRS-related coagulopathy. The CD40L
expressed on activated CAR-T cells induces platelet activation in a
CD40-independent manner in blood circulation (159). The
activated platelets are prone to the form monocyte-
platelet aggregates (MPAs) and are highly express CD40L, which
could induce the expression of tissue factor (TF) in monocytes and
endothelial cells through the direct interaction with CD40 (159–
162). TF could activate the extrinsic coagulation cascade, and
monocytes are the major sources of TF. Besides the CD40/CD40L
interactions, there are also a variety of inducers could stimulate
monocytes to upregulate the expression of TF, such as C-reactive
protein (CRP), IL-1b and TNF-a (163–165). In addition, the
CD40/CD40L interactions between them promote the excessive
production of cytokines as well, such as IL-1b, TNF-a, and IL-6.
High levels of cytokines further mediate endothelial injury and
result in the release of TF, the procoagulant particles Weibel-
Palade bodies (WPBs), and von Willebrand factor (VWF) as well
as the exposure of the collagen fibers. The exposed collagen fibers
trigger intrinsic coagulation pathway. In addition, cytokines IL-6,
TNF-a, and IFN-g can directly inhibit the production and activity
of ADAMTS13, which contributes to the elevated levels VWF in
blood and promote platelet adhesion and aggregation
(166, 167). Moreover, serious liver damage induced by CAR-T
cell therapy influences the production of coagulation factors,
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and some patients with hematological malignancies had
be in a hypercoagulable state prior to CAR-T cell therapy
(168) (Figure 4).
RESISTANCE TO CAR-T CELL THERAPY
AND POTENTIAL EFFECTIVE STRATEGIES

However, with the widespread application of CAR-T cell therapy
in R/R B-cell malignancies, a considerable proportion of patients
relapse after CAR-T cell therapy. There are multiple factors
which contribute to relapse after CAR-T cell therapy, including
antigen escape, the limited CAR-T cell persistence, and
immunosuppressive tumor microenvironment. There are some
therapeutic strategies to overcoming the resistance to CAR-T cell
therapy, including the application of bispecific or armored CAR-
T cells, optimizing the CAR structure, combining CAR-T cell
therapy with other approaches, such as small‐molecule drugs,
localized radiotherapy, and oncolytic viruses.

Overcoming Antigen Escape
Although CAR-T cell therapy has made impressive achievements
in R/R B cell malignancies, a majority of patients still relapse
(143). One of the primary mechanisms of relapse after CAR-T
cell therapy is antigen loss (169, 170). The antigen mutations
under therapeutic pressure of CAR-T cell therapy are the most
common mechanisms of antigen loss, including splice variants,
lineage switching, and biallelic mutations (171–173). In addition
to antigen mutations, the lower antigen density on the surface of
induced by the endocytosis of CAR-T cells could promote tumor
immune escape as well (174). Last but not least, a study has
reported that the anti-CD19 CAR was incidentally transferred
into a leukemic B cell during CAR-T cell manufacturing and
then bound to the CD19 epitope on leukemic blasts, so “epitope-
TABLE 2 | Toxicities related to CAR-T cell therapy and effective solutions.

Toxicities Manifestations Solutions Reference

CRS grade 1 CRS: fever, fatigue, myalgia, nausea, and/or malaise supportive care (117)
grade 2 or higher CRS: fever, hypoxia, hypotension, and
organ dysfunction

tocilizumab, corticosteroids, and intensive care

CRES headache, dizziness, delirium, seizures, cerebral edema, and
coma

tocilizumab, corticosteroids, anakinra, and intensive care (93, 95,
117)

B cell aplasia hypogammaglobulinemia immunoglobulin infusion (128, 136,
137, 141)HBV reactivation antiviral prophylaxis

herpesvirus infections acyclovir
Cytopenia anemia red blood cell transfusions (154)

leukopenia granulocyte colony-stimulating factor, protective isolation
thrombocytopenia platelet transfusions, thrombopoietin, romiplostim

CRS-related
coagulopathy

hypercoagulable stage: extensive micro-thrombosis, normal/
shortened APTT and PT

anticoagulant treatment: low-molecular weight heparin (9)

consumptive hypo-coagulable stage: hemorrhage, decreased
fibrinogen levels, and prolonged APTT and PT

anticoagulant treatment combined with replacement treatment: low-
molecular weight heparin, fresh-frozen plasma, cryoprecipitate,
fibrinogen concentrate

Hyperfibrinolysis stage: hemorrhage, hypofibrinogenemia,
significantly increased levels of D-Dimer and FDP, and
prolonged APTT and PT

replacement treatment and antifibrinolytic treatment: cryoprecipitate,
fibrinogen concentrate
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masking” prevented leukemic blasts from being recognized by
anti-CD19 CAR-T cells (175).

Targeting distinct antigens is one of themost effective approaches
to overcome antigen-negative relapse. The dual-targeting CAR-T
cells which could recognize two distinct target antigens have been
demonstrated to reduce the risk of antigen-negative relapse, such as
the bispecific CAR-T cells in B cell lymphoma/leukemia and the
APRIL-based CAR-T cells targeting both BCMA and TACI in MM
(86, 176–180). The multi-targeted CAR-T cells have also been
explored. It has been demonstrated that the tri-specific CD19-
CD20-CD22-targeting CAR-T cells could rapidly eliminate B cell
lymphoma in a preclinical study (181), and BAFF ligand-based
CAR-T cells simultaneously target three receptors, including BAFF-
R, BCMA, and TACI (182). In addition to simultaneously targeting
different antigens, increasing immunogenicity of target cells might
be a feasible strategy. For example, small molecule g-
secretase inhibitors could reduce the shedding of BCMA and
promote the recognition of MM cells by CAR-T cells (183).

The gd T cells (gd T) are a small population of peripheral
blood cytotoxic T cells, which express both T cell receptors
(TCRs) and natural killer receptors (NKRs), and involved in
anti-tumor immunity. In particular, NKRs expressed on gd T
cells play a major role in tumor cell recognition in hematological
malignancies (184–186). Thus, besides antigen recognition
mediated by the scFvs, gd CAR-T cells could also recognize
antigen-negative leukemia cells via NKRs in an MHC-
independent manner (187). Moreover, gd T cells did not
induce graft-versus-host disease (GVHD) in allogeneic and
HLA-haploidentical hematopoietic stem cell transplantation,
which indicates that gd T cells don’t trigger alloreactivity (188,
Frontiers in Immunology | www.frontiersin.org 10
189). Thus, they are more suitable for the development of
universal CAR-T cells.

Regulating the Persistence of CAR-T Cells
The short-term persistence of CAR-T cells limits their anti-
tumor efficacy and may result in antigen-positive relapse. There
are multiple strategies to improve the persistence of CAR-T cells,
such as optimizing CAR-T cell construct, utilizing memory T
cells, and rationally designing the ratio of CD4 to CD8 CAR-T
cells (190). To date, CD28 and 4-1BB are the most common co-
stimulatory molecules in CAR-T cell products. However, it has
been demonstrated that 4-1BB co-stimulation could ameliorate
CAR-T cell exhaustion compared with CD28 co-stimulation
(191, 192). Remarkably, combining CD28 and 4-1BB
could simultaneously augment the anti-tumor effects and
increase the persistence of CAR-T cells (193–196). In
addition, the CAR-T cell structure can be optimized by the
fully humanized CARs. The humanized CAR-T cells could avoid
the rejection by the host immune system, and they were still
effective in R/R patients who have failed in prior murine CAR-T
cell therapy (68, 197). CD4+ T cells exhibit developmental
plasticity and can directly kill tumor cells (198), but they
eliminate tumor cells at the slower rate and release the lower
levels of Granzyme B than CD8+ T cells. Thus, CD4+ CAR-T
cells exhibit a superior persistence (199–202), and the ratio of
CD4/CD8 CAR-T cells may influence the therapeutic efficacy.
Currently, CD4/CD8 CAR-T cells at a 1:1 ratio have been
demonstrated to exert excellent anti-tumor effects (200).

CAR-T cells have been considered as “living drugs”, but they
lack the precise regulation. Given that the excessive expansion of
FIGURE 4 | The mechanisms of CRS-related coagulopathy. The CD40/CD40L interactions also play an essential role in CRS-related coagulopathy. The activated
CAR-T cells with high CD40L expression mediate platelet activation in a CD40-independent manner. Then the activated platelets express high levels of CD40L. It
could stimulate endothelial cell activation, and induce the expression of TF in monocytes and endothelial cells through direct interaction with CD40. Then TF triggers
the extrinsic coagulation cascade. In addition, the CD40/CD40L interactions stimulate the excessive release of cytokines, such as IL-1b, TNF-a, and IL-6. High levels
of cytokines further mediate endothelial injury and promote the release of TF and Weibel-Palade bodies (WPBs). The WPBs contains von Willebrand factor (VWF)
which plays an essential role in platelet adhesion and aggregation. Due to endothelial injury, collagen fibers are exposed and activate intrinsic coagulation pathway.
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CAR-T cells could lead to the life-threatening CRS, so
it is necessary to regulate the expansion and persistence of CAR-
T cells to mitigate unexpected or severe toxicities through
the addition of the safety switches. The well-known
inducible caspase 9 (iCasp9) suicide gene and the small molecule
control systems have been explored (203, 204). In small molecule
control systems, the FDA-approved small molecule drugs act as
the key switches to specifically regulate antigen recognition or
deplete CAR-T cells, such as lenalidomide, methotrexate,
alemtuzumab, rituximab, and cetuximab (31, 63, 205–208),
as well as orthogonal IL-2 (205, 206). The above-
mentioned monoclonal antibodies mediate the depletion of CAR-
T cells through antibody-dependent cell-mediated cytotoxicity
(ADCC) or complement-dependent cytotoxicity (CDC) (63, 209).
Nevertheless, the depletion of CAR-T cells is slow in this strategy,
which may be not suitable for patients with severe toxicities.

Improving Anti-Tumor Efficacy of CAR-T
Cell Therapy Through Combinatorial
Strategies
The low activity of CAR-T cells could also limit the efficacy of
CAR-T cell therapy. Multiple immune-stimulatory molecules,
including certain cytokines or co-stimulatory molecules, have
been demonstrated to play an important role in regulating the
development and function of T cells, such as IL-7, IL-12, IL-15, IL-
18, IL-21, and CD40L (109, 210–214). They could promote the
robust expansion of the CAR-T cells and increase memory-
phenotype CAR-T cells as well as improving their persistence
(215–218). In addition to adding these exogenous cytokines, the
genetic modifications to constitutively express these immune-
stimulatory molecules or their receptors could also improve the
function of CAR-T cells (10, 213, 219, 220). These fourth-
generation CAR-T cells have showed the improved anti-tumor
activities by stimulating the activation of themselves or endogenous
immune cells in a autocrine or paracrine manner (11, 220–222).

To improve the efficacy of CAR-T cell therapy, combining
CAR-T cell therapy with small‐molecule drugs appears to be
promising and may produce synergistic effects. The selective
inhibitors of nuclear export selinexor, lenalidomide and
carfilzomib have been approved for the treatment of MM (223,
224). Intriguingly, combining them with CAR-T cells also
achieved encouraging outcomes, with the improved cytotoxic
activity and cytokine production of CAR-T cells (225, 226). In
particular, the recent clinical studies showed that the R/R MM
patients resistant to anti-BCMA CAR-T cell therapy could also
benefit from selinexor-based regimens and carfilzomib-based
regimens (227, 228), and a study reported that anti-BCMA
CAR-T cell therapy combined with lenalidomide was effective in
the R/R MM patients who had previously relapsed after anti-
BCMA CAR-T cell therapy (229). Ibrutinib, a well-known
Bruton’s tyrosine kinase inhibitor, has been approved for the
treatment of CLL and MCL. Importantly, Ibrutinib not only
improved CAR T cell-anti-tumor efficacy in both preclinical and
clinical studies, but also reduced the risk of severe CRS (230–233).
In addition, it has been demonstrated that demethylating agents
azacitidine and decitabine could enhance cytotoxic effect of CAR-
Frontiers in Immunology | www.frontiersin.org 11
T cells as well (234–236). Besides, CAR-T cell therapy in
combination with inhibitors of antiapoptotic proteins could
overcome the resistance induced by antiapoptotic proteins (237).
However, CAR-T cell therapy combined with small‐molecule
drugs is still in its infancy, and numerous combinational
strategies are being explored.

Additionally, the localized radiotherapy could serve as a well-
tolerated and effective bridging strategy between the leukapheresis
and CAR-T cell infusion for lymphoma or MM patients with bulky
disease (238–240). On the one hand, this combinational therapy
could prevent disease progression and reduce tumor burden; On
the other hand, it may sensitize the CAR-T cells through the
abscopal effect, which may be associated with the upregulation of
intratumoral chemokines and cytokines, the release of neo-
antigens, and the activation of endogenous immune cells (241–
245). Nonetheless, the optimal irradiation dose and fractionation
remain to be identified.

Overcoming Immunosuppressive
Microenvironment
While directly targeting tumor cells is important, it is also critical
to overcome the immunosuppressive tumor microenvironment.
Although tumor microenvironment is believed to play a relatively
minor role in drug resistance in hematological malignancies, MM,
leukemia, and lymphoma microenvironment also contains
tumor supportive components, such as stromal cells, myeloid-
derived suppressor cells, regulatory T-cells, tumor-associated
macrophages, and tumor-associated neutrophils (246–250),
which interact closely with malignant cells and promote their
survival as well as immune escape (250–253). In addition, these
immunosuppressive components impair the cytotoxic effects of
CAR-T cells and result in CAR-T cell exhaustion (248, 249).
Therefore, it is also necessary to overcome the immunosuppressive
microenvironment in hematological malignancies. In addition
to armored CAR-T cells, CAR-T cell therapy in combination
with checkpoint blockades or oncolytic viruses also appears to be
an appealing strategy.

The PD-1/PD-L1 pathway plays a major role in T cell
exhaustion and represents a major mechanism of tumor
immune escape. Thus, blockage of PD-1/PD-L1 interaction
could promote the immune system to fight against cancer cells,
and PD-1 blockade has achieved tremendous success in diverse
tumor types in recent years, especially in lymphoma (254, 255).
PD-1 blockade is usually administrated in combination with
conventional chemotherapy or other immunotherapies.
Currently, multiple studies have explored the combination
therapy with CAR-T cells and PD-1 blockade (Table 3
combinatorial strategies with CAR-T cell therapy). In a clinical
trial enrolled 11 NHL patients, 45.5% of patients achieved CRs
after this combinatorial therapy, and the toxicities were well-
tolerable (256, 257). The mechanisms may be mainly
attributed to the decreased CAR-T cell exhaustion (258–260).
In addition, the CAR-T cells which could secrete the PD-1
blocking scFv have been developed. The preclinical study
demonstrated that the efficacy of such CAR-T cells was equally
effective or superior to the combinational therapy of CAR-T cells
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and PD-1 inhibitor (261). TIM-3 is another inhibitory immune
checkpoint, and the combination of TIM-3 blockade with CAR-
T cells exerts synergistic anti-tumor activity as well (262).

The combination of CAR-T cell therapy and oncolytic viruses
is an innovative strategy to overcome immunosuppressive
microenvironment. The virus-infected tumor cells which carry
pathogen-associated molecular patterns (PAMPs) could recruit
host immune cells and thereby promote the recognition of TAAs
by the host immune system and the oncolytic viruses also can be
genetically modified with immune-stimulatory molecules to
enhance the anti-tumor activity of CAR-T cells (263, 264).
Besides, oncolytic viruses directly lyse tumor cells and result in
the release of TAAs and damage-associated molecular patterns
(DAMPs), which could increase tumor immunogenicity and
activate APCs through pattern recognition receptors (PRRs),
eventually activating tumor-specific T cells (265–267).

In addition, the armored CAR-T cells which express the
immune-regulatory molecules, such as IL-15, IL-18, CD40L as
well as TGF-b dominant-negative receptor II, are able to
remodel the tumor microenvironment (211, 219, 220, 268).
Oncometabolites in the tumor microenvironment could inhibit
the metabolism and function of CAR-T cells, so suppressing the
accumulation oncometabolites is a potential therapeutic option.
Kynurenine (Kyn) is an oncometabolite which exists in various
hematopoietic malignancies, such as lymphoma and leukemia,
and the enzyme kynurenine catalyzes the degradation of Kyn.
Thus, the anti-CD19 CAR-T cells were genetically modified with
the enzyme kynurenine gene, and they exhibited the improved anti-
tumor activity against Nalm6-GL cells in the immunosuppressive
tumor microenvironment with high Kyn (269). Interestingly, some
target antigens are co-expressed on immunosuppressive cells in
tumor microenvironment, so targeting these antigens can
simultaneously eliminate malignant cells and immunosuppressive
cells. For example, anti-CD123 CAR-T cells target both malignant
cells and TAMs in HL (270).
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CONCLUSIONS

There are many challenges and opportunities presented
by CAR-T cell therapy. With the identification of novel
therapeutic targets and the optimization of CAR constructs,
CAR-T cell therapy will have broader clinical applications,
beyond hematological malignancies. However, with the rapid
commercial ization of CAR-T cell therapy, it poses
a significant challenge for the management of CAR-T cell
therapy, such as the toxicities associated with CAR-T therapy
and relapse after CAR T-cell therapy. Therefore, exploring their
underlying mechanisms and overcoming these limitations will
help R/R patients gain more benefits from this promising.
Currently, multiple combinatorial approaches with CAR-T cell
therapy are being explored and seem to be promising
immunotherapy. In addition, UCAR-T cells and CAR-NK cells
also show great potential in cancer treatment due to their low
manufacturing costs and off-the-shelf availability.
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