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Cystic fibrosis transmembrane
regulator correction attenuates
heart failure-induced
lung inflammation

Franziska E. Uhl1,2, Lotte Vanherle1,2 and Anja Meissner1,2,3*

1Department of Experimental Medical Science, Lund University, Lund, Sweden, 2Wallenberg Centre
for Molecular Medicine, Lund University, Lund, Sweden, 3Department of Physiology, Institute of
Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
Heart failure (HF) affects 64 million people worldwide. Despite advancements

in prevention and therapy, quality of life remains poor for many HF patients due

to associated target organ damage. Pulmonary manifestations of HF are well-

established. However, difficulties in the treatment of HF patients with chronic

lung phenotypes remain as the underlying patho-mechanistic links are still

incompletely understood. Here, we aim to investigate the cystic fibrosis

transmembrane regulator (CFTR) involvement in lung inflammation during

HF, a concept that may provide new mechanism-based therapies for HF

patients with pulmonary complications. In a mouse model of HF,

pharmacological CFTR corrector therapy (Lumacaftor (Lum)) was applied

systemically or lung-specifically for 2 weeks, and the lungs were analyzed

using histology, flow cytometry, western blotting, and qPCR. Experimental HF

associated with an apparent lung phenotype characterized by vascular

inflammation and remodeling, pronounced tissue inflammation as evidenced

by infiltration of pro-inflammatory monocytes, and a reduction of pulmonary

CFTR+ cells. Moreover, the elevation of a classically-activated phenotype of

non-alveolar macrophages coincided with a cell-specific reduction of CFTR

expression. Pharmacological correction of CFTR with Lum mitigated the HF-

induced downregulation of pulmonary CFTR expression and increased the

proportion of CFTR+ cells in the lung. Lum treatment diminished the HF-

associated elevation of classically-activated non-alveolar macrophages, while

promoting an alternatively-activated macrophage phenotype within the lungs.

Collectively, our data suggest that downregulation of CFTR in the HF lung

extends to non-alveolar macrophages with consequences for tissue

inflammation and vascular structure. Pharmacological CFTR correction

possesses the capacity to alleviate HF-associated lung inflammation.
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Introduction

Heart failure (HF) currently affects 64 million people

worldwide with increasing prevalence (1). Thus, health care

expenditures are substantial; and considering our ageing

population, they will continue to rise. HF morbidity and

mortality are still high despite remarkable advancements in

prevention and therapy (2). Moreover, quality of life remains

poor for HF patients (3) as HF causes injury and dysfunction of

target organs, including the lung (4–7). Although this affects

primary disease management and outcome, the mechanisms

underlying target organ injury in HF remain incompletely

understood and hence, safe and efficient treatment strategies

are limited. Regarding HF-associated lung complications,

progress has been made in understanding the pathophysiology

of pulmonary oedema, but other pulmonary complications of

HF continue to challenge patients and clinicians alike.

Similar to several chronic lung diseases (8), elevated biomarker

levels of inflammation are features of chronic HF. An augmentation

in pro-inflammatory cytokines, including tumor necrosis factor

alpha (TNF-a) (9), has been demonstrated to play a role during HF

progression, suggesting an involvement of inflammation during

HF-mediated target organ damage (10). We previously showed that

therapeutically scavenging TNF-a using Etanercept attenuates

target organ dysfunction in a mouse model of HF (7).

Therapeutic interventions aimed at limiting TNF-a-mediated

inflammation in chronic HF or lung diseases have yielded

controversial results (11). Considering this, we invested in

understanding the molecular mechanism by which TNF-a
signaling promotes target organ function during experimental HF

(12). Particularly, we showed that elevated TNF-a levels lead to

considerable downregulation of the cystic fibrosis transmembrane

regulator (CFTR) in the murine vasculature, heart, brain, and lung

tissue (5, 13). The importance of proper CFTR function is

appreciated in cystic fibrosis (CF) and chronic obstructive

pulmonary disease (COPD). Here, CFTR protein dysfunction is

common in the airways of affected patients (14). In contrast to the

genetic origin in CF, CFTR dysfunction in COPD is acquired since

neutrophil elastase can induce alterations of CFTR expression,

which correlate with disease severity (15). Besides epithelial (16)

and smooth muscle cells (5, 6), CFTR expression has been

documented in several immune cells (17, 18). Peripheral blood

monocytes isolated from patients heterozygous for the F508del

CFTR mutation showed enhanced interleukin (IL)-8 secretion after

activation compared to non-CF controls (19). The latter was

corroborated in macrophages isolated from Cftr knockout mice

(20), suggesting a hyperinflammatory phenotype. Interestingly,

pharmacological CFTR inhibition in macrophages increased

secretion of pro-inflammatory cytokines (18), suggesting that

acquired CFTR dysfunction [e.g., induced by HF, smoking or

neutrophil elastase (15, 21, 22)] may contribute to

hyperinflammatory immune responses. Since dysregulation of
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inflammation represents a hallmark of multiorgan manifestations

of many diseases, including HF, we tested the hypothesis that

murine HF associates with pulmonary CFTR dysfunction and

concurrent tissue inflammation, which is correctable by CFTR

targeting therapy.
Material and methods

Materials

All chemical reagents and solutions were purchased from

Fisher Scientific (Gothenburg, Sweden), Saveen & Werner

(Limhamn, Sweden) or Sigma-Aldrich (Stockholm, Sweden)

unless otherwise stated. Primers for qPCR were purchased

from Eurofins (Ebersberg, Germany).
Animals:

This investigation conforms with the Guide for Care and Use

of Laboratory Animals published by the European Union

(Directive 2010/63/EU) and the ARRIVE 2.0 guidelines. All

animal care and experimental protocols were approved by the

institutional animal ethics committee at Lund University (Dnr.:

5.8.18-08003/2017; 5.8.18-04938/2021) and were conducted in

accordance with European animal protection laws.

Commercially available male wild-type mice (12-14 weeks old;

C57BL/6N) were purchased from Taconic (Lyngby, Denmark).

All mice were housed under a standard 12h:12h light−dark cycle

and had access to standard chow and water ad libitum. In the

clinic, research into sex differences showed that HF prevalence is

about 1.5-2x higher in men above 55 years of age compared to

women (23). Moreover, women have a higher probability of

survival (24). Females are therefore more protected from HF

than males. For this reason, male mice that generally show a

stronger phenotype were used in this study.

To ensure blinding, experiments were performed after the

animals and samples had received codes that did not reveal the

identity of the treatment. HF animals were assigned to vehicle or

treatment groups using block randomization. To obey the rules

for animal welfare, experimental groups were designed to

minimize stress and guarantee maximal information using the

lowest group size possible when calculated with a type I error

rate of a = 0.05 (5%) and power of 1-b > 0.8 (80%) based on

earlier studies (5, 25).
Myocardial infarction

HF in mice was induced by experimental MI generated by

permanent surgical ligation of the left anterior descending
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(LAD) coronary artery (12). Briefly, mice were anaesthetised

with isoflurane (1.5-2% in air), intubated with a 22-gauge

angiocatheter, and ventilated with room air at a rate of 120

bpm, 250 µl tidal volume, and 3 cm positive end expiratory

pressure. The thorax and pericardium were opened, and the

LAD was permanently ligated with 7-0 silk suture (Ågnthos,

Sweden). Sham control mice underwent the same procedure

without LAD ligation. Mice received pain medication (2 µl/g

mouse buprenorphine 0.05 mg/ml via intraperitoneal injection)

for up to three days post-surgery. This model shows stable

cardiac injury 6 weeks after MI (12). CFTR corrector

treatment was initiated 10 weeks after MI (Supplemental

Figure 1). For 2 weeks, mice received daily intraperitoneal

(i.p.) injections of Lumacaftor (Lum; 3 mg/kg in DMSO

diluted 1:10 with sterile polyethylene glycol (PEG) in

deionized (DI) water (50:50)) or were instilled with 50 µl Lum

(18 mg/ml in DMSO diluted 1:10 in sterile PBS) 5 times during

the treatment period (orotracheal; o.t.). For termination, mice

were sedated using inhalation anesthesia (isoflurane 2.5% at

1.5L/min in room air) before cervical dislocation and subsequent

trans-cardiac perfusion.

The herein presented investigation comprises data of 3

experimental mouse cohorts with 1) N = 8 for sham and N = 10

for HF, and 2) N = 8 for sham, N = 10 for HF + vehicle, N = 10 for

HF + Lum, and 3) N = 6 for HF + Lum i.p., N=8 for HF + Lum o.t.

Not all animals were used for histology experiments.
Cardiac function assessment

Cardiac function was assessed using magnetic resonance

(MR) imaging on a 9.4 T MR horizontal MR scanner equipped

with Bruker BioSpec AVIII electronics, a quadrature volume

resonator coil (112/087) for transmission and a 20 mm linear

surface loop coil for reception (Bruker, Ettlingen, Germany),

operating with ParaVision 6.0.1. Mice were anaesthetised with

isoflurane in room air with 10% oxygen and kept at a respiration

of 70-100 bpm and at 36-37°C body temperature (sequence

details in supplement). Image-based determination of ejection

fraction (EF), stroke volume, cardiac output, end diastolic

volume, end systolic volume, and left ventricle mass was

performed with Segment (Medviso, Lund, Sweden) (26).

Additional details for cardiac function assessment are provided

in the Supplementary material online.
Fluorescence activated cell sorting

After trans-cardiac perfusion, lung-heart blocks were

extracted, and a broncho-alveolar lavage was performed by

instilling sterile PBS. The left lung was cut into pieces and

enzymatically digested in a DNAse-Collagenase XI mix under

continuous agitation. After centrifugation, red blood cells were
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lysed, and the cell pellets were reconstituted in Fc block prior to

antibody staining (Supplemental Table 1). Data acquisition was

carried out on a BD LSR II cytometer using FacsDiva software

Vision 8.0 (BD Biosciences). Data analysis was performed with

FlowJo software (version 10, TreeStar Inc., USA). Cells were

plotted on forward (FSC) versus side scatter and single cells were

gated on FSC-A versus FSC-H linearity. Pulmonary

macrophages were identified as Live, CD45+, B220-, CD11b+,

F4/80+ cells (gating strategy: Supplemental Figure 2). Non-

alveolar macrophages were identified as Live, CD45+, B220-,

CD11b+, F4/80+, SiglecF- cells while alveolar macrophages were

identified as Live, CD45+, B220-, CD11b+, F4/80+, SiglecF+ cells

(27–29). For CFTR staining, pulmonary cells were incubated

with CFTR antibody and live/dead staining dye without

reconstitution in Fc block. After washing and centrifugation,

cells were resuspended and incubated with a secondary goat

anti-mouse AF488 antibody (Supplemental Table 2). For cell-

specific co-labelling, CFTR antibody was labelled with Alexa

Fluor™ 647 NHS ester antibody labelling kit (Invitrogen) and

added to the antibody panel for staining and subsequent flow

cytometry-based data acquisition.
Hydroxyproline assay

Hydroxyproline content was measured using the

“Hydroxyproline Assay Kit” as per manufacturer’s instructions.
Cell culture

Murine macrophages (RAW246.7, ATCC TIB-71) were

cultivated in high glucose DMEM supplemented with 10%

heat inactivated foetal bovine serum and 1% Penicillin/

Streptomycin. Cells were activated with 10 ng/ml phorbol 12-

myristate 13-acetate (PMA, AdipoGen) for 48 h followed by a

24 h rest period before incubation with 10 µM Lum (Cayman

Chemicals) for 24 h. In a second approach, Lum treatment was

started at the same time as PMA-induced activation. Cells were

harvested after 96 h and subjected to flow cytometry to

determine CFTR surface expression.
Western blot analysis

Lung samples were snap frozen in liquid nitrogen and stored

at -80°C until analysis. Samples were homogenised in 1x PBS

using an Ultra-Turrax TP18-10 (Janke & Kunkel KG) and

proteins lysed in RIPA buffer supplemented with phosphatase

and protease inhibitors for 30 min on ice. Afterwards, samples

were frozen at -80°C and thawed on ice. Thereafter, protein

extracts were centrifuged for 15 min at 20,000 g at 4°C and

stored at -20°C. Protein content was measured using the
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Pierce™ BCA Protein Assay Kit according to manufacturer’s

instructions. After SDS-PAGE, proteins were transferred onto

PVDF membranes (VWR) using either wet transfer (5 mM Tris,

40 mM glycine, 20% methanol) or semi-dry transfer in

TransBlot® Turbo™ (Bio-Rad), blocked with 5% non-fat dry

milk powder in PBS-T (1x PBS, 0.05% Tween 20) for 1 h at room

temperature and incubated with the respective primary antibody

overnight at 4°C. Blots were incubated with secondary, HRP-

labelled antibodies for 1-2 h at room temperature and enhanced

chemiluminescence was used to visualise proteins using a

ChemiDoc™ MP (Bio-Rad). Protein expression was quantified

in relation to b-Tubulin expression and normalised to

sham animals.
RNA extraction and quantitative
real-time PCR

For total RNA isolation, the right middle lobe was

homogenised in 1 ml Trizol (Invitrogen) and isolated

according to the manufacturer’s manual. 1 µg of mRNA was

reverse transcribed into cDNA using the High-Capacity cDNA

Reverse Transcription Kit in an T100TM Thermal Cycler (Bio-

Rad). The resulting cDNA was diluted 12.5x and subsequently

used for PCR reactions. The PCR protocol consisted of 40 cycles

of 30 s denaturation (95°C); 45 s primer annealing (60°C) and

45 s primer extension (72°C) using a CFX384TM Real-Time

System with a C1000 TouchTM Thermal Cycler (Bio-Rad). A list

of the primers utilised is provided in Supplemental Table 3.
Histology

Lungs were fixed in 4% PFA (Histolab) overnight and

transferred into paraffin using a EprediaTM STP 120 Spin

Tissue Processor (Fisher Scientific). Afterwards, samples were

embedded into paraffin blocks using an EC 350-1

(Especialidades Médicas Myr, S.L.). 4 µm thin sections were cut

with a microtome (HM 355S, Thermo Scientific) and fitted onto

superfrost glass slides. Paraffin sections were deparaffinised and

rehydrated before they were subjected to Haematoxylin & Eosin

and Masson-Trichrome staining. Additional details about

immunohistochemical staining are provided in the online

supplementary material. For quantification, vessel wall thickness

of at least 5 vessels per animal from 3-7 animals per group was

manually assessed using the “straight line” tool in ImageJ (https://

imagej.net/ImageJ) in scale adjusted images. For the qualitative

quantification of collagen in Masson-Trichrome stained lung

slides, the staining intensity and staining amount in comparable

areas of the lungs (mainly around airways and vessels) was graded

on a scale from 1-5. At least 5 regions of interest per animal were

graded and 8-10 animals per group were evaluated.
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For immunofluorescence, paraffin sections were

deparaffinized, rehydrated, and subjected to antigen retrieval

in 0.1 M sodium citrate buffer (pH 6) for 20 min before blocking

with blocking reagent (Roche) and primary antibody incubation

in a humidity chamber over night at 4°C. Slides were

subsequently washed with PBS, incubated with secondary

antibody at RT and mounted with Fluoromount-G with DAPI.

Staining was evaluated with a Zeiss Axio Imager and Zen Pro 10

software. For the quantification, MOMA+ and DAPI+ cells in 3

SMA+ vessels from 3 animals were manually counted using

ImageJ (https://imagej.net/ImageJ). Positively stained cells for

MOMA+ were reported as % of DAPI+ cells per vessel.
Data and statistical analysis

The data and statistical analysis comply with the

recommendations on experimental design and analysis in

pharmacology (30). Data were analysed using GraphPad Prism

8 software (San Diego, California). Histology data are expressed

as median ± SEM, all other data are expressed as mean ± SEM,

where N is the number of animals and n the number of

independent measures. Data distribution was determined using

Shapiro-Wilk test. For comparisons of 2 independent groups,

Student’s t-tests or Mann Whitney tests were used. For

comparison of multiple independent groups, one-way analysis

of variance (ANOVA) or Kruskal Wallis followed by Tukey or

Dunn post-hoc testing was used. Treatment effects were

determined by performing multiple comparison relative to the

HF group with Dunnett’s or Dunn’s post hoc testing. Differences

were considered significant at p ≤ 0.05. All necessary details on

sample size and statistical test results for each figure are provided

in Supplemental Table 4.
Results

The pulmonary phenotype during HF is
characterized by vascular remodeling
and myeloid cell infiltration

Twelve weeks after MI, mice presented with cardiac

dysfunction evidenced by significantly reduced EF (HF: 43.0%

± 3.3% vs. sham: 64.2% ± 1.8%; Supplemental Table 5A) and

pulmonary structural alterations confined to the vasculature. HF

mice exhibited markedly thicker blood vessel walls (Figure 1A)

and higher smooth muscle actin (SMA) mRNA (Supplemental

Figure 3) and protein levels (Figure 1B) compared to sham-

operated controls. HF lungs did not differ macroscopically nor

showed signs of fibrosis demonstrated by the lack of collagen

accumulation assessed by Masson trichrome staining

(Figure 1C) and hydroxyproline quantification (Figure 1D).
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The apparent vascular remodeling was accompanied by

higher monocyte/macrophage association with vascular

structures in HF lungs as illustrated by monocyte/macrophage

(MOMA) immunostaining in lung slices (Figure 2A). Flow

cytometric immune cell profiling of the HF lung revealed

significantly higher cell numbers of CD45hi Ly6C+ SiglecF-

cells (Figure 2B)and CD45hi Ly6Chi SiglecF- cells in HF

compared to sham mice (Figure 2C), resembling infiltrating

macrophages and pro-inflammatory monocytes. When

analyzing the activation profile of F4/80+ macrophages, we

observed significantly higher cell numbers of classically-

activated CD80+ macrophages in HF lungs (Figure 2D),

indicative of a shift to a pro-inflammatory phenotype within

the macrophage population. This increase was mainly driven by

non-alveolar (SiglecF-) macrophages (Figure 2E) as no difference

was observed in the alveolar (SiglecF+) macrophage

population (Figure 2F).
Reduced pulmonary CFTR expression is a
hallmark of the HF lung

The accumulation of non-alveolar classically-activated

macrophages (CD80+ SiglecF-) associated with markedly

higher TNF-a protein levels during HF compared to sham
Frontiers in Immunology 05
lungs (Figure 3A). Since TNF-a potently reduces CFTR

surface expression in different cell types (5, 13, 31), we

determined CFTR expression with an antibody targeting

membrane-associated, mature CFTR protein (32). HF lungs

presented with significantly lower expression levels of

membrane-bound CFTR assessed by western blotting

(Figure 3B). Cell-specific CFTR assessment using a flow

cytometry approach revealed lower CFTR positivity in SiglecF-

non-alveolar macrophages (resembling an infiltrating pro-

inflammatory subset) during HF (Figure 3C), which coincided

with higher CD80 positivity in this subset (see Figure 2E). In

contrast, no difference in the percentage of CFTR+ SiglecF+

alveolar macrophage population (resembling resident

macrophages) was observed in HF (Figure 3D). Different from

their non-alveolar counterparts, alveolar macrophages did not

upregulate CD80 after MI (see Figure 2F).
Pharmacological CFTR correction
mitigates structural changes in the
HF lung

In attempt to improve altered CFTR expression in HF mice,

we subjected a group of HF mice to CFTR corrector treatment

using Lumacaftor (Lum). Lum acts as a chaperone improving
A B

C D

FIGURE 1

Heart failure-associated structural changes in the lung are confined to blood vessels. (A) Representative Haematoxylin and Eosin (H&E) staining
of lungs from sham and heart failure (HF) mice (arrows indicate vessel walls; scale bar 20 µm) and quantification of wall thickness of small
vessels in H&E-stained lung slices. N=7 per group. (B) Representative western blot and quantification of the smooth muscle actin (SMA) protein
expression in lung tissue from sham and HF mice. N=8 per group. (C) Masson Trichrome (MTC) staining of lungs from sham and HF mice
(arrows indicate collagen, stained in blue; scale bar 20 µm) and qualitative quantification of collagen in MTC-stained lung sections. N=8 for
Sham, N=10 for HF. (D) Quantification of hydroxyproline content of lung tissue from sham and HF mice. N=7 for Sham, N=6 for HF. N denotes
the number of mice. Data expressed as mean ± SEM. * denotes p ≤ 0.05 after unpaired t-test.
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CFTR protein folding and transport to the cell membrane and

hence, increases cell surface CFTR protein expression (33, 34).

Systemic (i.p.) Lum administration 10 weeks post-MI did not

affect heart function (Supplemental Table 5B), while

significantly increasing the proportion of CFTR+ cells in the

HF lung (Figure 4A). Similarly, western blot evaluation

confirmed that the membrane-specific CFTR protein

expression was not different from sham levels after two weeks
Frontiers in Immunology 06
of CFTR corrector treatment (Supplemental Figure 4). Lung-

specific, orotracheal (o.t.) Lum instillation did not result in

higher CFTR protein expression compared to systemic i.p.

administration (Figure 4B). However, o.t. Lum administration

resulted in significantly higher CFTR expression on the cell

surface of CFTR+ lung cells as evidenced by increased median

fluorescence intensity (MFI) in the o.t.-treated lungs compared

to lungs from i.p.-treated HF mice (Figure 4C). CFTR correction
A

B C

D E F

FIGURE 2

Heart failure associates with lung infiltration of CD80+ pro-inflammatory macrophages. (A) Representative images of lung sections from sham and
heart failure (HF) mice that were stained for monocyte/macrophages (MOMA) in red, smooth muscle actin (SMA) in green, DAPI stained nuclei in
blue. Arrows indicate vessel wall-associated MOMA positivity; scale bar 20 µm. Quantification of the percentage of MOMA positive cells in lung
vessel walls. N=3 (n=8) for Sham, N=3 (n=7) for HF. (B) Flow cytometry results representing the number of CD45hi Ly6C+ SiglecF- and (C) CD45hi
Ly6Chi SiglecF- macrophages. N=8 for Sham, N=10 for HF each. Representative dot blots of Ly6C and SiglecF expression of F4/80+ macrophages
in the lung of sham and HF mice. (D) Flow cytometric assessment of F4/80+ CD80+ classically activated macrophages, (E) F4/80+ CD80+ SiglecF-
classically-activated non-alveolar macrophages, and (F) F4/80+ CD80+ SiglecF+ classically-activated alveolar macrophages in lung tissue of sham
and HF mice. Representative dot blots of SiglecF and CD80 expression of F4/80+ macrophages in the lung of sham and HF mice. N=8 for Sham,
N=10 for HF each. N denotes the number of mice; n denotes the number of independent measures. Data expressed as mean ± SEM. * denotes p ≤

0.05 after unpaired t-test.
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attenuated alteration of the pulmonary vascular structure in the

HF lung. Lum application mitigated the HF-associated

thickening of pulmonary blood vessel walls (Figure 5A and

Supplemental Figure 5) and led to significantly lower SMA

protein levels (Figure 5B). This treatment effect was

independent of application route supported by similar vessel

wall thickness (Figure 5C) and SMA protein expression

(Figure 5D) after both i.p. and o.t. Lum treatment.
Pharmacological CFTR correction
promotes an anti-inflammatory
phenotype of macrophages in the
HF lung

Considering the high CFTR positivity of peripheral and

pulmonary monocytes and macrophages (Supplemental
Frontiers in Immunology 07
Figures 6A,B), we explored the effects of pharmacological

CFTR correction on macrophages in the lung. Both systemic

and lung-specific Lum administration significantly increased the

overall number of pulmonary macrophages (Supplemental

Figure 7) with larger effects after o.t. application. The

treatment-associated increase of overall pulmonary

macrophage counts was mainly mediated by increases of non-

alveolar macrophages (Supplemental Figure 7B). In contrast to

systemic administration, o.t.-administered Lum markedly

augmented the number o f a lveo la r macrophages

(Supplemental Figure 7C). To understand whether this

increase in macrophages was beneficial or rather detrimental,

we explored macrophage activation profiles by determining the

proportion of classically- (CD80+) and alternatively- (CD206+)

activated cells within the pulmonary macrophage population.

The HF-associated augmentation of classically-activated

macrophages was not significantly alleviated by therapeutic
A

B

C

D

FIGURE 3

Pulmonary tumour necrosis factor alpha increase is accompanied by decreased cystic fibrosis transmembrane regulator expression in the heart failure
lung. (A) Representative western blot and quantification of tumour necrosis factor alpha (TNF-a) expression in the lungs of sham and heart failure (HF)
mice. N=7 per group. (B) Representative western blot and quantification of CFTR protein expression in lungs of sham and HF mice. N=7 for Sham, N=8
for HF. Flow cytometric assessment of proportion of (C) CFTR+ F4/80+ SiglecF- non-alveolar macrophages and (D) CFTR+ F4/80+ SiglecF+ alveolar
macrophages in lung tissue from naïve and HF mice. N=5 for naïve, N=8 for HF each. Representative histograms of CFTR+ SiglecF- and CFTR+ SiglecF
+ cells from naïve (grey) and HF (coral) mice. N denotes the number of mice. Data expressed as mean ± SEM. * denotes p ≤ 0.05 after unpaired t-test.
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Lum administration when assessing all CD80+ macrophages in

the lung (Figure 6A), however, therapeutic CFTR correction

significantly attenuated the HF-associated increase of non-

alveolar CD80+ macrophages (Figure 6B). Interestingly, o.t.-

treated HF lungs presented with higher proportions of CD80+

alveolar macrophages but differences did not reach statistical

significance (Figure 6C). In contrast to CD80+ macrophages,

Lum induced higher proportions of alternatively-activated

(CD206+) macrophages overall (Figure 6D) as well as non-

alveolar (Figure 6E) but not alveolar macrophages (Figure 6F)

irrespective of treatment route (Figure 6, Supplemental Figure 8

and Supplemental Table 5). This is corroborated by increased

pulmonary IL-10 mRNA expression after systemic Lum

administration (Supplemental Figure 9). In vitro, murine

macrophages (RAW246.7 cells) presented with reduced CFTR

positivity after PMA-induced activation, which was attenuated

by CFTR correction with Lum (Supplemental Figure 10),

suggesting an interplay between CFTR surface expression and

macrophage activation.
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Discussion

This study describes an apparent lung phenotype during

experimental HF characterized by vascular remodeling and

pronounced tissue inflammation. Specifically, our data suggest

that the elevation of classically-activated non-alveolar

macrophages coincides with a cell-specific reduction of

pulmonary CFTR expression. In accordance, we show that

pharmacological increase of CFTR expression, which increases

the proportion of CFTR+ cells in the lung, diminishes the HF-

associated elevation of classically-activated non-alveolar

macrophages, induces the increase of an alternative

macrophage polarization, and normalizes vessel wall thickness

within the lungs of HF mice. Taken together, our data suggest

pharmacological increase of CFTR protein expression to have

beneficial effects on the macrophage profile in the HF lung with

favorable implications for pulmonary vascular structure. We

therefore propose therapeutic CFTR correction as promising

approach to alleviate HF-induced inflammation in the lung.
A

B C

FIGURE 4

Systemic application of cystic fibrosis transmembrane regulator (CFTR) correctors increases pulmonary CFTR expression. (A) Percentage of CFTR+
cells in lungs of sham, heart failure (HF), and Lumacaftor (Lum) treated (intraperitoneally (i.p.)) HF mice and representative dot plots. N=8 for Sham,
N=8 for HF + vehicle, N=10 for HF + Lum. (B) Representative western blot and quantification of the CFTR expression in the lungs of HF mice
treated with Lumacaftor either i.p. or o.t. N=6 for HF + Lum i.p., N=8 for HF + Lum o.t. (C) Median fluorescence intensity and representative
histograms of CFTR+ cells in the lungs of HF mice treated with Lumacaftor either i.p. (coral) or o.t. (orange). N=6 for HF + Lum i.p., N=8 for HF +
Lum o.t. N denotes the number of mice. Data expressed as mean ± SEM. In (A), * denotes p ≤ 0.05 relative to HF after one-way ANOVA with
Dunnett’s post-hoc testing; in (B, C), $ denotes p ≤ 0.05 after unpaired t-test.
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The manifestation of HF in the lung is well-established.

However, difficulties in the treatment of HF patients with

chronic lung phenotypes remain, as standard therapies are

often complicated by contraindications. Here, we verify a HF-

mediated CFTR downregulation in the lung (5, 13), a concept

that may provide new mechanism-based treatment options for

HF patients with pulmonary complications. Given the increasing

evidence for an acquired CFTR dysfunction not only during HF

but also in classic chronic lung diseases such as COPD and

asthma (35), the indication that CFTR modulators may be useful

therapeutics in the treatment of acquired CFTR abnormalities is

certainly of interest to the field. First trials verified efficacy of the
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CFTR potentiator ivacaftor in COPD patients with chronic

bronchitis (36). Here, we describe beneficial effects of Lum-

mediated CFTR protein expression increases on lung

inflammation and associated structural alterations during

experimental HF. Specifically, Lum therapy attenuated the HF-

associated increase in small vessel wall thickness, indicating

beneficial effects on pulmonary arteriopathy, which often

accompanies HF in patients with chronic left ventricular

dysfunction (37), generally associating with increased risk of

pulmonary complications and hence, overall poor disease

outcome. Despite thickened vessel walls in the HF lung, we

did not observe higher collagen accumulation within HF lungs
A B

C D

FIGURE 5

Cystic fibrosis transmembrane regulator correction mitigates heart failure-associated alteration of pulmonary vascular structure. (A) Quantification of
the vessel wall thickness of smaller vessels in the lungs of sham, heart failure (HF), and Lumacaftor (Lum) treated HF mice. N=3 for Sham, N=4 for
HF + vehicle, N=5 for HF + Lum. Insets showing representative images of H&E-stained lung sections; scale bars 50 µm; arrows indicating vessel
wall. (B) Representative western blot and quantification of the smooth muscle actin (SMA) expression in lung tissue from sham, HF, and Lum treated
HF mice. N=8 for Sham, N=8 for HF + vehicle, N=10 for HF + Lum. (C) Quantification of the vessel wall thickness of smaller vessels in the lungs of
Lum treated (intraperitoneally (i.p.) or orotracheally (o.t.)) HF mice. N=4 for HF + Lum i.p., N=4 for HF + Lum o.t. The dotted line indicates the level
of HF mice. Insets showing representative images of H&E-stained lung sections; scale bars 50µm; arrows indicating vessel wall. (D) Representative
western blot and quantification of SMA expression in lung tissue from Lum treated (i.p. and o.t.) HF mice. N=6 for HF + Lum i.p., N=8 for HF + Lum
o.t. The dotted line indicates the level of HF mice. N denotes the number of mice. Data expressed as mean ± SEM. * denotes p ≤ 0.05 relative to HF
after one-way ANOVA with Dunnett’s post-hoc testing.
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or around the pulmonary vasculature. In our experiments, we

aim at obtaining physiological values for animal ventilation

during surgery to avoid ventilator-induced lung injury (38),

which cannot be excluded from other studies that reported

additional structural alterations and higher collagen content in

HF lungs in mice with comparable EF (39, 40).

Inflammation is a key player in both chronic heart and lung

diseases and critically contributes to vasculopathies. Here, we

find increased numbers of pro-inflammatory monocytes/

macrophages infiltrating the HF lung and an accumulation of

monocytes/macrophages around the pulmonary vasculature,

suggesting inflammation-associated vascular remodeling.

Monocytes/macrophages have been shown to be among the

primary effectors of inflammation in pulmonary lesions, and

lung interstitial macrophages play a major role in lung

inflammation and dysfunction in several diseases. Monocytes

expressing certain chemokine receptors have been shown to

differentiate into interstitial perivascular macrophages, which

secrete pro-inflammatory cytokines and contribute to vascular
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remodeling (41). Whether changes in CFTR surface expression

on circulating monocytes/macrophages mediates similar effects

is an interesting question, especially considering their (1)

relatively high CFTR positivity compared to other immune

cells (2), reported increased secretion of pro-inflammatory

cytokines after pharmacological CFTR inhibition in

macrophages (18), the herein observed (3) activation-induced

CFTR surface reduction on macrophages and (4) reduction of

CFTR+ SiglecF- non-alveolar macrophages. Further cell type-

specific investigations to characterize the CFTR expression in

different cell types after MI could give insight into which cells are

mainly affected and benefit from CFTR corrector treatment.

HF leads to systemic TNF-a elevation in mice and men (5,

25, 42), which negatively affects target organs, including the lung

(42). We previously showed that TNF-a sequestration with

Etanercept attenuated the HF-associated reduction of

pulmonary CFTR protein expression (5). TNF-a was shown to

mediate reduction of CFTR expression on the surface of different

cell types (5, 31), suggesting that the herein detected HF-
A B C

D E F

FIGURE 6

Cystic fibrosis transmembrane regulator correction normalizes levels of non-alveolar macrophages and increases CD206+ alveolar macrophages.
Proportion of pulmonary F4/80+-macrophages in sham, heart failure (HF), and Lumacaftor (Lum) treated ((intraperitoneally (i.p.) or orotracheally
(o.t.)) HF mice positive for (A) CD80 and (D) CD206+. N=8 for Sham, N=10 for HF + vehicle, N=6 for HF + Lum i.p., N=8 for HF + Lum o.t. each.
Percentage of pulmonary non-alveolar F4/80+ and SiglecF- macrophages in sham, HF, and Lum treated (i.p. and o.t.) HF mice positive for (B) CD80
+ and (E) CD206+. N=8 for Sham, N=10 for HF + vehicle, N=6 for HF + Lum i.p., N=8 for HF + Lum o.t. each. Percentage of pulmonary alveolar
F4/80+ and SiglecF+ macrophages in sham, HF, and Lum treated (i.p. and o.t.) HF mice positive for (C) CD80+ and (F) CD206+. N=8 for Sham,
N=10 for HF + vehicle, N=6 for HF + Lum i.p., N=8 for HF + Lum o.t. each. N denotes the number of mice. In (A, B, D, F), data expressed as mean
± SEM; * denotes p ≤ 0.05 relative to HF for multiple comparisons with Dunnett’s post-hoc testing. In (C, E), data expressed as median ± IQR; *
denotes p ≤ 0.05 relative to HF for multiple comparisons with Dunn’s post-hoc testing.
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associated augmentation of pulmonary TNF-amight be directly

linked to the observed overall CFTR downregulation in the HF

lung. TNF-a, amongst other pro-inflammatory cytokines,

induces M1-like macrophage phenotypes (43) and is secreted

by classically-polarized CD80+ macrophages (44), which

accumulate in the HF lung in our model. TNF-a sequestration

using Etanercept was shown to reduce M1-type markers

supported by decreases of CD40 and CD80 surface markers

and increased expression of M2-type markers in human

monocyte-derived macrophages (45). Here, we find similar-to-

sham levels for CD80+ non-alveolar macrophages in the HF lung

after Lum therapy, suggesting an intimate link between CFTR

signaling and inflammation in the HF lung. Although direct

Lum application to the lung resulted in higher CFTR expression

on pulmonary CFTR+ cells, supporting higher corrector efficacy,

higher CD80+ alveolar macrophage numbers that were observed

with this treatment regimen may limit long-term benefits of

lung-specific Lum application. Lum-induced increases of IL-10

in combination with the elevation of CD206+ cells in our model

are suggestive of an involvement of CFTR in macrophage

phenotype switching that promote a more restorative

environment (44). An alternative activation of human

monocytes from CF patients after CFTR corrector therapy as

evidenced by increased IL-10 secretion (46) corroborate our

findings. Since CFTR alterations in pulmonary macrophages and

monocyte-derived macrophages present with an exaggerated

cytokine response to bacterial lipopolysaccharide (20) altered

bactericidal activity (47), and adhesion (48), a direct role of

CFTR in lung inflammation during HF is likely.

To not only test the effect of increased CFTR membrane

expression but also that of increased CFTR channel function,

clinically available combination treatments like Trikafta/Kaftrio

or Orkambi (i.e., potent CFTR expression correctors and

potentiator combinations) should be considered in future

studies. We further acknowledge that CFTR therapeutics for

the clinic are generally produced for oral administration. The

development of CFTR correctors/potentiators for inhalation

therapy is rather unlikely. In our experimental approach, we

used the oro-tracheal treatment route to clearly distinguish lung-

specific from systemic effects of Lum treatment. Our results that

reveal overall similar Lum responses after systemic application

via i.p. injections and oro-tracheal application suggest that

systemic applications in the clinic (e.g., through oral treatment

routes) may be similarly beneficial in treating lung inflammation

during HF.

Taken together, HF presents with an apparent lung

phenotype characterized by inflammation and thickened walls

of small vessels within the lung and an elevation of classically-

activated non-alveolar macrophages that coincides with lower

CFTR positivity in this immune cell subset. Pharmacological

increase of CFTR expression with Lum lowers HF-associated

pro-inflammatory macrophage numbers, while promoting an
Frontiers in Immunology 11
alternatively-activated phenotype and an attenuation of vascular

structural alterations within the HF lung. Collectively, these data

suggest pharmacological CFTR correction as promising

approach to mitigate HF-induced pulmonary inflammation

and associated structural alterations.
Data availability statement

The original contributions presented in the study are

included in the article/supplementary material. Further

inquiries can be directed to the corresponding author.
Ethics statement

This investigation conforms with the Guide for Care and Use

of Laboratory Animals published by the European Union

(Directive 2010/63/EU) and the ARRIVE 2.0 guidelines. All

animal care and experimental protocols were approved by the

institutional animal ethics committee at Lund University (Dnr.:

186 5.8.18-08003/2017; 5.8.18-04938/2021) and were conducted

in accordance with European and Swedish animal

protection laws.
Author contributions

Conceptualization, AM; methodology, FU and AM;

validation, FU and AM; formal analysis, FU and LV;

resources, AM; data curation, FU and LV; writing - original

draft preparation, FU and AM; writing - review and editing, FU,

LV and AM.; visualization, FU, LV and AM; supervision, AM;

project administration, AM; funding acquisition, FU and AM.

All authors have read and agreed to the published version of

the manuscript.
Funding

This work was supported by the following funding sources:

Knut and Alice Wallenberg foundation [F 2015/2112 to AM];

Swedish Research Council (VR) [2017-01243 to AM]; German

Research Foundation (DFG) [ME 4667/2-1 to AM]; Åke

Wibergs Stiftelse [M19-0380 to AM]; Albert Påhlssons Stiftelse

[120482 to AM]; Inger Bendix Stiftelse [2019-10 to AM];

Stohnes Stiftelse [AM]; Crafoord Foundation [20190782 to

FU]; Royal Physiographic Society Lund [39716 and 40682 to

FU]; STINT [MG19-8469 to AM]; and Lund University

[to AM].
frontiersin.org

https://doi.org/10.3389/fimmu.2022.928300
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Uhl et al. 10.3389/fimmu.2022.928300
Acknowledgments

The authors thank the Knut and Alice Wallenberg foundation

for generous support and the Lund University BioImaging Center

(LBIC), Lund University is gratefully acknowledged for providing

experimental resources. We further like to thank René In ‘t Zandt
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