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The fatal outcomes of COVID-19 are related to the high reactivity of the innate

wing of immunity. Estrogens could exert anti-inflammatory effects during

SARS-CoV-2 infection at different stages: from increasing the antiviral

resistance of individual cells to counteracting the pro-inflammatory cytokine

production. A complex relationship between sex hormones and immune

system implies that menopausal hormone therapy (MHT) has pleiotropic

effects on immunity in peri- and postmenopausal patients. The definite

immunological benefits of perimenopausal MHT confirm the important role

of estrogens in regulation of immune functionalities. In this review, we attempt

to explore how sex hormones and MHT affect immunological parameters of

the organism at different level (in vitro, in vivo) and what mechanisms are

involved in their protective response to the new coronavirus infection. The

correlation of sex steroid levels with severity and lethality of the disease

indicates the potential of using hormone therapy to modulate the immune

response and increase the resilience to adverse outcomes. The overall success

of MHT is based on decades of experience in clinical trials. According to the

current standards, MHT should not be discontinued in COVID-19 with the

exception of critical cases.
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Introduction

The new coronavirus infection (COVID-19/SARS-Cov-2)

has quickly reached pandemic proportions following the initial

outbreak in Wuhan (1, 2). A wide range of measures are being

taken around the world with occasional declarations of

emergency and restrictions on daily life. Over 2020–2021, the

pandemic with over 160 million recorded cases of coronavirus

disease (COVID-19) caused almost 3.5 million deaths (3). The

situation continues to pose a threat to the world economy and

human well-being. Efficient therapies for SARS-Cov-2 acute

coronavirus infection represent an urgent global challenge to

laboratory and clinical research.

Severe complications and high mortality of COVID-19

result from the massive cytokine storm that triggers

inflammatory infiltration of the lungs and ends in the acute

respiratory distress syndrome. The cytokine storm may also

promote acute cardiac failure, secondary infections,

generalized sepsis, and multiple organ failure, all of them

potentially lethal. Prevention of the cytokine storm in SARS-

Cov-2-infected individuals is pivotal. Steroid hormones, e.g.

estrogens, are renowned anti-inflammatory agents. Cytokines,

hormones, and neurotransmitters coordinate and integrate the

immune, nervous, and endocrine functionalities through

interactions with specific receptors in target cells (4). The

majority of immune cells are known to express estrogen

receptors (5). An association between estradiol intake (as a

component of menopausal hormone therapy, MHT, as well as a

component of hormone replacement therapy, HRT) and

reduced risks of lethal outcome in SARS-Cov-2 has been

demonstrated in a number of studies (6–8). At the same

time, immune status of women receiving MHT has not been

studied in detail. In this review, we attempt to explore how

MHT affects immunological parameters of the body and what

mechanisms are involved in its protective response to the new

coronavirus infection. The review is based on PubMed searches

(https://pubmed.ncbi.nlm.nih.gov/) using the keywords:

COVID-19, SARS-CoV-2, coronavirus, novel coronavirus

infect ion, autoimmunity , sex hormones , estradiol ,

progesterone, testosterone, immune response, menopausal

hormone therapy , hormone rep lacement therapy ,

oophorectomy, postmenopausal women, immune aging.
Sex-based differences in
COVID-19 outcomes

The differences in hormonal status that distinguish men and

women throughout their lives contribute to considerable

immuno log i c a l d imorph i sm refl e c t ed by skewed

epidemiological profiles. The situation can be illustrated by

reciprocal incidence proportions of autoimmune disorders and
Frontiers in Immunology 02
cancers: the former are more frequently diagnosed in women,

and vice versa (9–11).

Female sex hormones, including estrogens and progesterone,

act as regulators of innate and adaptive immunity; hence the

higher flexibility of humoral and cell-mediated immune

responses in women. A number of studies have come to

conclusion that women show increased resistance to viral

diseases and SARS-CoV-2 infections in particular (12).

Indeed, the incidence of severe cases and deaths of COVID-

19 in women is lower (13, 14). In the International Severe Acute

Respiratory and emerging Infections Consortium (ISARIC)

World Health Organization (WHO) Clinical Characterization

Protocol UK prospective observational study (CCP-UK)

enrolling approximately 20,000 hospital patients with COVID-

19 in early 2020, female lethality was lower by 20% (15).

Two previous outbreaks of zoonotic b-coronavirus
encountered in this century showed similar epidemiological

patterns. Among a total of 1,755 patients hospitalized during

the 2002 outbreak of SARS-CoV in the Guangdong province of

China, mortality rates constituted 13% for women and 22% for

men (16). During the 2012 coronavirus epidemic in Saudi

Arabia, the mortality rates were 23% and 52%, respectively (17).

As shown by the analysis of COVID-19 data from Italy,

Spain, Germany, Switzerland, Belgium, and Norway, mortality

rates in males exceed those in females for all age groups except

under-20-year-olds (18). The established fact that adult men of

all ages and women over 50 have the highest risks of severe

complicated COVID-19 rekindles the point on the role of sex

steroids in the clinical course of COVID-19 (19). Female

immune system appears to produce a better coordinated and

more flexible antiviral response with the overall impact on the

morbidity, severity, and associated mortality. The trend may be

explained by the modulatory effects of estrogens on leukocyte

functionalities, both in circulating pools and resident

populations of cells recruited from the bloodstream to

peripheral tissues (12, 20–23). However, a number of reports

emphasize the lack of difference in estradiol levels between

deceased and surviving patients with COVID-19 (24, 25). Here

we focus on the relationship between sex hormone levels and

immune status of the body with a special regard to SARS-

CoV-2 infection.
Sex hormones as chefs d’orchestre
for the immune system

Estrogens define immunological
parameters

Steroid hormones play important roles by tuning immune

responses through modulatory effects on diverse cell populations

representing both innate (neutrophils, macrophages/monocytes,
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natural killers, and dendritic cells) and acquired immunity

(T and B cells) (4), including in immune-mediated diseases (26).

Sex hormones, which include estrogens, progesterone, and

androgens, are produced in all humans; however their plasma

levels, physiological duties, and target organs in men and women

are different (27). In reproductive age women, estrogens and

progesterone are produced cyclically by the ovaries, while small

amounts of testosterone are produced by ovaries and adrenal

glands. Estrogens are also produced locally by aromatization of

androgens in adipose tissue, bones, and mammary glands. In

men, estrogen blood levels are maintained through

aromatization of testosterone in peripheral tissues, whereas

Leydig and Sertoli cells of the testes are engaged in local

synthesis (27).

Endogenous estrogens include estrone (E1), 17b-estradiol
(E2), and estriol (E3) (28). Estradiol is the predominant and

most biologically active estrogen. Estradiol is a physiological

derivative of testosterone, whereas estrone is derived from

androstenedione; the syntheses are catalyzed by aromatase.

Estrone, which prevails in postmenopause, has weaker effects

compared with estradiol.

Estrogen receptors are expressed in all immune cells and

participate in transcriptional regulation (12, 20–23). Estrogen

receptors fall into two types: intracellular (ERa and ERb) and
membrane-bound (G-protein coupled estrogen receptor,

GPER). Accordingly, the routes of estrogen signaling involve

genomic and non-genomic options. Genomic estrogen signaling

involves interactions of genomic DNA with ligand-bound ER,

either direct (classical) or mediated by other transcription

factors, whereas non-genomic estrogen signaling acts by

triggering cytoplasmic protein phosphorylation cascades (29).

The classical genomic estrogen signaling (characteristic of

steroid hormones in general) consists of the following steps

(1): the hormone enters the cytoplasm and meets its nuclear

receptor (2); the hormone-receptor complex is translocated to

the nucleus (3); the complex binds specific recognition elements

in promoter regions of effector genes (30). However, some effects

of estrogens are too fast to be a consequence of gene expression

(which takes time invariably). Instead, the fast effects of

estrogens result from non-genomic signaling routes triggered

by engagement of the membrane-bound GPERs (31–34). Such

e ff e c t s inc lude the e s t rogen-med ia t ed ac t i va to ry

phosphorylation of the endothelial nitric oxide synthase

(eNOS) (35); similar non-genomic effects have been reported

for other steroid hormones. Thus, immune cells have multiple

routes of responding to the circulating estrogen levels, and

exploit them in accordance with receptor profiles expressed by

particular cells (36, 37).

The net effect of estrogens on immune functionalities is anti-

inflammatory. Studies show that physiological estrogen levels in

premenopausal women suppress the release of pro-

inflammatory cytokines, notably interleukins IL-6 and IL-8,

and tumor necrosis factor a (TNF-a) (38). By contrast, low
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physiological estrogen levels in postmenopausal women fail to

counteract the release of pro-inflammatory cytokines. Quite

indicatively, the elevated levels of IL-1, IL-6, and TNF-a,
encountered in postmenopause, can be effectively mitigated by

MHT (39, 40).

Cellular mechanisms of the anti-inflammatory action of

estrogens are likely to involve diverse leukocyte populations of

the body. Estrogens have been shown to regulate cell numbers

and functional activities of neutrophils by affecting the release of

many chemokines (e.g. monocyte chemoattractant protein

MCP-1) and cytokines (TNF-a, IL-1b, and IL-6) (41). The

suppressive effect of estrogens on the production of TNF-a,
IL-1b, and IL-6 by neutrophils and macrophages has been

independently confirmed in rats (42), mice (43), and

humans (44).

The protective effect of estrogens on polymorphonuclear

leukocytes involves activation of the regulatory pathway

controlled by the prominent anti-inflammatory protein

annexin A1. The response to female steroids in neutrophils is

accompanied by a rapid increase in annexin A1 levels. Depletion

of this protein by immunoneutralization or genetic modification

abolishes the mitigating effect of estrogen on neutrophil

extravasation both in vitro and in vivo (45) (Table 1).

Monocyte-macrophage lineages are also highly responsive to

estrogens. Many studies identify monocyte populations as the

key anti-inflammatory effector of estrogens (57, 58). Estrogens

inhibit expression of chemokine receptors CCR2 and CXCR3 in

monocytes, thereby reducing their sensitivity to pro-

inflammatory factors (59–61) (Table 2). Elevated blood levels

of 17b-estradiol promote expression of anti-inflammatory

markers in monocytes (66) while inhibiting the production of

pro-inflammatory cytokines by these cells (67–69). More

specifically, estrogens can modulate macrophage phenotypes

(polarization status) in favor of anti-inflammatory profiles (70,

71). Toniolo et al. have demonstrated decreased estrogen levels

observed in postmenopause negatively affects the macrophage

capability of polarization towards anti-inflammatory phenotypes

in response to microenvironmental stimuli (72).

Administration of exogenous estradiol (E2) to male or

ovariectomized female mice significantly reduced the

expression of pro-inflammatory cytokine IL-1b by peritoneal

macrophages in vivo (73). Zhang et al. reported alleviation of

inflammatory response in macrophage cell line RAW264.7 by

estradiol; the mechanism involved a reduction in expression and

secretion of IL-1b (74). In a study by Stanojević et al.,

stimulation with endotoxin (lipopolysaccharide, LPS) reduced

secretion of IL-1b and TNF-a by peritoneal macrophages in

ovariectomized mice (54). However, no decrease in IL-1b
production after treatment with estradiol was observed in

monocy t i c macrophages der ived f rom women in

postmenopause (52). Ćuruvija et al. showed that LPS-

stimulated peritoneal macrophages of middle-aged female rats

with significantly reduced levels of circulating estradiol secrete
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TABLE 1 Immunity-related effects of sex hormones observed mainly in vitro.

Methods/Conditions Applying Concentration/Manipulation Effect Ref.

Estrogens

Polymorphonuclear cells or
whole blood aliquots incubated
with E2

in vitro 17 b-E2
(5 ng/ml)

AnxA1 mobilization.
The appearance of the phenotype: AnxA1hiCD62LloCD11b lo,

(45)

LPS-induced inflammation (10
ng/ml) on mouse embryonic
fibroblast cells

in vitro 17 a-E2 or 17 b-E2 (10 µM) ↓TNF-a, ↓IL- 6
↑IL-4, ↑IL-6ra
17 a-E2 and 17 b-E2 down-regulate NFkB-p65 expression

(46)

Mouse and human peripheral
blood monocytes/macrophages
activated by S. aureus

in vitro Pretreatment with 17 b-E2 (10-7 М) 17 b-E2 inhibits the NF-kB pathway upon activation of S. aureus
monocytes, also ↓TNF-a, ↓IL-1b, ↓IL-6 and ↓GM-CSF, ↓TLR2, ↑IL-
10, ↑IL-27.

(47)

Whether E2 inhibits NFkB
signaling in rat carotid injury
models and in TNF-a treated
rat aortic smooth muscle cells

in vitro 17 b-E2
(10 -7 M)

E2: ↓inflammation in rat aortic smooth muscle cells by promoting
synthesis of IkBa, a direct inhibitor of NFkB activation, and by
directly inhibiting NFkB binding to inflammatory gene promoters.

(48)

Monocytes and neutrophils
from blood of premenopausal
women who had not previously
used hormone therapy.
Monocytes were pre-incubated
with 17 b-estradiol for 24 hours
and then treated or untreated
with LPS for 12 hours (LPS (10
ng/ml))

in vitro 17 b-E2
(10 -8 M)

E2: attenuates LPS-induced expression of CXCL8 in monocytes.
Treatment of monocytes with E2 prior to LPS administration
↓CXCL8 signaling and protein production.
The ability of LPS-activated monocytes pretreated with E2 to
mobilize neutrophils was impaired.

(49)

Monocyte-derived macrophages
were obtained from healthy
premenopausal women and
treated with E2.
For LPS stimulation
experiments cells were pre-
treated with E2 for 24 hours
followed by LPS administration
for 12 hours (LPS (10 ng/ml)).

in vitro 17 b-E2
(100 nM)

Activation of macrophages by LPS: ↓kB-Ras2 expression.
Pretreatment of human macrophages with E2: ↓LPS-induced TNF-a
expression due to ↓activation of NF-kB.
E2: suppressed NF-kB activation via kB-Ras2 induction.

(44)

Effect of 17 b-estradiol on gene
expression in human lung
epithelial cell line A549

in vitro 17 b-E2 (from 37 nM to 144 nM),
exposure period 24 hours

E2: ↓ levels of cellular ACE2 mRNA and TMPRSS2 mRNA. (50)

THP-1 cells were infected with
tachyzoites of T. gondii strain
RH. Stimulation was performed
with E2

in vitro 17 b-E2 (40 nM) T. gondii: ↑ERa, ↑ERb, ↓ prolactin receptor (PRLR);
E2: ↓PRLR;

(51)

Macrophages derived from
human peripheral blood
monocytes activated by LPS
(100 ng/ml, M1) or IL-4 (15 ng/
ml, M2)

in vitro 17 b-E2 (10-11 M); and xenoestrogens:
bisphenol A (BPA) 10-6 M, DEHP (di-
ethyl-2-hexyle phthalate) 10-6 M and
DBP (di-n-butyl phthalate) 10-6 M in
combination with selective antagonists
ERa or ERb.

E2 stimulated the migration of M2 macrophages.
Xenoestrogens: M1: ↑IL-10 and ↓IL6.
M2: ↓IL10, ↓IL6, ↓TNF-a and ↓IL1b

(52)

Progesterone

Evaluation of the effect of
progesterone on DC in rats after
LPS stimulation (5 µg/ml)in the
ranges covering physiological
and pharmacological
concentrations.

in vitro Progesterone Progesterone treatment of LPS-activated mature bone marrow DC:
↓TNF-a and ↓IL-1b production in a dose-dependent manner, but
did not affect IL-10.
Progesterone treatment: ↓CD80 and the ↓MHC class II RT1B
molecule, ↓ DC-stimulated T-cell proliferation, ↓ability of mature rat
bone marrow cells to drive pro-inflammatory responses.

(53)

THP-1 cells were infected with
tachyzoites of T. gondii strain
RH. Stimulation was performed
and progesterone

in vitro Progesterone (40 nM) T. gondii: ↑ERa, ↑ERb, ↓ prolactin receptor (PRLR);
Progesterone: ↓PRLR, ↓ERb expression and ↑ERa expression;

(51)

Other

THP-1 cells were infected with
tachyzoites of T. gondii strain

in vitro Prolactin (200 ng/ml) T. gondii: ↑ERa, ↑ERb, ↓prolactin receptor (PRLR);
Prolactin: ↓ERa and ↓ERb.

(51)

(Continued)
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less IL-1b than matched cells of young females (56). Galván-

Ramirez et al. demonstrated that immortalized monocytic cells

THP-1 treated with estradiol prior to stimulation by exposure to

Toxoplasma gondii have decreased rates of production of the

pro-inflammatory cytokine IL-12 (51). Estrogens have been also

shown to suppress production of major neutrophil

chemoattractants CXCL1, CXCL2, and CXCL3 within

inflammatory foci in rodent models of colon (75), lung and

vascular injury (48). Estradiol has been also demonstrated to

inhibit the release of a potent neutrophil chemoattractant,

chemokine CXCL8, by human monocytes ex vivo (49).

Myeloid lineages isolated from ERa knockout mice (Esr1-/-)

showed poor performance in macrophage clearance tests and

defective polarization of macrophages from classically activated

(pro-inflammatory) to alternatively activated (anti-

inflammatory) phenotypes (76).

A number of studies explore molecular mechanisms of the

estrogen effects on cytokine production. The decrease in

cytokine production under the action of estrogens apparently

involves inhibition of NF-kB signaling pathway. Pre-treatment

with estrogens has been shown to interfere with NF-kB signaling

and ultimately inhibit the LPS-induced production of TNF-a by

human macrophages in vitro (72). Santos et al. demonstrated

that estrogens mitigate the LPS-induced inflammation through

inhibition of the NF-kB–p65 axis in embryonic fibroblasts (46,

59, 77). Besides, estrogens are capable suppressors of the non-

receptor Bruton’s tyrosine kinase (BTK) essential for monocyte
Frontiers in Immunology 05
functionalities and the interleukin-1 receptor-associated kinase

IRAK2 at transcriptional level (78). In vitro exposure to

estrogens mitigates the functional performance of immune

cells challenged with LPS/interferon-g: the production of TNF-

a and IL-10 decreases, reflecting the interference of estrogens

with NF-kB signaling via both genomic and non-genomic

mechanisms (44). In particular, estrogens boost the production

(48) and prevent the degradation of IkB-a — the chief

endogenous NF-kB inhibitor (44).

Estrogens are also capable of influencing lymphocytes, albeit

in this case the effects are obviously multidirectional. The

available experimental findings advocate both pro- and anti-

inflammatory effects. For instance, estrogens have been

confirmed to modulate negative selection of the high-affinity

autoreactive B cells and meddle with their functionalities,

orchestrating a Тh 2 type response (22). Estrogens have been

also shown to suppress thymopoiesis (65), promote T cell

activation (79), and stimulate NF-kB signaling which controls

numerous genes of immune response, cell cycle, and apoptosis

(80). Estrogens also promote the synthesis of IL-1, IL-10, and

interferon-g by lymphocytes (81, 82), while supporting Th1 and

Th17 differentiation (83), regulatory Т (Treg) cell maintenance,

and the expression of immunosuppressive gene FoxP3 (84–87).

According to other studies, estrogens reinforce the

immunosuppressive functionalities of Treg cells (88, 89) and

boost the expression of chemokine receptors CCR1-5 (90), as

well as the levels of chemokines MCP1, MCP5, eotaxin, and
TABLE 1 Continued

Methods/Conditions Applying Concentration/Manipulation Effect Ref.

RH. Stimulation was performed
with prolactin

Macrophages of the spleen and
peritoneal macrophages at
baseline and after LPS
stimulation

in vitro Ovariectomy Splenic macrophages: ↓IL-1b, ↑IL-10
Peritoneal macrophages: ↓TNF-a, ↓IL-1b, ↓IL-10), ↑TGF-b
Ovariectomy reduced urea production in both subpopulations of
LPS-stimulated macrophages.
After LPS stimulation compared with sham-operated animals:
Splenic macrophages: ↓TNF-a, ↑IL-10
Peritoneal macrophages: ↓IL-1b, ↓TGF-b

(54)

♀ and ♂ mice (8–9 weeks, 5 and
8–10 months, 18–20 months)
were intranasally infected with
various doses of SARS-CoV

in vitro
in vivo

Serum estradiol concentration was
measured by ELISA

♂ mice were more susceptible to SARS-CoV infection compared to ♀
of the same age.
The degree of gender bias towards SARS-CoV infection increased
with age.
Increased susceptibility of ♂mice to SARS-CoV has been associated
with elevated virus titers, increased accumulation of inflammatory
macrophages and neutrophils in the lungs. Sex differences did not
depend on the response of T and B cells. Ovariectomy or treatment
of ♀ mice with an estrogen receptor antagonist increased mortality.

(55)

Peritoneal macrophages
obtained from young (2
months) and aging intact
middle-aged rats (16 months):
male and female

in vitro
in vivo

N/A ♀ middle age compared to young: ↓ IL-1b, ↓IL-6, ↓ERa, ↓ systemic
level E2
♂ middle age compared to young: ↑IL-1b, ↑IL-6
♀ of middle age compared to ♂: ↑IL-6, ↑IL-1b, ↑TNF-a and ↑NO

(56)
frontiersi
↑ and ↓ - up- and down-regulation, respectively.
E2 –estradiol.
LPS, lipopolysaccharide N/A, not available.
n.org

https://doi.org/10.3389/fimmu.2022.928171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Averyanova et al. 10.3389/fimmu.2022.928171
SDF1b (81, 91). On the other hand, estrogens stimulate the

production of anti-inflammatory cytokines (e.g. IL-4 and IL-10)

by CD4+ T helper cells. Estrogens also reduce the production of

IL-17 by pro-inflammatory helper cells Th17 and stimulate Treg

cell proliferation thus facilitating immune tolerance (92).

Exposure of normal killer cells (NK cells) to estradiol in vitro

promotes secretion of interferon g by these cells and reinforces

their cytotoxicity (93). At the same time, estradiol has been

shown to suppress the expression of surface activation markers

and FAS ligand by NK cells while inhibiting secretion of

granzyme B serine protease by these cells in murine model (64).

Apart from in vitro studies, the immunity-related effects of

estrogens were tested in a number of pro-inflammatory disease

models in vivo. In the majority of experimental models, the anti-

inflammatory effects of estrogens predominantly involved innate

immunity: the reduced production of pro-inflammatory

cytokines (e.g. IL-6, IL-1b, and TNF-a) by monocytes and

macrophages along with chemokine production inhibition

alleviated monocytic infiltration of inflammatory foci.

In pre-clinical studies using influenza A virus infection

models, estrogens exhibited potent immunomodulatory effects
Frontiers in Immunology 06
leading to a more balanced innate immune response in the lungs,

associated with reduced local levels of pro-inflammatory

cytokines and reduced chemokine reactions before the onset of

clinical symptoms (94–96).

In a model of acute pneumonia induced by instillation of

bacterial LPS, male and ovariectomized female mice showed

increased infiltration of the lungs with polymorphonuclear cells

producing high amounts of IL-6, IL-1b, and the inter-cellular

adhesion molecule 1 (ICAM-1); these symptoms were reduced

upon exogenous administration of estradiol (62).

A major influence of estrogens on immune response in

humans involves their meddling with the neutrophil

recruitment to acute inflammation foci. Several studies identify

two basic routes of such effects (1): control of the neutrophil

chemotaxis and (2) modulation of the interactions between

neutrophils and endothelial cells (97).

Acute lung injury in ovariectomized mice was successfully

treated with estrogen replacement therapy (62). Administration

of estrogen receptor antagonists (or ovariectomy) increased the

lethality of SARS-CoV infection among female mice (55).

Estrogens have been also demonstrated to play an important
TABLE 2 Immunity-related effects of sex hormones observed mainly in vivo.

Methods/Conditions Applying Concentration/
Manipulation

Effect Ref.

In vivo

Mouse blood monocytes treated in culture and in vivo in vitro
in vivo

MCP-1/JE and
MIP-1a;
17 b-E2 (2.5 µg);
tamoxifen (4-
hydroxy-tamoxifen)
(2.5 mg).

Estrogens and tamoxifen: ↓CCR2, ↓CXCR3 in
monocytes.
Estrogens reduced monocyte
chemotaxis in the presence of MCP-1/JE. Estrogens
suppressed the ability of monocytes to respond to
certain chemokines

(59)

Acute lung injury was induced by intratracheal instillation of
bacterial LPS in male, female, and ovariectomized mice.

in vitro
in vivo

17 b-E2 (50 mg/kg
in 400 ml PBS) was
administered
intraperitoneally 1
hour before LPS
administration

E2: ↓IL-6 and ↓IL-1b both in vivo and in vitro. (62)

Effect of viral influenza A on the immune system of mice.
3 groups of female mice: with intact gonads, with
gonadectomy and with gonadectomy on the background of
hormone replacement therapy (HRT)

in vivo Hormone capsules
were left empty
(placebo) or
contained
testosterone,
dihydrotestosterone
(DHT), or 17b-E2.

E2 influenced the kinetics of viral replication, but
↓TNF-a and ↓CCL2 in the lungs of mice with intact
gonads and mice with gonadectomy.
Mice with gonadectomy and low circulating E2 levels
tolerate infection worse and have higher pro-
inflammatory responses than females with intact
gonads or on HRT.

(63)

Study of the effect of estrogens on the number and cytotoxic
activity of 6 weeks female mice NK cells

in vivo 17 b-E2
(100 µg/kg/day)

E2: ↑ the number of NK cells, but ↓ their cytotoxicity (64)

Evaluation of the effect of selective estrogen receptor
modulators raloxifene (ral), lasofoxifene (las) and
bazedoxifene (bza) on T-lymphopoiesis and inflammation.
The study was conducted on mice after gonadectomy.

in vivo Subcutaneous
injections of 17b-
estradiol-3-benzoate
(E2; 1 µg/mouse/
day, ral (60 µg/
mouse/day), las (4
µg/mouse/day, or
bza (24 µg/mouse/
day.

Treatment with las or bza does not affect T-
lymphopoiesis or T-dependent inflammation.
E2: ↓ thymus mass and ↓ proportion of early
progenitor T cells, while ↑ population of more
mature T cells in the thymus. E2 also ↓T-cell
dependent delayed-type hypersensitivity reaction.

(65)
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role in protection of the lung tissue through spatial confinement

of local inflammation. This capacity was confirmed by in vivo

experiments with administration of LPS to male or

ovariectomized female mice. Despite an initial boost in the

levels of IL-1b in response to LPS, administration of estradiol

reduced both the albumin levels and the degree of LPS-induced

lung injury (16, 62).
Progesterone impacts
immune responses

Progesterone is another important immunomodulatory and

anti-inflammatory hormone. Its cognate receptors are expressed

by multiple cell types of the immune system, including

macrophages, dendritic cells, lymphocytes, mast cells, and

eosinophils . Progesterone also binds and activates

glucocorticoid and mineralocorticoid receptors, which results

in suppressed production of pro-inflammatory IL-1b and IL-12

cytokines by macrophages and dendritic cells (98). According to

a number of studies, progesterone inhibits T cell proliferation,

promotes apoptosis, facilitates production of IL-4 while reducing

production of interferon b and IL-17, and also inhibits Th1 and

Th17 activities while supporting Treg cell differentiation

(99, 100).

Progesterone has a broad spectrum of anti-inflammatory

effects. After exposure to progesterone, macrophages and

dendritic cells have inferior activation status and produce less

IL-1b and TNF compared with untreated cells (53, 101).

Progesterone is also known to facilitate proliferation of Treg

cells and thus support immune tolerance (92). Exposure to

progesterone promotes expression of FIZZ1 and YM1 (the

alternatively activated anti-inflammatory macrophage markers)

and inhibits expression of the inducible nitric oxide synthase

(iNOS) with a concomitant decrease in NO production in bone

marrow-derived murine macrophages. The Toll-like receptor

(TLR) and NF-kB signaling pathways can be antagonized by

progesterone-mediated effects. Cytokine storm is the climax of

severe COVID-19 and its mechanisms clearly have a TLR-

dependent component. Accordingly, the role of TLR signaling

pathways in COVID-19 pathogenesis represents a continuous

research focus (102, 103). Despite the predominant implication

of TLR7/8, other receptors of this family appear to be involved as

well. For instance, the TLR3/TLR4 double-knockout mice are

more susceptible to SARS-CoV-2 infections (104) and many

studies emphasize the significance of TLR4 in the cytokine storm

development (105).

Exposure of human NK cells to progesterone mitigates their

activation and inhibits production of interferon g by these cells

through caspase-dependent apoptosis. Progesterone also

modulates Th cell-mediated responses by promoting a Th1-to-

Th2 shift in Th phenotypes and facilitating production of anti-

inflammatory cytokines (e.g. IL-4 and IL-10) by Th cells. In
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addition, progesterone inhibits production of pro-inflammatory

cytokines(e.g. IL-1b and IL-12) by dendritic cells (98, 106).
Androgens impact immune responses

Testosterone exerts immunosuppressive action targeted at

several constituents of the immune system, including effector

cells of innate and adaptive immunities. Testosterone can inhibit

production and release of pro-inflammatory cytokines (IL-1b,
IL-6, TNF-a, interferon g, and IL-12), while promoting

production of anti-inflammatory cytokines (IL-10 and IL-4)

(107). Androgens have been shown to suppress Th1 lineages

and support Th2 differentiation, while inhibiting В

lymphopoiesis and production of antibodies by B cells (108).

A number of studies confirm the overall anti-inflammatory effect

on androgens using experimental models of autoimmune and

inflammatory diseases, progression of which can be slowed

down by testosterone administration. Large prospective studies

associated lower testosterone levels and increased estradiol-to-

testosterone ratio in men with severe course of COVID-19 and

high levels of pro-inflammatory cytokines (109). However, this

association cannot be considered a direct evidence of the pro-

inflammatory effect of estradiol in men, as it likely reflects a

reduction in testosterone levels associated with visceral obesity

— a risk factor on its own.

The main histocompatibility complex (MHC types I and II)

engaged in the pathogenic antigen presentation plays a pivotal

role in immune response. Testosterone is known to reduce the

levels of MHC II expression on dendritic cells, while estrogens

exert the opposite action by increasing the MHC II expression

levels (110). The sex-based difference in immunity reactions

may be related to Х-chromosome localization of certain

immunoregulatory genes (9). At least, FoxP3 and CD40L

genes are expressed at higher levels in women. The variable

patterns of X inactivation in immune cells and the pleiotropic

functional spectrum of many genes provide a favorable

playground for sex hormones to finely orchestrate the

immune system capacity of breaking tolerance to exogenous

or endogenous agents (9, 111).

Sex hormones not only control the reproductive system, but

also largely tune the immunity. The hormones regulate immune

response in the whole diversity of its aspects and forms (innate

and adaptive, humoral and cell-mediated), so that any flaws in

the mechanisms of such regulation contribute to the

development of immune-mediated diseases, including

autoimmune conditions (98, 112–117). Although the exact

molecular mechanisms of the immunological impact of sex

hormones are not yet fully understood, studies show that sex

hormones profoundly control development, homeostasis, gene

expression, and signaling in T and B lymphocytes, monocytes,

macrophages, dendritic cells, and granulocytes, deeply affecting

their functionalities under normal and pathological conditions.
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Non-immune effects of sex hormones

Among their diverse systemic effects, sex steroids are known

to interfere with local immunityby stimulating local

immunocompetent cells and modifying the properties of

epithelial barrier. Although steroid receptors are expressed by

many mammalian cell types, the action of sex steroids on mucous

membranes of the genital tract is surely the main focus (118).

Estradiol promotes secretion of leukocyte protease inhibitor and

b-defensin-2 by human uterine epithelial cells thus enhancing

their antimicrobial properties (119). With the onset of

menopause, the barrier function of the endometrium declines,

which is associated with changes in composition of subepithelial

lymphocyte populations (118), thinning of the epithelium (120),

and disruption of epithelial cell junctions, especially those

involving cadherins (121). Vulnerability of other types of cell

junctions in the uterine epithelium during postmenopause is

questionable, although certain pathogens, such as HIV, have

been reported to facilitate destruction of tight and adherens

junctions (122). Noteworthy, estradiol inhibits secretion of IL-6,

IL-8, and MIF by uterine epithelium in response to TLR3/4

stimulation (119), as well as the INFg-induced gene expression,

while progesterone has the opposite effect (123). The effect of sex

steroids on other mucous membranes is less pronounced.

Decreased 17b-estradiol and progesterone levels are

accompanied by decreased salivary levels of IgA and higher

incidence of upper respiratory tract infections (124). In

addition, salivary levels of secretory IgA in women are known

to be significantly higher than in men (125, 126); although the

menstrual cycle-related dynamics are negligible. Estrogens

promote IgA transport across the epithelia, thus contributing to

the barrier function of mucosa, for instance, in the intestine (127).

The effects of sex steroids on mucous membranes of

digestive tract are widespread. For instance, estradiol

administration reduced the symptoms of eosinophilic

esophagitis (128), a typical dysfunction of the epithelial

barrier. At the same time, estrogens, in contrast to

testosterone, can impede wound healing in the oral cavity (129).

A human herpesvirus 2 (HSV-2) vaccine administered

intranasally against the background of E2 estradiol ensures

more pronounced Th17 responses, longer persistence of CD4+

T cells, and higher numbers of memory Th-cells in the upper

respiratory tract mucosa-associated lymphoid tissue (130). The

diverse effects of sex hormones are determined by robust

expression of their receptors in a variety of mammalian cell types.
Estrogens attenuate the pro-
inflammatory cytokine storm

The fatal outcomes of COVID-19 are due to the intrinsically

high reactivity of the innate wing of immunity. Under conditions

of severe respiratory illness, the innate immune system
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overreacts by critical hypercytokinemia and massive migration

of the activated immune cells to the lungs. The patients die not of

the minor tissue damage caused by viral replication per se, but as

a consequence of generalized devastating immune response with

characteristic off-scale burst in systemic levels of pro-

inflammatory cytokines leading to the acute distress-syndrome

and multiple organ failure (92). These devastating consequences

can be considerably mitigated by estrogens at different planes of

SARS-CoV-2 infection: from increasing the antiviral resistance

of individual cells to counteracting the pro-inflammatory

cytokine production.

Angiotensin-converting enzyme 2 (ACE2) was identified as

a unique cognate receptor for SARS-CoV-2, key for penetration

of the virus into human cells. Patterns of ACE2 expression in

human body (in terms of distribution and intensity) play pivotal

role in the course of the infection accomplished through the

binding of ACE2 to the SARS-CoV-2 spike glycoprotein (S-

protein) (131–133). ACE2 protein is a membrane-bound

aminopeptidase expressed in a variety of organs and tissues

including heart, intestine, kidneys, lungs, lymph nodes, and

ovaries (134). ACE2 is predominantly expressed by endothelial

cells, as well as myocardium, intestinal mucosa, and type II

pneumocytes — the pulmonary surfactant-producing spherical

cells found in lung alveoli (135). ACE2 is also expressed by other

cell types and structures of the respiratory tract, from

nasopharyngeal mucosa to the transient secretory cells of the

bronchi. The difference of ACE2 protein expression patterns

observed in men and women may partially explain the sex-based

differences in COVID-19 morbidity and mortality (136–139).

The ACE2 receptor protein is abundantly expressed in

hormone-producing organs and structures, notably in testes,

the thyroid, and adipose tissue, and to a lesser extent also in

adrenal glands, while the tendency for its increased expression

identified in males and older individuals is consistent with the

higher morbidity observed for these groups (131).

Estrogens and particularly their anti-SARS-CoV-2

immunomodulatory effects are currently a close focus. The

acute respiratory distress syndrome (ARDS) is prevalent in

severe COVID-19. Pathogenetic routes of this condition vary;

one of them involves dysfunction of alveolar epithelial cells

leading to the gas exchange disruption. The favorable outcome

in ARDS is thought to depend on the effectiveness of alveolar

fluid clearance (AFC) (140), which involves active transport of

sodium ions (141). Sex steroids likely participate in regulation of

this process, as women with ARDS show higher AFC rates and

get more favorable prognosis than men (140). The same sex-

based difference has been observed in preterm infants with

respiratory distress syndrome (142). Several experimental

studies show that administration of estrogen and progesterone

supports the synthesis of pore-forming a-subunit of ENaC and

Na,K-ATPase thus stimulating sodium transport and ultimately

AFC, which may provide important link in the treatment of

ARDS (143–145). Another study argues that the apparent
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beneficial effect of estradiol in LPS-induced acute lung injury

may involve the PI3K/Akt/SGK1 signaling pathway activation

(146). In addition, administration of 17b-estradiol has been

shown to prevent the development of age-related changes in

the lungs in female mice: it mitigates cell death, inhibits MMP2

expression, and restores interalveolar septa (147).

Estrogens have been shown to inhibit expression of the

transmembrane serine protease 2 (TMPRSS2) in various cell

lines (50). TMPRSS2 is required for the activation of spike

protein in some coronaviruses, notably in SARS-CoV and

SARS-CoV-2 (148). In human respiratory airways SARS-CoV-

2 virus infects cells through interaction of the capsid S-protein

with ACE2 (149). The inhibition of TMPRSS2 expression by

estrogens can prevent the infection since TMPRSS2 and ACE2

are co-expressed, i.e. “interact” at transcriptional level (150). A

recent study by Baristaite et al. shows that estradiol may alleviate

the symptoms by regulating ACE2 and TMPRSS2, as their

expression decreased upon 17b-estradiol treatment of A549

human lung epithelial cells in vitro.

The antiviral potential of estrogens is partially explained by

its direct impact on transcription (mediated by nuclear

receptors), as many genes known to participate in immune

response and inflammation have estrogen-responsive elements

in their promoter regions (151). Apart from that, estrogens

counteract vasoconstriction by stimulating the nitric oxide

synthesis and reducing the intracellular calcium levels in

vascular smooth muscle cells (152). Estrogens are thought to

mobilize the resting endothelial progenitors to proliferating

pools, as well as to reduce the rates of apoptosis among

endothelial cells (153). Besides, estrogens exert anti-

inflammatory action on the endothelium by inhibiting

leukocyte chemotaxis and formation of reactive oxygen species

through activation of the renin-angiotensin-aldosterone system.

Estrogen deficiency is accompanied by elevated levels of renin

and increased expression of angiotensin receptor 1 with ensuing

vasoconstriction and pro-inflammatory cytokine shift (154).

These negative effects can be neutralized by exogenous

estrogens at the non-genomic level.

Toll-like receptor 7 (TLR7) is expressed on dendritic cells

(155). Berghöfer et al. demonstrated that, upon stimulation with

TLR7 ligands, peripheral blood plasmacytoid dendritic cells of

women produce more interferons type I than corresponding

cells of men (156). The authors also observed the loss of TLR7-

mediated responses in plasmacytoid dendritic cells during

postmenopause and showed that it could be partially rescued

with MHT. The TLR7 encoding gene is located on X

chromosome (103), which suggests sex-based differences in the

effectiveness of antivirals (111), including those against SARS-

CoV-2, consistently with clinical observations (157). Female

dendritic cells, monocytes and B lymphocytes tend to avoid

inactivation of the TLR7 second copy (158), leading to increased

TLR7 dosage and ultimately to higher levels of type I IFN (IFN-I)

(158). The higher levels of IFN-I production by dendritic cells
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observed in women have been suggested to depend on estrogen

levels (159–161). At the same time, dendritic cells of female mice

transplanted into males continued to produce higher levels of

IFN-I, which indicates a strong relationship of this phenomenon

to the number of X chromosomes i.e. TLR7 copy number (161).

A prominent role of estrogens in regulation of TLR-mediated

responses has been confirmed by several studies (162, 163).The

involvement of TLR7 pathway in systemic response to SARS-

CoV-2, genomic sequences of which can activate the endosomal

TLR7/8, has been supported by multiple evidence (164). The

concomitant activation of TLR7 RNA sensor pathways, followed

by activation of NFkB signaling, promotes secretion of IFN-I,

IFN-g, and IFN-l3 within 48 h of active SARS-CoV-2 infection

(165). The TLR7/8 agonist imiquimod has been shown to

stimulate the production of TNF-a, IL-1, IL-2, IL-6, IL-8, IL-
12, as well as IFN-a (166).

The relationship between TLR7 levels and sex-based

differences in the clinical course of SARS-CoV-2 infection has

been also demonstrated in studies featuring male patients with

deleterious variants of TLR7 (Xp22.2) (167) leading to

compromised TLR7 activation and severe COVID-19 (168).

But even accounting for both the unfavorable TLR7 variants

in men (169) and the stimulating effect of estrogens, the enhanced

TLR7 expression in women is difficult to explain. The discovery of

X-chromosome inactivation avoidance makes an important point,

as about 15–20% of active genes on X chromosome have been

shown to escape inactivation of the extra copy (170). The degree of

avoidance, as well as the tissue-specific signatures of non-

inactivated sequences, require further investigation (171, 172).

X-linked differences in antiviral immunity have been described for

SARS-CoV-2, hepatitis C virus, and HIV.

As long as estrogens suppress the production of pro-

inflammatory cytokines, they can have a decisive impact in

the prevention of cytokine storm, which is the principal cause

of death associated with severe COVID-19 pneumonia (173).

In perspective, estrogen levels appear capable of modulating

lung inflammation and damage, and potentially affect the

outcomes of respiratory diseases such as SARS-CoV-2

pneumonia (174). Estrogens, and to a lesser extent also

progesterone, modulate the release of cytokines, as well as

proliferation, differentiation, and polarization in diverse

immune cell lineages. The use of antiestrogens (tamoxyfen,

toremifene) may interfere with differentiation and maturation

of dendritic cells (175).

Some experts see MHT as a plausible part of therapeutic

strategy aimed at restoring immunological tolerance and curbing

the cytokine storm during coronavirus infection (176).
MHT

For the adequate clinical management of patients during the

period of menopausal transition and early postmenopause, it is
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necessary to adhere to general criteria for the stages of female

reproductive system aging STRAW (Stages of Reproductive

Aging Workshop), developed in 2001 and revised in 2011,

incorporating the results of large cohort studies conducted

over the first decade of the new millenium (STRAW+10). The

criteria were developed on the basis of studying the relationship

between changes in hormonal parameters and the characteristics

of menstrual cycle, which is extremely important for clinical

practice when choosing therapy. Despite the universality of

endocrine changes during reproductive aging, different stages

of this process may differ individually in duration and be

accompanied by various specific symptoms (vasomotor,

psycho-emotional, vaginal, sexual, etc.) and systemic disorders

like the loss of bone mass, unfavorable cardiovascular risk profile

associated with the development of visceral obesity,

dyslipidemia, endothelial dysfunction, impaired glucose

tolerance, etc. (177–180).

Currently, all leading international menopause societies

recommend starting MHT in the peri- and postmenopausal

period, at an age younger than 60 years and at menopause

duration less than 10 years, when the benefit/risk ratio of MHT

is most favorable in terms of relieving menopausal symptoms

and preventing osteoporosis (181–185). The purpose of using

MHT in peri- and postmenopausal women is to partially

compensate for the sex hormone deficit. MHT is the most

effective treatment for vasomotor symptoms and prevention of

postmenopausal osteoporosis in women under the age of 60

years. A wide variety of MHT formulations are currently

available worldwide, differing in components, doses, and forms

(Table 3). The main components of MHT are estrogens and

progestogens. Women after hysterectomy are prescribed MHT

containing estrogens only. Micronized progesterone or synthetic

progestogens are added to MHT for women with intact uterus to

reduce the risk of endometrial hyperplasia and carcinoma

conferred by estrogen monotherapy (188).

The combined estrogen-gestagenic therapy in a cyclic regime

is prescribed to women with intact uterus in perimenopause, but

not earlier than 6 months after the last menstruation, as a

treatment for menopausal symptoms and prophylaxis of

postmenopausal osteoporosis (181, 183, 185, 189). The

monophasic combined low-dose and ultra-low-dose

continuous estrogen-progestogen therapy is recommended for

postmenopausal women with intact uterus (12 months after the

last menstrual period) (181, 183, 185, 190). Estrogen delivery

methods can be oral, transdermal (patches, gels, and sprays),

subcutaneous (implants), and vaginal, whereas progestogens can

be delivered orally, transdermally, or intrauterally. Tibolone is a

synthetic steroid with estrogenic, progestogenic, and weak

androgenic activities, indicated for the treatment of

menopausal syndrome in postmenopausal women (186). An

additional advantage of this drug is the absence of proliferative

activity in relation to the endometrium and mammary glands, as

well as a significant effect on the growth of myoma nodules.
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Tibolone has been associated with negligibly increased risks of

breast cancer (191, 192) and decreased risks of venous

thromboembolism (VTE) (181, 184, 186, 193) (Table 4).

The choice of MHT should be personalized by accounting

for risk factors, including cardiovascular diseases, VTE, breast

cancer, and postmenopausal osteoporosis, and comorbidities.

The main principle is selection of minimum effective dosage,

determination of optimal dosage and form of MHT, and the

choice of a regimen accounting for physical age, the stage of

reproductive aging (STRAW+10), and the needs of the patient

(184). In perimenopause, standard (2 mg) and low doses (1 mg)

of estradiol as part of MHT are used, in postmenopause, low and

ultra-low doses (0.5 mg) of estrogens are used. In

postmenopausal women, the reference level of estradiol is ≤ 10

pg/mL and varies with age, presence of vasomotor symptoms

and vulvovaginal atrophy, and body mass index (204). In a study

evaluating serum estradiol levels in postmenopausal women

using MHT, when using estradiol hemihydrate or estradiol

valerate serum estradiol levels increased with increasing dose

of the drug, however, the degree of increase was not directly

proportional to the dose; in particular, for oral estradiol,

increasing the dose from 1 to 2 mg resulted in an increase of

serum estradiol levels to approximately 60% instead of a

doubling. This finding suggests that “low doses” of estrogen

may be adequate from the start of MHT (205). Data from the

Women’s Health Initiative (WHI) randomized controlled trial

and other studies support the safe use of MHT for at least 5 years

in healthy women commencing treatment under the age of 60

while being less than 10 years in postmenopause. The question

of continuing therapy is decided individually, taking into

account the possible risks (184). The North American

Menopause Society experts published a statement in 2015 on

the possible continuation of the use of MHT at the lowest

effective dose in women over 65 years of age for the treatment

of persistent hot flashes, given that the patient has received

detailed information about the possible risks and is under close

medical supervision (206).
MHT reshapes immunological
parameters

The gradual decline of ovarian function with age is a

physiological process, but only in a small percentage of

women the perimenopause proceeds unnoticed. Estimated 50–

82% of women develop a symptom complex called “climacteric

syndrome” with early vasomotor manifestations. The broader

concept of climacteric syndrome involves psychoemotional and

somatic components, as well as the increasing risk of

cardiometabolic and cognitive dysfunctions in the long-range.

Pathogenetic treatment of the climacteric syndrome aims to

compensate the deficiency of sex hormones, first and foremost

estrogens; the strategy allows slowing down the progression of
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TABLE 3 Commonly prescribed hormone therapies.

Preparation Doses Comments

Systemic estrogen
therapiesa

Oral estrogen tablets
Micronized E2
Estradiol valerateb

Conjugated Equine
Estrogens

0.5, 1.0, 2.0 mg/d
1.5 mg/d

0.3, 0.45, 0.625 mg/d

Higher doses available
Preparation used in WHI

Transdermal estrogens
Estradiol patch

0.025 to 0.1 mg once or twice weekly depending on
preparation
0.014 mg/wk

Corresponds to 0.5 to 2.0 mg estradiol tablets
Diffusion can be different from one patch to another
Preserved bone in women >60 y old

Estradiol percutaneous gel 0.25–1.5 mg qd Corresponds to 0.5 to 2.0 mg estradiol tablets
Can be transferred to persons and pets by skin
contact

Estradiol transdermal spray 1.5 mg qd Estradiol via spray
Can be transferred to persons and pets by skin
Contact

Vaginal ring
Estradiol acetate

0.05–0.10 mg/d Systemic levels of estradiol provide relief of vasomotor symptoms;
90-d duration/ring

Progestogen therapies
Oral progestin tablets
Medroxyprogesterone
acetate
Norethindrone
Neta
Megestrol acetate
Dydrogesteroneb

Chlormadinone acetateb

Medrogestoneb

Nomegestrol acetateb

Promegestoneb

2.5, 5, 10 mg/d
0.35 mg/d
5.0 mg/d

20, 40 mg/d
10 mg/d
5, 10 mg/d
5 mg/d

3.75, 5 mg/d
0.125, 0.25, 0.5 mg/d

Utilized in WHI

Oral progesterone capsule
Micronized progesterone

100, 200 mg/d In peanut oil; avoid if peanut allergy. May cause
drowsiness and should be taken at bedtime

Intrauterine system
progestinc

LNorg

20 mg released/d
6 mg/d

IUD for 5-y use
IUD for 3-y use

Vaginal gel progesteronec 4%, 8% 45- or 90-mg applicator

Combination hormone
therapies
Oral
CEE + MPA
E2 + progesterone
E2 + Neta
E2 + drospirenone
E2 + norgestimate
E2 + dydrogesteroneb

E2 + cyproterone acetateb

E2 + MPAb

CEE + BZAd

0.3–0.625 mg/1.5–5 mg/d
1 mg/d

0.5–1 mg/0.1–0.5 mg/d
0.5–1 mg/0.25–1 mg/d

1 mg/0.09 mg/d
1–2 mg/5–10 mg/d

2 mg/1 mg/d
1–2 mg/2–10 mg/d
0.45 mg/20 mg/d

Cyclic or continuous
Continuous
Continuous
Continuous
Cycle 3 d E alone, 3 d E+ progesterone
Cyclic and continuous
Continuous
Continuous
Continuous

Transdermal
E2 + Neta
E2 + LNorg

50 mg/0.14–0.25 mg/patch
45 mg/0.015 mg/patch

Twice weekly
Once weekly

Synthetic steroid
Tibolone

2,5 mg/d Continuous
Not earlier than 12 months after the last menstruation or immediately after
bilateral ovariotomy
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IUD, intrauterine device; E, estrogen; E2, 17-b estradiol; LNorg, levonorgestrel; Neta, norethindrone acetate or norethisterone acetate; qd, once daily.
aNot all preparations and doses are available in all countries.
bOnly available outside the United States.
cNot approved in the United States for endometrial protection when administered with postmenopausal estrogen.
dApproved indications in the United States include treatment of moderate to severe vasomotor symptoms associated with menopause and prevention of postmenopausal osteoporosis. In
the European Union, the indications state: treatment of estrogen deficiency symptoms in postmenopausal women with a uterus (with at least 12 mo since the last menses) for whom
treatment with progestin-containing therapy is not appropriate. The experience treating women older than 65 years is limited (182, 186, 187).
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the deficiency and thereby delay the onset of organic changes in

target tissues and systems of the female body. Partial

replenishment of the sex hormone deficiency slows down

natural aging and eliminates long-term consequences.

The choice of MHT regimen depends on the stage of

reproductive aging; the possibilities include combined estrogen-

gestagen therapy in a cyclic mode using biphasic drugs in

perimenopausal patients with intact uterus; monophasic

combination therapy in postmenopausal patients with intact

uterus, and estrogen monotherapy in hysterectomized patients.

The modern principles of MHT prescription provide for an

assessment of the risks of VTE individually for each patient. In

postmenopausal women with low risk of VTE, estrogen in MHT

could be administered both orally and transdermally at the lowest

effective doses (low/ultra-low), according to existing

recommendations (2016 IMS Recommendations on women’s

midlife health and menopause hormone therapy) (184). For

patients with increased risk of VTE and indications for MHT,

transdermal forms of estrogens are prescribed as part of MHT,

while in women with a history of VTE, MHT is contraindicated.

During the pandemic in Russia, patients onMHT and infected with

SARS-Cov-2 are prescribed anticoagulants to prevent VTE

according to the guidelines ``Prevention, diagnosis and treatment

of a new coronavirus infection (COVID-19)” 2021 and local clinical

protocol for the Treatment of Patients with a New Coronavirus

Infection (COVID-19). Summing up the available data, our

personal opinion as the authors of this review is that MHT

should not be cancelled in case of COVID-19 infection.

A complex relationship between sex hormones and immune

system implies that MHT can exert pleiotropic effects on

immunity in peri- and postmenopausal patients (207). The

majority of studies focusing on such effects demonstrate a

decrease in the production of pro-inflammatory cytokines

(TNF-a, IL-1b, IL-6) by peripheral blood mononuclear cells of

MHT recipients ex vivo or in vivo (208).

The influence of MHT on systemic inflammatory status may

partially depend on estrogen administration routes. For instance,

transdermal estrogens attenuated the response of the hypothalamic-

pituitary-adrenal axis to low doses of endotoxin in vivo. The effect
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was accompanied by alleviation of the endotoxin-induced

expression of pro-inflammatory cytokines IL-6 and TNF-a, as
well as IL-1 receptor antagonist (IL-1ra). Oral administration of

the same doses failed to reproduce this effect, probably due to the

primary passage of the ingested hormones through the liver, where

they triggered production of C-reactive protein and other pro-

inflammatory molecules (209–211).

Clinical research data suggest that surgical menopause

(upon ovariectomy) is accompanied by immunodeficiency

with a decline in B cell counts and decreased serum levels of

interferon g. More generally, the rates of cellular and humoral

immune response in women on MHT are higher than in

matching controls (212). The definite immunological benefits

of perimenopausal MHT confirm the important role of

estrogens in regulation of immune functionalities (207). At the

same time, it should be admitted that our understanding of

MHT effects on immunological parameters is still fragmentary.
MHT and COVID-19

In 2020, at the first peak of the pandemic, the Italian Society of

Contraception [Società Medica Italiana per la Contraccezione]

issued the following opinion: MHT, as well as combined oral

contraception regimens, should not be discontinued in patients

with mild and moderate symptomatic COVID-19, whereas in

severe cases the use of these medications is superfluous and

should be replaced with anticoagulant therapy upon aggravation

(213). Concomitantly, a board of experts representing specialized

medical societies of Spain [Asociación Española para el Estudio de

la Menopausia; Sociedad Española de Ginecologıá y Obstetricia;

Sociedad Española de Trombosis y Hemostasia] recommended

switching to parenteral routes of MHT administration, continue

with parenteral MHTwhile adding anticoagulants, and fully replace

MHT with anticoagulant therapy in, respectively, mild, moderate,

and severe symptomatic COVID-19 (214). Large-scale self-

monitoring data from the UK-based COVID-19 symptom

tracking app showed lower incidence of hospitalization and

reduced need for respiratory support in MHT recipients
TABLE 4 Potential risks of MHT.

Breast
cancer

Increased risks of breast cancer have been associated with MHT used for longer than 5 years and involving certain formulations (conjugated equine
estrogens plus medroxyprogesterone acetate). The actual risk of breast cancer among MHT users is estimated to be less than 0.1% per year or less than 1
case per 1000 woman-years. MHT with micronized progesterone or dydrogesterone has been associated with a lower risk of breast cancer compared to
other progestogens (184, 192, 194, 195). Local administration of the therapy is breast cancer risk-neutral (196–199).

VTE The risk of VTE is significant in women having started MHT before the age of 60 within 10 years of menopause (200). The absolute risk of VTE in
women under 60 years of age is generally low (184). In women at increased risk of VTE, transdermal estrogens are a safer choice than oral agents,
especially when combined with micronized progesterone (198, 199, 201).

Ischemic
stroke

No extra risk burden for low-dose transdermal estrogen and a dose-dependent increase in risk burden for oral estrogen recipients in high-risk cohorts
(199, 202, 203).

Endometrial
cancer

Increased risk in patients with intact uterus on estrogen monotherapy, low risks for cyclic combination MHT, and no extra risks posed by continuous
combination regimens (196).

Ovarian
cancer

Evidence from randomized controlled trials suggests no increased risk of ovarian cancer associated with menopausal hormone therapy (196).
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compared with matched controls (7, 215). A recent population

study enrolling 151,193 MHT recipients and 152,637 matching

non-recipients recorded significantly lower risks of adverse

COVID-19 outcome for the former (adjusted odds ratio 0.22,

95% confidence interval 0.05–0.94) (7);. In a retrospective study,

MHT reduced the risks of lethal COVID-19 outcomes in women

over 50 by over 50% (odds ratio 0.33, 95% confidence interval 0.18–

0.62; hazard ratio 0.29, 95% confidence interval 0.11–0.76) (8).

Another retrospective study conducted in Sweden confirmed the

reduced lethality of COVID-19 among postmenopausal MHT

recipients (216). Given the design of the study, randomization

was not considered. The weakness of the study is the lack of

indication of the duration of endocrine/MHT intake. The level of

sex hormones in postmenopausal patients was not determined,

however, the distribution into groups suggested that in patients

receiving endocrine therapy for breast cancer, the level of estrogen

was reduced; in patients receiving MHT, estrogen levels were

elevated; and in a control group of postmenopausal patients,

without treatment, estrogen levels were consistent with

postmenopausal values. A phase 2 clinical trial for possible

alleviation of COVID-19 symptom severity through

administration of transdermal estrogen patches was launched in

the USA (NCT04359329).

Some experts argue that caution should be exercised

regarding claims that the skewed sex ratio of COVID-19

morbidity and associated mortality is really determined by

circulating steroid hormones. For instance, congenital genetic

breakdowns in the immune system are arguably more impactful

with regard to the critically aggravated course of the disease. The

purposeful use of estrogens and progesterone in COVID-19

remains an intuitive concept that has not been supported by

biochemical, physiological, or clinical evidence (217). Some

authors believe that genetics and innate immune system

disorders are more relevant to the sex-based difference in

COVID-19 mortality than the circulating steroid hormone

levels. Noteworthy, heritable defects in IFN-I immunity

responsible for the deployment of life-threatening pneumonia

in COVID-19 were detected in at least 2.6% of women and

12.5% of men (217). Bastard et al. hypothesized that congenital
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defects of cytokine system may contribute to the observed

difference in disease severity between women and men.

Apparently, germline mutations in IFN-I genes and

neutralizing autoantibodies against corresponding proteins

may underlie the diversity of respiratory complications (218).

As reported by Zhang et al., at least 3.5% of patients with life-

threatening COVID-19 pneumonia carry either autosomal

recessive mutations in IRF7 or IFNAR1, autosomal dominant

mutations in TLR3, TICAM1, TBK1 or IRF3, or de novo

autosomal dominant mutations in UNC93B1, IRF7, IFNAR1

or IFNAR2 (219).

The plausible effects of MHT on the incidence and lethality

of COVID-19 need further investigation. Although sex steroids

appear to play an important role in modulating susceptibility to

SARS-CoV-2, they cannot fully account for the skewed

demographic patterns of COVID-19 mortality, indicating that

other causes and mechanisms are yet to be understood (220).
Conclusion

High physiological concentrations of estrogens and

progesterone synergistically reduce the production of pro-

inflammatory cytokines by innate immune cells and also

promote the anti-inflammatory response of T cells and

immune tolerance, while stimulating the antibody production

by B cells. In COVID-19, MHT may mitigate the clinical

symptoms while increasing the antibody production (92). This

knowledge is clinically relevant, as MHT is quite common, while

dedicated development of new antivirals is hampered by the

ongoing pandemic. Specific effects of MHT on hemostasis

require careful assessment for the risks of its continued use in

symptomatic COVID-19. The orchestrating role of estrogens in

immune response and their protective effect on vascular

endothelium should not be neglected. The correlation of sex

steroid levels with severity and lethality of the disease indicates

the potential of using hormone therapy to modulate the immune

response and increase the resilience to adverse outcomes (9)

(Figure 1). The overall success of MHT is based on decades of
FIGURE 1

A graphical summary of sex hormone effects on female immunity.
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experience in clinical trials. According to the current standards,

MHT should not be discontinued in COVID-19 with the

exception of critical illness.
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