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An appropriate level of reactive oxygen species (ROS) is necessary for cell

proliferation, signaling transduction, and apoptosis due to their highly reactive

character. ROS are generated through multiple metabolic pathways under a

fine-tuned control between oxidant and antioxidant signaling. A growing

number of evidence has proved their highly relevant role in modulating

inflammation during influenza virus infection. As a network of biological

process for protecting organism from invasion of pathogens, immune system

can react and fight back through either innate immune system or adaptive

immune system, or both. Herein, we provide a review about themechanisms of

ROS generation when encounter influenza virus infection, and how the

imbalanced level of ROS influences the replication of virus. We also

summarize the pathways used by both the innate and adaptive immune

system to sense and attack the invaded virus and abnormal levels of ROS. We

further review the limitation of current strategies and discuss the direction of

future work.

KEYWORDS

reactive oxygen species, influenza virus, viral replication, innate immune response,
adaptive immune response
Introduction

Reactive oxygen species (ROS) are a class of partially reduced metabolites of oxygen (O2).

There are two categories, radical and non-radical, of ROS based on the number of unpaired

electrons in their outmost shell (1). ROS is highly reactive and can oxidize intracellular

macromolecules in response to endogenous and/or exogenous stimuli, which makes them

crucial elements for cellular activities (2). The production of ROS is fine-tuned by oxidant and
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antioxidant mechanisms under physiological metabolism. An

appropriate level of ROS is necessary for cellular processes, such

as cell growth, signaling transduction, and apoptosis (3). It is

believed that excessive accumulation of ROS leads to aggravation

of inflammation, augment of protease secretion, and accumulation

of ROS intermediates, which ultimately resulting in inflammation

response, apoptosis, and tissue injury (4). Evidence has proved that

ROS have served as a crucial contributor to viral disease. This

review focuses on the impact of ROS on viral replication and

immune response during influenza virus (IV) infection.
ROS production after IAV infection

IV is a family of negative-sense single-stranded RNA virus

which belongs to Orthomyxoviridae. It can be classified into four

major genera, including Alphainfluenzavirus (Influenza A virus,

IAV), Betainfluenzavirus (Influenza B virus , IBV),

Gammainfluenzavirus (Influenza C virus , ICV), and

Deltainfluenzavirus (Influenza D virus, IDV). Since IAV is

responsible for the majority of seasonal epidemic or pandemic

threat to human (5, 6), this review focuses on the effect of ROS

induced by IAV infection. Overall, dysfunctional mitochondria,
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activated nicotinamide adenine dinucleotide phosphate oxidase

(NADPH oxidase), and inhibited antioxidant signaling pathway

and enzymes, are three main mechanisms involved in the multi-

coordinated process of ROS production post IAV infection

(7) (Figure 1).
Dysfunction of mitochondria

Mitochondria, the powerhouse of the cells, can generate ROS

through respiration. Viral polymerase is responsible for viral

genome replication and transcription in the nuclei of host cells

(8). IAV-dependent RNA polymerase complex contains a

subunit, the polymerase basic 2 (PB2) protein, which can

import IAV into the matrix space of mitochondria due to its

N-terminal mitochondrial targeting sequence. Accumulation of

IAV in the mitochondria breaks the equilibrium of

mitochondrial fusion and fission, causing their fragmentation

(9) and leading to the leak of superoxide ion into the cytoplasm

(10). Besides PB2, the nonstructural protein 1 (NS1) can also

induce fragmentation of mitochondria by altering its dynamics

(11), which indicates the stimulation role of NS1 in ROS
A B C

FIGURE 1

ROS generation after IAV infection. (A) Dysfunction of mitochondria mediated by IAV infection for the generation of ROS and viral replication.
(B) ROS generation and viral replication mediated by activation of NADPH oxidase. (C) Inhibition of antioxidant signaling pathway and
antioxidant enzymes for ROS generation and viral replication.
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production. An increased level of ROS promotes the replication

of IAV to enhance its pathogenesis (12) (Figure 1A).
Activation of NADPH oxidase

NADPH oxidase also known as NOX, is a membrane-bound

complex present in cells and phagosomes. Human NOX

isoforms comprise NOX1 to NOX5, dual oxidase 1 (DUOX1),

and DUOX2 (13). Evidence has proved that ROS significantly

increase in lung epithelial cell lines and primary murine cells in a

NOX4-dependent manner after IAV infection (14). Besides,

observed in primary murine macrophages, endosomal NOX2-

induced ROS generation was mediated by the toll-like receptor 7

(TLR7) and subsequent activation of protein kinase C (PKC),

while the generated ROS further suppressed the antiviral

signaling through the modification of cysteine residue Cys98 of

TLR7 to support viral proliferation (15) (Figure 1B). Inhibition

of NOX2 significantly attenuated neutrophil influx, alveolitis,

and ROS generation from inflammatory cells in IAV infected

C57Bl/6 mice, which confirmed the role of NOX2 oxidase for

promoting ROS generation (16). Additionally, the presence of

IAV promotes the translocation of p67-phox, a cytosolic protein

of NOX, to the cell membrane for ROS production at the early

infection stage (17).
Inhibition of antioxidant signaling
pathway and antioxidant enzymes

The Nrf2/Keap1 pathway is the principal antioxidant

signaling cascade for protecting against ROS stress. Evidence

has showed that in isolated human alveolar type II (ATII) cells

and alveolar macrophages (AM), IAV infection increases the

level of ROS and translocation of Nrf2 to the nuclei, whereas

overexpression of Nrf2 decreases viral replication and oxidative

stress (18). In addition, downregulated Nrf2 and upregulated

ROS were observed in both IAV infected primary normal

human bronchial epithelial (pNHBE) cells and BALB/c mice

with IAV infection (19). Besides antioxidant signaling pathway,

ROS can also be neutralized by antioxidant enzymes, such as

superoxide dismutase (SOD), catalase (CAT), and glutathione

peroxidase (GPx). The investigation of IAV infection in human

alveolar cells has showed that the loss of copper-zinc SOD1

contributed to the increased level of superoxide anion and viral

replication (20). A study has further disclosed the underlying

mechanism that endoplasmic reticulum (ER)-associated

degradation (ERAD) regulates the redox state to potentiate

IAV infection (21). The presence of IAV first stimulated

inositol-requiring 1(IRE1), a core sensor of ER stress signaling

pathway, then IRE1 activated downstream factor X-box binding

protein-1 (XBP1) through mRNA splicing, which could further

promote ERAD. The whole process is likely to be responsible for
Frontiers in Immunology 03
the reduction of SOD1, thus leading to the increase of ROS and

viral replication (Figure 1C).
Other mechanisms

Apart from the three main mechanisms, other mechanisms

of IAV to produce ROS and favor its replication have been

proposed. In human lung cancer A549 cells, decreased sirtuin 2

(SIRT2) reduces the expression and activity of glucose-6-

phosphate dehydrogenase (G6PD) by acetylation, resulting in

enhanced production of ROS and IAV replication (22). The

binding between aryl hydrocarbon receptor (AhR) and its

ligand, quinone 1 (NQO1) is also reported to involve in the

production of ROS (5, 23, 24). Additionally, neutrophil is

another major source of ROS either via a neutrophil elastase

(NE) mediated mechanism (25) or myeloperoxidase (MPO)

enzyme (26) to assist pathogen clearance.
The immune response mediated by
ROS responding to IAV infection

The innate and adaptive immune systems are critical for

pathogen-specific defense. Substantial evidence has revealed that

ROS are essential messengers in immune cells. The balanced

production and elimination of ROS maintains a healthy immune

system in physiological situation. The presence of virus induces

increased levels and disturbs the balance of ROS within immune

cells, resulting in activation of both innate and adaptive immune

response. Additionally, ROS not only work as critical

components of the host to fight against the invading virus, but

also possess significant role to transmit signals from multiple

signaling pathways to regulate the phenotype and function of

immune cells (27). However, accumulated ROS in pathological

condition may persistently stimulate the immune system and

induce hyperactivation of inflammatory responses, resulting in

tissue damage and pathology (28, 29).
Innate immune response

Inflammasome
Inflammasome pathway enables the detection of pathogens,

release of cytokines, and recruitment of effector cell to the

infection site (30). It shows that stimulation of NF-kB
activates NLRP3 inflammasome (31). IAV virulence protein,

PB1-F2, can activate NLRP3 inflammasome as well, but also

impaired its activation via various mechanisms (31). Besides,

mitochondrial-derived ROS are proved to promote the activity

of NLRP3 inflammasome (32, 33). This activation could further

drive the expression of interleukin-1b (IL-1b) (33). A novel MxA
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inflammasome has also been reported to be involved in IAV

mediated immune response (34). In respiratory epithelial cells,

MxA recognizes the nucleoprotein of IAV, then interacts with

ASC to release IL-1b through the activation of caspase 1 (35).

Neutrophils
Neutrophils are first responders to be recruited to the site of

infection and recognize IAV through TLR7/8 (36). A mode used

by neutrophils for their recruitment in lung microenvironment

is due to the induction of chemokine receptors (37). By using

single-cell RNA sequencing assay, a study shows that PD-L1+

neutrophils are the major contributor for releasing pro-

inflammatory factors in the first 1-3 days post infection (38).

The function of neutrophils during IAV infection is

controversial (39). A protective role is found to inhibit viral

spread based on mice data that, early recruitment of neutrophils

and their derived chemokine CXCL12 were essential for the

migration of CD8+ T-cells to infected trachea (40). Another

report proved that CD11b/CD18 integrin (MAC-1) helped

neutrophil to suppress IAV-induced, T-cell mediated

pathology probably by restraining the proliferation of T-cells

(41). Neutrophil-derived secretion of IL-1b is thought to protect

against virus. By releasing peptide mCRAMP, NLRP3

inflammasomes in alveolar macrophages were activated by

neutrophils, which led to the release of IL-1b to combat

infection (42). However, hyperactivated neutrophils with

excessive recruitment, robust inflammatory reaction, and

neutrophil extracellular traps (NETs) (39), can induce sever

lethal effect in the acute respiratory distress syndrome (ARDS)

caused by IAV infection (43). NETs contain histone and granule

proteins, their formation relies on neutrophil produced ROS, NE

and MPO (44). Evidence has demonstrated that high levels of

NETs are correlated with poor prognosis of severe IAV infection

and fatality in patients (45, 46).

Macrophages
Alveolar macrophages (AMs) are the most relevant

macrophages for initiating inflammatory and immune responses

to IAV infection in the lung. An animal study shows that a group of

platelet factor 4-positive (Pf4+)-macrophages, probably the

precursors of AMs, can generate pro-inflammatory factors 7 days

after IAV infection (38). AMs contribute to protect alveolar

epithelial cells (AECs) from IAV infection., The cysteinyl

leukotriene (CysLT) trigged pathway is suppressed by AMs,

which is considered to prevent AECs damage from the virus (47).

The protective role of AMs during IAV infection might be due to

their peroxisome proliferator-activated receptor gamma (PPAR-g).
Activation of PPAR-g ameliorates virus-associated inflammation

and increases the level of MMP7 and MMP9, tissue remodeling

factors, and EGF and VEGF, epi-endothelial growth factor, for

repair of damaged sites (48, 49). The impact of ROS on

macrophages against IAV infection, as well as ROS mediated
Frontiers in Immunology 04
signaling pathways in infected macrophages, are indirect (50).

Evidence has showed that the polarization of M1 macrophages

depends on ROS mediated pathway (51); in M2 macrophages, ROS

either promote their polarization via NF-kB (52), or induce

autophagy to inhibit their polarization via MAPK pathway (53).

Besides, ROS destroy exogenous materials in the antigen presenting

route to reduce the antigen presentation of macrophages (54).

Furthermore, ROS mediated autophagy strengthens the formation

of MHC class II for macrophages (55). These data indicates that

ROS can impact the function of macrophages, but further

investigation is needed to fully understand the effects of IAV

infection on ROS-influenced macrophages.

Natural killer cells
NK cells are recruited in the lung within the first few days

following IAV infection in mice (56). The presence of IAV

activates NK cells through STAT4 to secrete IFN-g and release

granzymes, as well as perforin to remove infected cells and

strengthen CD8+ T-cell response (57, 58). Accumulation of NK

is found in the lung and airways dependent on the cell surface

chemokine receptors, such as CC-chemokine receptor 5 (CCR5)

and CXC-chemokine receptor 3 (CXCR3) (59). Activation of

natural cytotoxicity receptors (NCRs) expressed on NK cells

relied on the binding between NKp46 and NKp44 to viral

hemagglutinin (HA) (60, 61). This kind of activation results in

the lysis of infected cells mediated by NK cells through

degranulation, perforin and granzyme release, and IFNg
secretion (62, 63). The function of NK cells can be influenced

by ROS. It has been proved that ROS derived from monocytes

alters the signaling transduction of NK by reducing CD16z chain
to inhibit their function (64). ROS signaling is necessary for pro-

inflammatory cytokine release, including type I IFN produced by

NK cells. Therefore, ROS may participate in the regulation of

cytokine production of NK cells responding to IAV infection,

which needs to be proved by further studies.
Adaptive immune response

The adaptive immune response is the second line of defense

against pathogens. Unlike fast response by the innate immune

system, the development of adaptive immune response is a

highly specific and long-lasting process, which is necessary for

the clearance of virus and protection against future invasion

through the establishment of long-term memory (65).

Dendritic cells
Evidence has showed that acute infection of IAV resulted in

reduced number of cDCs (CD11c+ conventional DCs) and pDCs

(plasmacytoid DCs) in peripheral circulation, but a sustained

enhancement in respiratory tract (62). The murine CD103+ DCs

traffic viral antigen to lymph nodes and present to CD8+ T cells
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to control replication of virus (66–68); however, CD11b+ cDCs

activated by IAV fail to prime CD8+ T cells (69). Massive

accumulation of IFN-a produced by pDCs may contribute to

uncontrolled inflammation and pathology (70). Accumulation

of pDCs in lymph nodes under lethal infection upregulate the

expression of Fas ligand, which recognize its receptor Fas

expressed on IAV-infected CD8+ T cells, to promote

elimination by Fas-dependent apoptosis (71, 72). Altered levels

of ROS impact the antigen presenting capacity of DCs. It has

reported that inhibited levels of ROS significantly decrease

antigen uptake of DCs (73, 74); reduced mitochondrial ROS,

to be specific, decreases antigen presentation of pDCs to CD8+ T

cells (75); nevertheless, enhanced level of ROS suppressed

antigen presentation of DCs as well by induction of

mitochondrial disorder (76). DCs themselves produce ROS at

a slow but prolonged manner. It was revealed that ROS could be

produced by DCs within minutes and sustained for at least 10h

with an average rate around 0.5mM/sec per phagosome, which

was about 10-fold lower than that in neutrophils (77). ROS, on

the other hand, has ability to increase the intracellular Ca2+

concentration by activating the transient receptor potential

melastatin 2 (TRPM2) channels, which are essential for Ca2

+-permeable and preferentially present in the lysosomal

membranes in DCs (78). The release of Ca2+ from activated

TRPM2 channel provides vital signal for the maturation and

chemotaxis of DCs (78, 79). However, further investigation on

the ROS-mediated function of DCs responding to IAV infection

is still needed.

T cells
CD4 T cells are found to be correlated with lower IAV shedding

and less severe outcome in infected patients (80). They can migrate

to the infection sites by contacting with virus-specific antigens to

activate CD8 T cells and modulate immune response mediated by

virus-specific CD8 T cells (81, 82). Release of IFN-g by CD4 Th1

cells is necessary for the development and preservation of CD8 T

memory (83, 84). The function of CD4 T cells during the initial

priming phase of infection limits exhaustion of CD8 T cells, which

can rapidly recall the viral memory in future infection (85). CD4

CTL utilizes a perforin/granzyme-mediated mechanism to perform

cytotoxicity role for elimination (86, 87). IL-2 induced Jak3 and

STAT5 are required for optimal formation of CD4 CTL. A recent

study revealed that STAT1 protected CD4 CTL against NK during

IAV infection, and STAT4 enhanced the promotion of Th1 identity

to improve their anti-viral impact (88).

CD8 T cells contribute to defense immunity against IAV

infection by releasing cytotoxic granules and cytokines and

inducing direct apoptosis of infected cells (89). IAV-specific

CD8 T cells have been mostly enriched in the lung of patients

(90) and reach the peaks of frequency at approximately day 10

after infection (91). Following infection, CD8 T cells recognize

highly conserved epitopes derived from internal influenza
Frontiers in Immunology 05
components (92). CD8 T cells then get activated and acquire

the effector ability to secret inflammatory cytokines and effector

molecules. During the pandemic in 2009 caused by IAV,

development of severe diseases is correlated with less

frequency of virus-specific CD8 T cells (93). A subset of virus-

specific CD8 T cells keep in the host to protect against further

infection by forming long-lasting memory population (91).

Memory subtypes can remain in human up to several months,

an over 13 years presence in peripheral blood have also been

found (94). The memory response to IAV in human is stable and

can trigger rapid expansion in the lung towards the secondary

infection (95, 96). Their expansion in the lung and airways

correlates with increased CXCR3- and CCR5-binding

chemokines (97). After expansion, memory subtypes produce

cytokines, like IFN-g and TNF, in a rapid manner (98, 99);

meanwhile, high expression of CD11a helps them to produce

cytolytic molecules to clear and protect against the virus (100).

CD8 T cells express Fas ligand (CD95L) and TNF receptor

apoptosis-inducing ligand (TRAIL), which can interact with

their receptor Fas (CD95) and DR4 and/or DR5, respectively,

to mediate apoptosis of infected cells (91).

Activation of both CD4 and CD8 T cells triggers the

respiratory burst either by direct contact with phagocytes or

by cytokines, meanwhile, phagocytes-generated ROS in turn

impacts T cells and leads to oxidative stress. NOX-2 produced

ROS have been found involved in the differentiation of T cells

(101). The susceptibility to ROS strongly depends on the subtype

of T cells, CD45+RA T naive cells are more resistant to ROS-

induced apoptosis than CD45+RO T memory cells (102).

Effector T cells are largely protected from ROS-mediated cell

death (103), which may partly due to the glutathione precursor

cysteine and the thiol-reducing enzyme thioredoxin released by

macrophages and DCs (101). The generation of ROS plays an

essential role for massive expansion of CD8 T cells responding to

IAV infection (104). The metabolism of mitochondria is also

critical for T-cell activation that mitochondrial ROS activated

nuclear factor of activated T cells (NFAT) are necessary for IL-2

secretion (105). Meanwhile, mitochondrial ROS can be

converted to hydrogen peroxide signal, which induces CD95L

expression to regulate activation-induced T-cell death (AICD)

(106). As modulators, ROS play an indispensable role in T-cell

receptor-induced transcription. The generation of ROS

constitutes an intriguing issue with multiple implications for

both T-cell-activated bioenergetics and T-cell-mediated

pathologies (107).

B cells
B cells contribute to the production of pathogen-specific

antibodies to inactivate pathogens and to eliminate the infected

cells (108). They also present viral antigens for downstream

stimulation (109) and secrete anti- and pro-inflammatory

cytokines during viral clearance (110). Following IAV exposure,
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naïve B cells are activated by viral antigens and differentiate either

into short-lived antibody-producing plasmablasts (PBs) or germinal

center (GC) B cells (111). GC is the place for affinity maturation

and clonal selection of GC B cells (111, 112). Within GC,

successfully mutated GC B cel clones present antigen peptides to

T follicular helper (Tfh) cells via MHC-II (111). With the help of

Tfh, the affinity of GC B cells decides their differentiate that the

highest affinity is selected for long-lived plasma cells (LLPCs), while

lower ones for memory B cells (MBCs) (113–115). Encountered the

secondary infection,MBCs are recalled and differentiate rapidly into

PBs, or re-enter into GCs for affinity mature (116–118).

Simultaneously, naïve B cells are recruited again to generate a de

novo B cell response to variate the antibody response against shared

and drifted epitopes (117, 118). As a result, newly educated and

generated LLPCs and MBCs fight together to protect host against

new viral variant.

ROS production is involved in B cell receptor (BCR)

stimulation. BCR stimulation of primary resting B cells

induces a rapid generation of ROS for at least 24h in mice, in

where early production of ROS (0-2h) relies on Nox2, while the

later ROS (6-24h) depends on mitochondrial respiration (119).

Produced ROS further stimulate BCR downstream for effective B

cell response through PI3K pathway (119). A further study

confirms the role of prolonged ROS in B cell proliferation

(120). In mouse splenic B cells, ROS generated by BCR

ligation are produced in two phases. The first one happened

immediately and ceased in 1h, while the second one started at 2h

and lasted for 4-6h. ROS, produced by NOX3 not NOX2 in the

late phase, enhance the activation of essential pathways for B cell

proliferation, including NF-kB and PI3K pathways (120).
Discussion

Human respiratory virus infections lead to a spectrum of

respiratory symptoms and disease severity, contributing to

substantial morbidity, mortality and economic losses worldwide,

as seen in the COVID-19 pandemic. Respiratory virus, mainly

including IV, respiratory syncytial virus (RSV), MERS-related

coronavirus (MERS-CoV), and severe acute respiratory syndrome

coronavirus (SARS and SARS-CoV-2), show comparable

symptoms in patients. In this review, we discuss the ROS

involvement of immune responses to IAV infection, a

representative of respiratory virus, including mitochondria

function, oxidant and antioxidant enzymes, and signaling

pathways in various immune cells. Extensive research has

suggested that hyperinflammation induced by IAV is heavily

involved with oxidative stress. Therefore, the elevated oxidative

stress is commonly observed in IAV infected cases with severe

disease progress (121–123). Consistently, several factors that are

known to be associated with increased ROS levels and oxidative

stress, such as chronic diseases, morbid obesity, smoking, and older
Frontiers in Immunology 06
age, are listed as risk factors for a more severe course on IAV

infected patients (124–126). Severe hyperinflammation caused by

high levels of ROS is spurred by an exuberant but dysregulated

immune response (127). The current treatment in the clinic for

hyperinflammation induced by mainly relies on immuno

modulatory therapy, including broadly immunosuppressive

approaches (such as glucocorticoids) (128, 129) and targeted

immunomodulatory therapies (such as cytokine blockades) (130).

The understanding of ROS impact on immune response will

provide novel therapeutic targets to effectively treat IAV infection,

and other respiratory virus infection in general.
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