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Asthma is an extremely prevalent chronic inflammatory disease of the airway

where innate and adaptive immune systems participate collectively with

epithelial and other structural cells to cause airway hyperresponsiveness,

mucus overproduction, airway narrowing, and remodeling. The nucleotide-

binding oligomerization domain (NOD)-like receptors (NLRs) are a family of

intracellular innate immune sensors that detect microbe-associated molecular

patterns and damage-associated molecular patterns, well-recognized for their

central roles in the maintenance of tissue homeostasis and host defense

against bacteria, viruses and fungi. In recent times, NLRs have been

increasingly acknowledged as much more than innate sensors and have

emerged also as relevant players in diseases classically defined by their

adaptive immune responses such as asthma. In this review article, we discuss

the current knowledge and recent developments about NLR expression,

activation and function in relation to asthma and examine the potential

interventions in NLR signaling as asthma immunomodulatory therapies.
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Introduction

Asthma is the most prevalent chronic airway disorder and as such represents a major

health and socioeconomic burden (1). Asthma is characterized by recurring symptoms of

reversible airflow obstruction, airway hyperresponsiveness (AHR), and inflammatory

processes leading to the fluctuating recruitment of eosinophils and/or neutrophils.

Asthma clinical manifestations can vary from mild to severe, and the phenotypical

presentation is very heterogeneous. This diversity in clinic presentation reflects the

complexity of the different basic mechanisms that lead to asthma development. Despite

being classically considered the hallmark Th2 disease of the lung, the underlying

mechanisms of asthma are now known to be much more complex than previously

thought. Even in the cases where is present an obvious dominant type 2 immune adaptive
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response, this is not only orchestrated by adaptive T cells, but

also by different types of innate and structural cells (2) and

different antigen-independent innate immune mechanisms that

play critical roles in the disease progression and outcome (3).

Following this conception of asthma being driven by Th2

responses, most part of the asthma research over the years has

focused on adaptive immune and antigen-dependent responses.

However, in recent times innate immune mechanisms have

increasingly been found to play pivotal roles in asthma

pathogenesis, by shaping downstream adaptive responses (4, 5).

The epithelium of the airway represents the largest human

mucosal surface exposed to the outside environment, and

therefore, it is continuously in contact with different external

and internal stimuli. In this context, the innate immune system

represents the first line of response and defense against the

different environmental signals, including pathogens, allergens,

particles, and chemicals. In order to maintain the delicate

balance between the clearance of the harmful stimuli and

avoiding chronic inflammation, the innate immune system is

equipped with extracellular and intracellular sensors called

pattern recognition receptors (PRR). PRR are a class of

receptors that can directly recognize specific microbial

molecular signatures including microbe-associated molecular

patterns (MAMP), endogenous damage-associated molecular

patterns (DAMP), as well as stress signals (6). The recognition

and binding of their ligands by PRR leads to the recruitment of

respective adaptor molecules and results in the initiation of

downstream signaling pathways that represent a bridge between

nonspecific immunity and specific immunity (7). Therefore, the

increasing understanding of these different signaling pathways

and the implication of different PRR receptor families, such as
Frontiers in Immunology 02
the (NOD)-like receptors (NLR) in the mechanisms leading to

asthma development and other immune-mediated diseases, have

resulted in their acknowledgment as much more than innate

sensors but relevant players in asthma.

In this review article, we will discuss the current knowledge and

recent developments about NLR expression, activation, and function

concerning asthma, and examine the potential therapeutic

interventions in NLR signaling as asthma immunomodulatory drugs.

The NLR receptor family

NLR are a family of PRR well-recognized for their central roles

in the maintenance of tissue homeostasis and host defense against

bacteria, viruses and fungi through the detection of MAMP and

DAMP. The members of the NLR family present similar molecular

architecture with a C-terminal leucine-rich repeat (LRR) domain,

involved in ligand recognition, a central nucleotide-binding

oligomerization domain (NOD) that facilitates self-

oligomerization and adenosine triphosphate (ATP)-dependent

NLR activation, and a variable N-terminal effector domain that

will bind to the adaptor molecules and downstream effectors to

mediate signal transduction. There are four types of effector

domains with unique functional characteristics that allow the

categorization of NLR into five different subfamilies: NLRA,

NLRB, NLRC, NLRP, and NLRX (Figure 1).
NLRA

The Major histocompatibility complex (MHC) class II

transactivator (CIITA) is the only known member of the
FIGURE 1

Schematic representation of molecular domain structures of the different NLR subfamilies. NLR present a common domain structure with an N-
terminal effector domain, a central NOD domain, and a C-terminal LRR domain. The different effector domains allow the categorization of NLR
into five subfamilies: NLRA, NLRB, NLRC, NLRP, and NLRX. CARD caspase recruitment domain, AD acidic transactivation domain, NOD
nucleotide-binding oligomerization domain, LRR leucine-rich repeat, PYD pyrin domain, FIIND function to find domain, X unidentified.
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NLRA subfamily and the founding member of the NLR family

(8). CIITA has been recognized as the “master regulator” of

MHCII expression and as such is responsible for the regulation

of the expression of MHCII in different cell populations

including professional antigen-presenting cells (9).

Structure
CIITA protein’s structure is characterized by the presence of

an N-terminal acidic transactivation domain (AD) and a region

rich in prolines, serines, and threonines (P/S/T). At least three

different CIITA isoforms (I, III and IV) differing in their N

terminal domains are expressed under the control of different

promoters (10). However, while all the CIITA isoforms share the

aforementioned AD and P/S/T domains, only isoform I presents

an N terminal caspase activation and recruitment domain

(CARD), that could participate in enhancing MHCII

transcription (10, 11).

Signaling
CIITA expression has been reported to be necessary and

sufficient to induce MHCII gene expression via self-association,

oligomerization, and nuclear translocation (12). Despite being

sufficient for MHCII expression, CIITA direct binding to DNA

has never been confirmed yet and for that reason it has

frequently been described as a co-activator, inducing

transcription initiation and elongation through multiple

mechanisms such as the recruitment of components of the

general transcription machinery, RNA polymerase II

phosphorylation, and the recruitment of other different

chromatin remodeling co-activators (11).

Expression
CIITA is mainly regulated at the transcriptional level (13).

As expected due to its role in the control of MHCII expression,

CIITA is constitutively expressed in professional antigen-

presenting cells such as dendritic cells, macrophages, B cells

and also thymic epithelial cells (11, 14, 15). Besides this

constitutive expression in antigen-presenting cells, CIITA

expression can be induced by different stimuli, notably IFNg
(15). Despite being expressed in other epithelial surfaces such as

the gut epithelium, CIITA expression is not detectable in the

human bronchial epithelial cells of healthy individuals.

However, it has been shown that in the bronchial epithelium

of asthmatic patients or in the case of viral infections MHCII

expression is enhanced in a CIITA-dependent manner (16).
NLRB

As is the case with the NLRA subfamily, in humans the

NLRB subfamily consists of only one known member the

Neuronal apoptosis inhibitory protein (NAIP).
Frontiers in Immunology 03
Structure
NAIP protein´s structure is characterized by the presence of

N-terminal baculoviral inhibition of apoptosis (BIR) domains,

followed by the NOD domain and several LRRs.

Signaling
Upon interaction with an activating bacteria-derived ligand,

such as flagellin or T3SS needle, NAIP is subjected to a

conformational change in an active form able to interact with

NLRC4, another NLR family member. The interaction of ligand

bound NAIP with an NLRC4 monomer triggers conformational

changes in NLRC4, driving it to an active form (17). This

activation of the first NLRC4 monomer allows the recruitment

of additional NLRC4 monomers and leads to a self-propagation

mechanism resulting in the formation of an inflammasome able

to recruit and activate caspase-1, that will process the proforms

of interleukin(IL)1b and IL18 cytokines (17, 18).

Expression
NAIP expression has been detected in human monocytes

and macrophages especially in the context of bacterial infections

(19, 20). Increasing evidence suggests that other myeloid cells

can express NAIP, such as dendritic cells (21) and neutrophils

(19). The detection of NLRC4 expression and NLRC4

inflammasome responses in astrocytes and microglia, suggests

the expression of NAIP in the human brain (22). Furthermore,

NAIP expression has also been detected in the intestinal

epithelial cells (23, 24). In the lung, the expression of NAIP in

alveolar macrophages has been confirmed by several authors in

the context of bacterial infections (25–27). However, despite the

existence of reports supporting NAIP expression in bacterial

infected alveolar epithelium cell lines (27), no solid evidence

supports the expression of NAIP in the human bronchial lung

epithelium (26).
NLRC

The human NLRC is the second most numerous of the NLR

subfamilies, consisting of five members (NLRC1-5). NLRC1 and

NLRC2, best known as NOD1 and NOD2 respectively, are

considered the two primary members of the NLRC subfamily (28, 29).

Structure
The members of the NLRC subfamily are characterized by the

presence of a CARD domain. Despite the apparent absence of a

CARD domain (see Figure 1), NLRC3 and NLRC5 are considered

part of the NLRC subfamily due to their homology and

phylogenetic relationship with the other members. Furthermore,

although the N-terminus has unusual structural features, solution

Nuclear Magnetic Resonance analysis confirmed its relationship

to CARD domains (atypical CARD) (30, 31).
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Signaling
After ligand recognition, the NLRC members activate

different signaling pathways via CARD-CARD interactions

with different adaptor proteins. Although NOD1 and NOD2

recognize different ligands through their LRR domains, both act

downstream via the same adaptor protein the Receptor-

interacting serine/threonine-protein kinase 2 (RIPK2) (29, 32).

Their activation and signaling through RIPK2 participate in the

regulation of very relevant pathways involved in a variety of

cellular responses, including inflammatory responses via

activation of NF-kB, and MAPKs (33, 34). NOD1 and NOD2

exist in an inactive conformation where the LRR is folded over

the NOD and CARD domains preventing dimerization and the

CARD engagement with RIPK2. Upon ligand recognition by the

LRR, the NOD1 and NOD2 adopt “open conformations” that

allow the oligomerization and subsequent signaling (35). The

interaction of NOD1 and NOD2 with RIPK2 via CARD

domains results in the activation of the two aforementioned

signaling pathways by binding RIPK2 to the NF-kB essential

modulator kinase (NEMO) with subsequent NF-kB activation

(36), and TAK1 or CARD9 leading to MAPK signaling (33, 37)

(Figure 2A). Furthermore, the NOD1 or NOD2-dependent

activation of both of these signaling pathways can interact

with other PRR such as the Toll-like receptors (TLR) (38).
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There is also evidence indicating that NOD1 and NOD2

could be able to activate signaling response in a RIPK2-

independent manner. NOD1 and NOD2 are able to induce

type I interferon signaling in response to the aforementioned

detection of viral RNA, suggesting a role for NOD1 and NOD2

in antiviral immunity (39–41). The activation of NOD1 and

NOD2 has been also related to the initiation of autophagy in a

RIPK2-independent manner. It has been proposed that the

triggering mediator in autophagy could be ATG16L1 and that

this process could be related to intracellular bacteria and viral

clearance (42). NOD1 and NOD2 activation through all these

signaling pathways result in an array of immunomodulatory

effects that are important for host defense, tissue homeostasis,

and the shaping of adaptive responses through the production of

antimicrobial peptides, proinflammatory cytokines, and

chemokines among other mechanisms (43, 44).

The differences in the LRR domains of NOD1 and NOD2 are

responsible for their ligand specificity (45, 46) and this results in

differential ligand recognition. NOD1 and NOD2 recognize

different fragments derived from the degradation of

peptidoglycan (PGN), the major component of the bacterial

cell wall. PGN is a heteropolymer composed of a glycan

backbone of a repeating GlcNAc-ß 1,4-MurNAc disaccharide.

The MurNAc residues are modified with stem peptides that
A B

FIGURE 2

Simplified representation of the NOD1, NOD2, and NLRP3 signaling pathways. (A) Recognition of their specific PGN fragments agonists through
their LRR domains activates the NOD1 and NOD2 receptors. Their activation facilitates the recruitment of RIPK2 that subsequently interacts with
TAK1 or NEMO triggering the NF-kB or MAPK pathways. The NF-kB and MAPK pathways, stimulate the transcriptional upregulation of different
types of immunomodulatory mediators such as antimicrobial peptides, proinflammatory cytokines and chemokines. (B) NLRP3 activation
requires two signals. The priming (left) is provided by MAMPs, DAMPs, or pro-inflammatory cytokines leading to the transcriptional upregulation
of NLRP3, other inflammasome components, pro-IL1b and pro-IL18 through NF-kB signaling. The activation signal (right) is provided by any of
the numerous MAMPs or DAMPs capable of NLRP3 activation such as ATP, particulates, and crystals causing the NLRP3 inflammasome complex
assembly and subsequent cleavage of pro-IL1b and pro-IL18 into their mature forms by active caspase-1.
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crosslink distinct glycans. The PGN fragments, also called

muropeptides, capable of activating NOD1, contain a minimal

g-D-glutamyl-meso-diaminopimelic acid (iE-DAP) dipeptide

core, which is predominantly found in Gram-negative, but

also in some Gram-positive bacteria such as Listeria

monocytogenes and Bacillus spp (47, 48). Unlike NOD1,

NOD2 strictly requires the MurNAc residue to recognize PGN

fragments. The most well-known NOD2 ligand is the muramyl

dipeptide (MDP) which is broadly produced in both Gram-

positive and Gram-negative bacteria (49). In contrast to what

happens in the case of NOD1, the length of the peptide fragment

is not critical for NOD2 recognition, and therefore NOD2 can be

activated by a broader range of muropeptides from both Gram-

negative and Gram-positive bacteria (49). Some authors had also

provided evidence suggesting that NOD1 and NOD2 can also be

indirectly activated in a NOD domain-dependent manner by

molecules other than the PGN fragments, such as viral RNA (39,

41). Recently, it has been shown that sphingosine-1P is also an

endogenous ligand by binding to the NOD domain (50).

Furthermore, new evidence has suggested that NOD1 and

NOD2, can also respond to danger signals such as

disturbances in endoplasmic reticulum (ER) function leading

to ER stress with an accumulation of misfolded proteins (51),

however, a direct implication for ER stress in NOD1 and NOD2

activation is still a matter of controversy within the field (50, 52).

NLRC3 negatively regulates PI3K/mT0R pathway in

epithelial cells (53), and NF-kB signaling (54) and the STING

pathway (55, 56) in macrophages and T cells. Furthermore,

NLRC3 is implicated in the activation, proliferation, and

cytokine production of CD4+ T cells, participating directly in

T cell regulation (57) as well as indirectly via its expression in

dendritic cells (58).

NLRC4 is another relevant member of the NLRC subfamily.

Despite similarities in the molecular structure, contrary to

NOD1 and NOD2, NLRC4 induces the formation of an

inflammasome complex. NLRC4 is mainly regulated at the

transcriptional level and its expression is activated by pro-

inflammatory stimuli such as TNFa (59). As mentioned

before, ligand recognition by NAIP will result in an interaction

with NLRC4 and subsequent inflammasome activation with

recruitment and activation of caspase-1 and cleavage of pro-

IL1b and pro-IL18 (19).

NLRC5 has been described to be a regulator of MHC class I

genes. It has been proposed that similarly to CIITA, NLRC5

expression could be induced by IFNg and regulated at the

transcriptional level (60). NLRC5 protein translocates to the

nucleus where it interacts with a specific MHC class I

enhanceosome. It exists reported evidence suggesting a

potential role for NLRC5 in innate immune regulation, such as

NF-kB signaling regulation or type I interferon signaling (61).

However, further investigation will be needed to confirm the

NLRC5 implication beyond MHCI regulation.
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Expression
NOD1 shows a fairly ubiquitous pattern of expression including

lung epithelial cells, endothelial cells, airway smooth muscle cells, and

different types of leukocytes (28, 62–65). In contrast, NOD2

expression is more restricted being highly expressed in myeloid

cells, including macrophages (29) and dendritic cells (66), but also

in human bronchial epithelial cells (67, 68).

NLRC3 is widely expressed and has been detected in both

epithelial and immune cells with myeloid and lymphoid origin

(54), but the highest levels of expression in humans have been

detected in T cells and secondary lymphoid organs (57).

Together with NAIP, NLRC4 expression has been

documented in human monocytes, macrophages, and

dendritic cells (19–21). Moreover, NLRC4 is expressed in the

brain (22) and in the intestinal epithelial cells (23, 24).

NLRC5 is expressed in a variety of different cells and tissues.

High levels of expression of NLRC5 have been detected in spleen,

lymph nodes, bone marrow, thymus, lung, and intestine (69, 70).
NLRP

The NLRP is the largest of the NLR subfamilies with 14

members. At least five of the NLRP members, NLRP1, NLRP3,

NLRP6, NLRP7, and NLRP12 are able to induce the formation of

inflammasome complexes and regulate the cleavage and release of

IL1b and IL18 in response to different MAMP or DAMP (71).

Among them, the most well-studied are NLRP1 and NLRP3.

Structure
The prototypic NLRP protein structure is characterized by

the presence of an N-terminal Pyrin domain (PYD) a central

NOD, and a C-terminal LRR. However, some other members of

this numerous subfamily present structural differences, such as

NLRP1 and NLRP10. NLRP1 protein includes all the hallmark

of NLRP domains, but also, and distinct from other members of

the family, a C-terminal Function-to-find domain (FIIND) and a

CARD domain that are fundamental for the inflammasome

activity (72). On the other hand, NLRP10 is the only member

of the NLR family that does not contain an LRR domain (73).

Signaling
The NLRP1 inflammasome was the first to be discovered as

an intracellular molecular platform that could recruit and

activate pro-caspase 1 (74). While the activation mechanisms

of NLRP1 are still not completely understood, accumulated

evidence indicates that NLRP1 does not work as a MAMP

receptor, but instead as a direct sensor of pathogen activities

such as proteolysis. Indeed, it has been reported that proteolytic

degradation of NLRP1 is necessary and sufficient to induce

inflammasome activation (75). While counterintuitive, most

reported observations support that a “functional degradation”
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of the NLRP1 molecule will lead to a CARD-dependent

inflammasome formation (75, 76).

NLRP3 is the best-known member of the NLRP subfamily

and the best-studied inflammasome so far. The NLRP3

molecular domain structure is the prototypic NLRP (77).

Before activation, and similarly to NOD1 and NOD2, NLRP3

is present in an autoinhibited conformation where the LRR

domain is folded over the NOD domain (77). The exact

mechanisms for NLRP3 activation are still not completely

understood but it has been proposed that it is a two-step

process that requires two different signals to promote

inflammasome assembly (78). The priming step or first signal

would be provided by MAMP or DAMP inflammatory stimuli

such as TLR4 agonists, which will induce NF-kB-mediated

NLRP3 expression. After priming, NLRP3 activation will be

promoted by a second signal that can be provided by a wide

variety of stimuli, including bacteria-derived molecules such as

LPS, viral RNA, fungal hyphae, endogenous DAMP like ATP, or

the exposure to environmental irritants including alum (77, 79).

The common factor for NLRP3 activators is their ability to

induce cellular stress, however, the exact mechanism for NLRP3

sensing of this cellular stress is still not clear. After activation,

NLRP3 will adopt an active conformation, that allows the

oligomerization and self-association (80). Oligomerized

NLRP3 recruits the adaptor protein ASC through homotypic

PYD–PYD interaction and nucleates the formation of ASC

filaments that can coalesce into a single macromolecular

structure denominated ASC speck (81). The formation of

these structures allows the recruitment of pro-caspase 1

through CARD–CARD with ASC interactions and enables

caspase 1 self-cleavage and activation (82). Activated caspase 1

processes pro-IL1b and pro-IL18 into their mature active forms,

which are then secreted into the extracellular space to perform

their immune functions (83) (Figure 2B).

Expression
NLRP1 is widely expressed in many human tissues,

including immune cells, the digestive and respiratory

epitheliums, or the brain (84, 85). NLRP3 is highly expressed

in a variety of innate immune cells including, macrophages,

dendritic cells, and neutrophils, and also in T and B

lymphocytes. Furthermore, NLRP3 expression has also been

detected in intestinal and respiratory epithelial cells (86).
NLRX

Structure
NLRX1, the only described member of the NLRX subfamily,

lacks a fully characterized N-terminal domain. However, within

this N-terminal region, a mitochondria-targeting sequence

(MTS) has been identified (87). NLRX1 C-terminus structure

is also unique containing seven LRR domains followed by an
Frontiers in Immunology 06
uncharacterized three-helix bundle likely involved in molecular

recognition (88).

Signaling
The range of MAMP and DAMP sensed by NLRX1 is far

from clear and the downstream signaling pathways and adaptor

proteins are still not known. Despite the lack of mechanistic

knowledge, several authors had provided evidence supporting a

regulatory role for NLRX1 in a pro-inflammatory signaling

context. More specifically, it has been shown that NLRX1

negatively regulates NF-kB and type-I interferon signaling,

modulates the production of reactive oxygen species (ROS),

participates in autophagy and cell death, and impacts JNK and

MAPK pathways (89).

Expression
NLRX1 is considered to be ubiquitously expressed in

mammalian cells (90).
NLRs in asthma

A continuously growing body of knowledge has linked

several members of different NLR subfamilies with asthma

pathogenesis and development including but not limited to

CIITA (91) NOD1 (92), NOD2 (93), NLRC4 (94), NLRP1

(95), and NLRP3 (96).
CIITA

Dysregulation or CIITA loss leads to an array of immune

disorders. As a matter of fact, one of the first CIITA descriptions

was made in a study that explored the underlying mechanisms of

bare lymphocyte syndrome (97), a severe combined immune

deficiency that results in susceptibility to severe infections and

frequently death in early childhood. This condition results in the

absence or very low HLA-DR expression on lymphocytes, with

reduced CD4+ T-lymphocyte counts leading to an inverted CD4/

CD8 ratio (98, 99). Similarly, CIITA knockout in mice leads to a

lack of expression of MHCII molecules in antigen-presenting

cells and impaired T cell maturation and CD4+ T cell-mediated

antigen responses (100).
The genetic link
CIITA polymorphisms have been associated with several

immune-mediated diseases such as multiple sclerosis or lupus

erythematosus (91). Interestingly, the CIITA gene is located in

16p13.13, a locus that has been associated with asthma and

allergy in different GWAS studies, including a metanalysis by

Demenais et al. that included 66 genome-wide association

studies accounting for 23,948 asthmatic and 118,538 controls
frontiersin.org

https://doi.org/10.3389/fimmu.2022.928886
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alvarez-Simon et al. 10.3389/fimmu.2022.928886
from ethnically-diverse origins (101). However, the mentioned

locus includes a gene complex that involves other genes such as

CLEC16A with several known polymorphisms previously

associated with asthma that have been further confirmed in

others studies (102). Bae et al. investigated the association

between CIITA polymorphisms and the presence of nasal

polyps in asthmatic patients in a case-control study of genetic

association analysis using blood isolated genomic DNA from

467 asthmatics. This study showed that at least two CIITA SNPs

(rs12932187 and rs11074938) and 2 haplotypes (CIITA_BL1_

ht2 and CIITA_BL1_ht5) were associated with nasal polyps

development in asthmatics (91) (Table 1).

As previously stated, CIITA acts as a master regulator for

MHC II molecules regulating their activity at the level of

transcription, therefore CIITA plays a relevant role in the

development of adaptive immune responses. However, little is

known about the potential implication of CIITA in asthma.

NOD1 and NOD2

NOD1 and NOD2 are the best-known representatives of the

NLRC subfamily. As previously mentioned, these receptors

recognize specific bacterial PGN motifs and their activation

leads to the recruitment and signal transduction through

RIPK2 and activation of different downstream signaling

pathways including MAP kinases and NF-kB. In addition to

the role of NOD1 and NOD2 in the development of innate

immune responses to bacterial and viral infection, both
Frontiers in Immunology 07
receptors have been implicated in the priming of adaptive

immune responses.

The genetic link
The NOD1 gene is located in the 7q14-p15 chromosome

region, a locus previously identified by different genome-wide

association analyses as an atopy and asthma-related trait

susceptibility locus (110, 111). As part of a study of candidate

genes in this locus, Hysi et al. identified NOD1 as a relevant gene

for asthma development. A systematic search of polymorphic

alleles in DNA obtained from blood, described for the first time

NOD1 polymorphisms associated with asthma and high levels of

seric IgE. ND1+32656*2 was identified as the strongest

associated polymorphism (92). Moreover, exploring the role of

the farming environment on the development of allergic asthma,

Eder et al. using NOD1 haplotype tagging SNPs in DNA

obtained from children’s blood samples, found that 21596 T

SNP in NOD1 can drastically modify the effect of environmental

factors in asthma, correlating with higher frequencies of atopic

asthma symptoms (103). After these first genetic studies, several

authors have confirmed the link between NOD1 gene

polymorphisms and haplotypic combinations with atopy and

asthma development in different populations. By SNP

genotyping in a large German adult cohort of atopic patients,

Cai Weidinger et al. identified the association of NOD1 SNPs

rs2907748, rs2907749, and rs2075822 with IgE levels (106).

More recently, Belhaj et al. found an association between the

NOD1 rs2075820 variant and childhood asthma in a Tunisian
TABLE 1 Most relevant NLR-associated polymorphisms in asthma.

NLR Polymorphism Cohort Asthma association Author, Year

CIITA rs12932187 and rs11074938 Korean asthmatic adults Nasal polyp development in asthmatics Bae et al. (2013) (91)

NOD1 ND1 +32656(*2) Australia & UK families/German asthmatic
children

Asthma susceptibility and elevated IgE Hysi et al. (2005) (92)

CARD4/-21596T German children farmers/non farmers Increased farm environment asthma
protective effect

Eder et al. (2006) (103)

rs2907748, rs2907749 and
rs2075822

German atopic adults Elevated IgE Weidinger et al. (2005)
(93)

rs2075820A Tunisian asthmatic children Asthma susceptibility Belhaj et al. (2019) (104)

NOD2 C2104T, G2722C, 3020iC German children Atopy Kabesch et al. (2003)
(105)

rs1077861 and rs3135500 German asthmatic adults Asthma susceptibility Weidinger et al., (2005)
(106)

rs3135499 Chinese asthmatic children Asthma susceptibility Cai et al. (2019) (107)

NLRP1 rs11651270, rs12150220, and
rs2670660

Brazilian asthmatic children Asthma susceptibility and elevated IgE Leal et al. (2018) (95)

rs11651270 Mexican American asthmatic children Asthma susceptibility Moecking et al. (2021)
(108)

NLRP3 rs4612666 Japanese allergic children Aspirin induced asthma Hitomi et al. (2009) (96)

rs10754558 Brazilian asthmatic children Asthma susceptibility Leal et al. (2018) (95)

rs72553860, rs12137901, and
rs4925648

Brazilian asthmatic children Asthma susceptibility Queiroz et al. (2020)
(109)
* used in the polymorphism nomenclature as a separator to indicate the allele.
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cohort (104). Most likely, these polymorphisms may affect

bacterial sensing and hence modify the downstream signaling

pathways that normally would be triggered by NOD1 (45).

Similarly, different authors have reported results supporting the

existence of a genetic link between the polymorphisms in the NOD2

gene and asthma development. Kabesh et al. showed that NOD2

polymorphisms are linked to atopy in children, however, they failed

to find significant direct associations with asthma in a German

children cohort (105). Weidinger et al. provided more data

supporting the implication of NOD2 polymorphisms in

respiratory atopy in an adult cohort, and importantly, showed a

significant association of rs1077861 and rs3135500 with asthma

development (93). Following these studies, other authors have

explored the role of NOD2 polymorphisms in asthma

predisposition in different cohorts reporting conflicting results.

While some have failed to show any significant association

between NOD2 genetic polymorphisms and asthma (104), more

recent studies have provided data backing up the existence of a link

between NOD2 polymorphisms and asthma. For example, Cai et al.

published a Chinese cohort study, showing an association of the

rs3135499 C allele and increased asthma development (107).

Human samples and in vitro studies
Airway epithelial cells

As mentioned before, NOD1 and NOD2 are both expressed

and can be functionally active in human bronchial epithelial cells

(62, 112). Despite this fact, the reported results seem to indicate

that there are differences in the implication of NOD1 and NOD2

in the lung epithelium in the context of asthma. It has been

shown that the stimulation of human bronchial epithelial cells

with a NOD1 agonist induces the release of IL8 and CCL2

among other down stream mediators, while NOD2 activation

does not result in changes in either IL8 or CCL2 production

(113). Accordingly, although, our group has shown that the

stimulation of human bronchial epithelial cells with HDM

induces NOD1 and NOD2 gene expression and IL8

production (114), only NOD1 knockdown in human bronchial

epithelial cells reduced significantly IL8 production (114).

NOD2 (as well as NLRC5) gene expression has also been

shown to be increased in influenza-stimulated primary

bronchial epithelial cells from asthmatic patients (115).

Airway smooth muscle cells

These cells are also relevant effector cells in asthma by

affecting AHR, and airway remodeling (116). As is the case in

the bronchial epithelium, both NOD1 and NOD2 expression

have been detected in the smooth muscle cells of the airway (63,

117). Kvarnhammar et al. reported that while both NOD1 and

NOD2 gene expression was detectable on in vitro cultured

human airway smooth muscle cells, NOD2 was not detectable

at a protein level by flow cytometry or immunocytochemistry.

Moreover, the stimulation of airway smooth muscle cells with a
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NOD1 agonist, but not with a NOD2 agonist, significantly

increased the production of IL8 and IL6 (63). In contrast, and

suggesting that both NOD1 and NOD2 play a role in airway

smooth muscle cells in asthma, Ni et al. showed that NOD2 was

upregulated in the smooth muscle cells of asthmatics after

stimulation with a NOD2 ligand and that this stimulation

resulted in increased IL6 and Thymic Stromal Lymphopoietin

(TSLP) production (117). Nonetheless, these contradictory

results could be related to the different transcriptional

mechanisms governing NOD1 and NOD2 expression. Indeed,

NOD1 and NOD2 are under the control of different

transcription factors, namely NFAT (118) for the former and

NF-kB (119) for the latter. Thus, the expression of NOD2 may

only be present and detected in inflammatory conditions.
Eosinophils and neutrophils

It has been reported that human eosinophils can be activated

in vitro by NOD1 or NOD2 agonists (120, 121) and that this

activation can promote their migration and interaction with

bronchial epithelial cells (113, 121). Moreover, the stimulation

with NOD1 and NOD2 ligands of a coculture of eosinophils and

human bronchial epithelial cells resulted in enhanced

concentrations of IL8 and CCL2 (113). As eosinophils,

neutrophils play a very important role in asthma, especially in

some of the most severe forms. As stated previously, NOD1 and

NOD2 activation in different human cells, such as human

bronchial epithelial, or airway smooth muscle cells leads to the

production of pro-inflammatory cytokines including IL8 which

is implicated in the recruitment of neutrophils to the

inflammation sites (44). Moreover, neutrophils are not passive

players in the response through NOD1 and NOD2 as they also

express both these receptors (122, 123) and it has been reported

that in vitro stimulation of human neutrophils with NOD2

agonists results in the production of IL8 in a dose-

dependent manner.
Monocytes, macrophages and dendritic cells

The presence of NOD1 and NOD2 expression in human

monocytes, macrophages and dendritic cells has been well

documented since their discovery and first descriptions (28,

29). Early studies confirmed that the stimulation of monocytes,

macrophages and dendritic cells with NOD1 and NOD2

agonists results in the production of pro-inflammatory

cytokines such as IL1b, IL6, IL8, as well as promoting the

maturation of these cells (124). In agreement with these

previous findings but in the context of asthma, our group has

shown that in vitro stimulation of human dendritic cells

obtained from asthmatics with a NOD1 ligand results in the

production of IL6 and IL8, and interestingly enough of the pro-

Th2 chemokines CCL17 and CCL22 (125). Importantly, we have

also shown that NOD1 ligand primed human dendritic cells
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induce the polarization of T cells into Th2 cells with elevated

production of IL13 (125).

T cells

The innate immune sensing of PGN moieties by NOD1 has

been shown to be a relevant player in the priming of antigen-

specific T cell and B cells responses in vivo. The stimulation of

the NOD1 receptor was shown to be sufficient to drive the

polarization of specific Th2 responses (126). Similarly, it has

been reported that the stimulation of NOD2 elicits antigen-

specific Th2 polarization and immune responses characterized

by the production of the type 2 cytokines IL4 and IL5, and also

the production of IgG1 (127). Furthermore, additional

mechanisms and cells seem to be implicated in NOD1 and

NOD2 dependent development of Th2 responses including the

induction of OX40 ligand on dendritic cells through the

production of TSLP by structural cells (128). Furthermore, it

has been described that NOD2 can have a T cell intrinsic role in

the generation of effective T helper responses. Shaw et al. showed

that T cell differentiation into Th1 and Th2 is severely impaired

in NOD2 deficient T cells due to a decreased production of IL2

(129). More recently, Napier et al. demonstrated an unusual role

for NOD2, modulating Th17 responses downstream of T cell

receptor and CD28 activation, independently of RIPK2 (130).
In vivo studies
Different experimental models have been used to explore

and confirm the findings obtained in human samples and in

vitro studies regarding the implication of NOD1 and NOD2 in

different aspects related to asthma pathophysiology. Wong et al.

reported that the intravascular administration of NOD1 or

NOD2 ligands to mice subjected concomitantly to an OVA

and alum asthma model induced significant increases in

bronchoalveolar lavage (BAL) eosinophils, BAL levels of IL13,

and seric total IgE (113). However, as exemplified by the Wong

et al. study, most of the studies were based on non-physiological

routes of administration and adjuvants.

In agreement with the genetic link to asthma and the

adaptive immune modulation role of NOD1, our group has

reported that a NOD1 agonist can exert adjuvant effects

exacerbating the asthmatic response in an OVA-induced Th2-

mediated allergic model. Importantly, the administration of the

NOD1 ligand promoted significant changes in all the hallmarks

of asthma models including increased AHR and eosinophil

recruitment, higher levels of seric specific IgE and IL13

production among other asthma-related mediators (125).

Moreover, the mechanisms by which the concurrent NOD1

stimulation in this OVA-induced model aggravated asthma were

related to the higher activity of dendritic cells and increased

production of the pro-Th2 chemokine CCL17 (125).

RIPK2 is the downstream adaptive protein in both the

NOD1 and NOD2 signaling pathways, and as such, is a critical
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mediator in the NOD1 and NOD2-related implication in asthma

development. Polymorphisms in RIPK2 have been related to

some cases of severe childhood asthma (131). Goh et al. showed

using an OVA murine model that not only the protein levels of

RIPK2 are increased in asthma, but also, and more importantly,

that the knockdown of RIPK2 via intratracheal administration of

a specific siRNA ameliorates the experimental asthma

phenotype including significant reductions in AHR, eosinophil

recruitment, lower levels of IL4, IL5, IL13, IL33 and seric OVA-

specific IgE (132). Despite the solid results provided by the

RIPK2 knockdown, other authors have failed to find any

significant differences between RIPK2 deficient mice and the

wild type (WT) counterparts when subjected to an OVA-

induced asthma protocol (133). However, using a much more

physiologically relevant model based on HDM, Miller et al.

showed that RIPK2 deficient mice exhibited a reduction in the

eosinophil recruitment, the production of Th2 and Th17

cytokines, and the levels of HDM-specific IgG1 (134).

Furthermore, the histological analysis of the RIPK2 deficient

mice lungs showed an improvement of the classic lung pathology

features of asthma.

In accordance with these results, our group has shown that

both NOD1 deficient and RIPK2 deficient mice, when subjected

to an HDM asthma protocol, present reduced asthma features

including reduced AHR, eosinophil, and neutrophil recruitment.

In agreement, the levels of IL5, IL13, and IL33 among other

cytokines, coincided with reduced asthma histopathology

features in their lungs, indicating that NOD1 aggravates

HDM-induced asthma through RIPK2 (114). Similar to the

NOD1 deficient mice, the NOD2 deficient mice displayed

decreased eosinophil and neutrophil recruitment. However,

there were no differences in AHR, Th2 cytokine production, or

any of the other murine model asthma hallmark features.

Importantly, we have also shown using NOD1 deficient bone

marrow transplants that epithelial cells play a more relevant role

in the reduced asthmatic response in the NOD1 deficient mice

than the bone marrow derived cell subsets. Moreover, the HDM

in vitro stimulation of NOD1 knockdown human bronchial

epithelial cells further supported the higher relevance of

NOD1 compared with NOD2, in the aggravation of asthma

most likely via the differential expression of agonist transporters

at the respiratory epithelium (114).

Most importantly, our group has also shown via microbiota

transplantation experiments that the aforementioned NOD1-

related HDM asthma aggravation mechanisms are gut

microbiota-independent. Indeed, despite the NOD1 deficient

mice presenting dysbiotic gut microbiota, the transplantation of

the NOD1 deficient microbiota into WT mice did not result in

any significant changes in the HDM experimental asthma model

outcome. Notwithstanding, we showed that not only it was

possible to detect NOD1 specific ligands in HDM extracts, but

also that the administration of PGN depleted HDM extracts to

WT mice reproduced the NOD1 deficient mice phenotype.
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These findings indicate that the sensing of NOD1 specific

ligands present in HDM extracts is most likely the underlying

cause of the NOD1 linked HDM asthma aggravation. It

highlights an unprecedented interaction between NOD1 and

HDM, unveiling a new mechanism whereby HDM-derived

microbiota potentiates disease severity through NOD1 and

RIPK2 signaling (114).

All these aforementioned findings, and others such as the

synergy of NOD1 and NOD2 signaling with the actions of TLR

receptors in the priming of Th2 and Th17 immune responses

(126), directly implicate NOD1 and NOD2 and their signaling

pathways in several mechanisms and cells related to asthma

development and exacerbation.
NLRC4

The genetic link
A transcriptomic study using induced sputum from severe

and mild asthmatics showed that NLRC4 is upregulated in

patients with neutrophilic and mixed granulocytic cell profiles

in induced sputum. However, no significant differences were

found between mild and severe asthma (94).

In vivo studies
Using three different models of HDM-induced asthma

designed to represent eosinophilic, mixed, and neutrophilic

acute asthma phenotypes Tan et al. found that in all of them,

there was an increased expression of NLRC4 mRNA, with the

neutrophilic model presenting the highest expression (135).

Hitherto, data availability is yet insufficient to assess a

funct iona l ro le o f NLRC4 in as thma and awai t s

further evaluation.
NLRP1

The genetic link
Leal et al. showed in a Brazilian asthmatic children cohort

that three NLRP1 SNPs rs11651270, rs12150220, and rs2670660

were associated with asthma in a family association study. In the

same cohort, minor alleles of two of the NLRP1 SNPs

(rs11651270/C and rs2670660/G) also showed an association

to asthma severity and high levels of IgE (95).

Similarly, Moecking et al. explored the relationship between

NLRP1 and asthma in a Mexican American asthmatic children

cohort to find that the NLRP1 2A haplotype was associated with

asthma (108). Using single-variant association testing they

found that, as it was the case in the Brazilian cohort, the

rs11651270 NLRP1 SNP was associated with asthma. In

particular, increased copies of the C allele of rs11651270 were
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associated with increased asthma susceptibility. Interestingly,

rs11651270 results in an amino acid substitution from

Methionine 1184 to Valine (M1184V) that has been described

to increase cleavage in the FIIND domain that can result in

alterations of NLRP1 activation (72). Despite the concordance in

the correlation of rs11651270/C between the Brazilian and

Mexican American children cohorts, further attempts of

validation failed in providing confirmation for the effect of

these NLRP1 SNPs in Puerto Rican and African American

cohorts (108).
In vivo studies
Moecking et al. also explored the potential role of NLRP1 in

a murine model of experimental asthma. While an NLRP1

deficient mouse did not show asthma features at baseline

when compared to a WT control, an OVA+Alum asthma

experimental model resulted in increased eosinophil

infiltration to the lungs of the NLRP1 deficient mice.

Furthermore, the NLRP1 deficient mice showed increased IL13

levels in BAL, suggesting a protective effect for NLRP1 in the

context of asthma. Using IL1R and IL18 deficient mice and the

same asthma model, it was found that the potential protective

effect of NLRP1 was not related to IL1R signaling, but to IL18

since IL1R but not IL18 deficient mouse, failed to reproduce the

NLRP1 deficient phenotype (108).

Taken together these data provide evidence for an NLRP1

dependent IL18-mediated protective role in asthma, that could

be disrupted by an altered NLRP1 activation related to

polymorphisms such as rs11651270/C.
NLRP3

The NLRP3 inflammasome has been shown to participate in

the pathogenesis of many diseases with an inflammatory

component. However, the implication of NLRP3 in asthma

has been a matter of controversy.

The genetic link
NLRP3 polymorphisms have been significantly associated

with the susceptibility to develop asthma in different cohort

studies. Hitomi et al. showed in a pediatric cohort using DNA

obtained from blood that NLRP3 rs4612666 was significantly

associated with aspirin-induced asthma (96). Leal et al. also

identified in their asthmatic children cohort NLRP3 rs10754558

as a relevant polymorphism in asthma (95). Another recent

study conducted using blood samples from an asthmatic

children cohort found that the G, C, and T alleles of

rs72553860, rs12137901, and rs4925648 NLRP3 SNPs were

also associated with asthma susceptibility (109).
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Human samples and in vitro studies
NLRP3 expression has been described in different human

cell subsets that could potentially play relevant roles in asthma

pathogenesis (136).

Airway epithelial cells

It has been shown that NLRP3 is expressed in the bronchial

epithelium of healthy subjects at baseline (137). Interestingly,

stimulation of human bronchial epithelial cells with a major

allergen of house dust mite Der f 1, induced the release of IL-1b
through NLRP3 activation as shown by RNA silencing (138).

Although not entirely related to epithelial cells, BAL fluid from

asthmatic patients at baseline exhibited higher NLRP3 protein

content than healthy controls (139), suggesting a role for NLRP3

in asthma.

Neutrophils

Noteworthy, the expression of NLRP3 is increased in the

sputum of severe T2 low neutrophilic asthma. The levels of

NLRP3 mRNA in steroid resistant asthmatics correlate with the

numbers of neutrophils, and the severity of asthma (140), while

levels of IL-1 b correlate with IL-8, a neutrophil attracting

chemokine (141), suggesting a role of NLRP3 in the

neutrophil asthma phenotype. Indeed, in the latter study, they

evidenced by immunostaining neutrophils expressing NLRP3 in

this subset of asthma patients (141).

Macrophages

As resident myeloid cells in the lung, alveolar macrophages

are an obvious candidate where NLRP3 could play a role in the

development of asthma. Sputum macrophages have been shown

to express NLRP3 in neutrophilic asthma (141). Moreover,

Gordon et al. have recently reported that the NLPR3

inflammasome can be activated in BAL-derived macrophages

from asthmatic subjects inducing the secretion of IL1b (142).

However, as for the other cells, the precise implication of

macrophages remains elusive.

T cells

Importantly, although most of the attention regarding a

potential role for NLRP3 in asthma has been directed to

myeloid cells and the lung epithelium, the relevance of NLRP3

in the asthma context is not restricted to neutrophilic responses

and phenotypes. Indeed, it has been reported that NLRP3

expression is significantly increased in severe asthma patients

where it could be participating in predominantly Th2 responses

(94). Additionally, it has been found that lymphoid cells and

more specifically CD4+ T cells are able to express NLRP3 (143).

Furthermore, NLRP3 can be activated in CD4+ T cells with

subsequent NLRP3 inflammasome formation and IL1b
production. Some authors have explored the role of NLRP3 in

CD4+ T cells to find not only that NLRP3 is induced upon T cell
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receptor activation, but interestingly that NLRP3 could play a

role in the differentiation of Th2 cells in an inflammasome-

independent manner cooperating with the transcription factor

IRF4 (144).
In vivo studies
Contradictory in vivo studies have been published with some

providing inconclusive results regarding a relevant implication

of NLRP3 in asthma, and others providing support for a

prominent role for NLRP3 in asthma.

Among the negative studies, Kool et al. reported that the Th2

asthmatic airway inflammation generated in response to a

combination of OVA and alum developed normally in Nlrp3

deficient mice (145). Moreover, Allen et al. using alum-free OVA

and HDMmodels reported that NLRP3 deficient mice presented

a similar phenotype to the WT mice when subjected to the

experimental asthma protocols. However, while most of the

asthma model hallmarks such as AHR did not present

significant changes between the NLRP3 deficient mice and the

WT, the levels of IL13 and IL33 were slightly but significantly

attenuated (146). In a model of HDM-induced asthma, NLRP3

inflammasome even dampened Th2 responses through caspase-

1 activation (147). These studies being the cause of controversy

in the field, suggest that NLRP3 seems to play only a minor role

in asthma development.

In contrast, Hirota et al. showed that NLRP3-dependent

responses can influence adaptive responses through the

production of IL1b, promoting airway neutrophilia and

increasing dendritic cells numbers (137). Kim et al. using a

slightly different approach using respiratory infection models

and OVA to induce severe steroid-resistant allergic asthma

found that the steroid-resistant neutrophilic inflammation and

increased AHR were driven by increases in NLRP3, caspase-1,

and IL1b responses (140). Using an OVA and alum-induced

allergic asthma model, Eisenbarth et al. showed that NLRP3

deficient mice presented reduced pulmonary inflammation with

decreased eosinophilic recruitment, lower levels of IL5, and a

decrease in OVA-specific IgG1 production (148). In addition to

this, the NLRP3 role in priming Th2 responses was further

demonstrated in an OVA model without any adjuvant. Besnard

et al. showed that NLRP3 deficient mice subjected to OVA

challenges not only presented a reduction in the eosinophil

recruitment, but also, significantly lower levels of TSLP, IL33,

IL5, and reduced serum levels of OVA-specific IgE. Moreover,

the deficiency in NLRP3 resulted also in reduced expression of

IL4, IL13, and CCL17 and a reduction in the migration of

dendritic cells to the lymph nodes (149). In addition, some

authors have provided data that implicates the NLRP3 response

in Th17 responses in asthma (150), proposing an NLRP3-IL1 b
-Th17 signaling axis (151).

Based on the previously described findings and the broad

spectrum of asthma mechanisms with potential NLRP3
frontiersin.org

https://doi.org/10.3389/fimmu.2022.928886
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alvarez-Simon et al. 10.3389/fimmu.2022.928886
participation, some authors have tried to explore the implication

of NLRP3 in different asthma endotypes. Recently, Tan et al.

compared the role of NLRP3 in three different models of HDM-

induced asthma designed to represent eosinophilic, mixed, and

neutrophilic acute asthma phenotypes (135). It was found that

each of these models displays significant differences in the

expression of NLRP3 and NLRP3 activation related genes.

However, while the mixed and neutrophilic models exhibited

an increased expression of NLRP3, the adaptor molecule ASC

and pro-IL1b, the eosinophilic model expressed significantly

higher levels of ASC but no significant upregulation of the other

components of the NLRP3-mediated response.

Moreover, and in accordance with previous findings,

Bruchard et al. showed that NLRP3 deficient mice subjected to

an OVA asthma experimental protocol showed reduced

eosinophil and lymphocyte recruitment into the lungs as well

as higher accumulation of mucus and reduced concentration of

IL4 and IL5. Most interestingly, the involvement of NLRP3 in

CD4+ T cells in asthma, was elegantly confirmed by the

restoration of the asthmatic phenotype in NLRP3 deficient

mice by transferring WT OVA-specific Th2 cells (144).

Despite all the evidence supporting the NLRP3 implication

in asthma the underlying mechanisms of NLRP3 activation are

still far from being completely understood. Kim et al., based on

human expression data and OVA and HDM murine models,

presented evidence supporting a critical role for mitochondrial

ROS in the pathogenesis of asthma through the modulation of

NLRP3 activation (139). Further supporting a role for

mitochondrial ROS in the activation of NLRP3 in the asthma

context, Sebag et al. provided evidence indicating that a

mitochondrial Ca2+/calmodulin-dependent protein kinase II

mediates mitochondrial ROS production, which stimulates

NLRP3 inflammasome activation in the airway epithelium and

promotes asthma development (152).

Altogether, although still controversial, these data suggest

that NLRP3 may play a role in both T2 low neutrophilic and T2

high eosinophilic severe asthma.
Therapeutic targeting of NLR
and asthma

The accumulation of evidence supporting a role for NLR as

critical regulators of asthma development has spurred the study

of different strategies to target NLR pathways as an alternative or

a complement for conventional asthma treatments (Table 2).
NOD1 and NOD2

The relevant role of NOD1 and NOD2 not only in asthma

but also in other diseases with an inflammatory component,
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such as Crohn´s disease (162), has encouraged the development

of different compounds with the ability to target their signaling

pathways, mainly the adaptor protein RIPK2. RIPK2 inhibitors

have already shown that they are not only effective in blocking

NOD1 and NOD2 signaling (163, 164), but also their efficacy in

modulating human inflammatory responses (165, 166). Indeed,

very promising highly selective, and potent RIPK2 inhibitors,

that even have reached the clinical trial phase have been already

developed (164). However, most of the inhibitors already tested

have been relegated as tool compounds due to less than optimal

pharmacokinetic profiles (167). Ongoing development of

improved inhibitors and of new compounds to overcome these

limitations would represent potential future tools for asthma

modulation. Accordingly, Miller et al. have explored the use of

one of these promising RIPK2 inhibitors in an HDM

experimental asthma model with relative success (153). The

administration of the selective GSK583 RIPK2 inhibitor via the

mice diet prior to and during the HDM sensitization phase of an

acute asthma model resulted in a reduction of the eosinophilia,

neutrophilia, and histopathology features of the asthmatic

mouse. Moreover, this preventive RIPK2 inhibition also

reduced the Th2 and Th17 cell recruitment and the levels of

IL4 and IL5. Despite this adaptive response modulation, RIPK2

inhibition did not result in changes in AHR or the humoral

response (153). The relative success in reducing experimental

HDM asthmatic features even in a “preventive” approach,

provides a solid rationale for a potential future therapeutic

application of the NOD1 and NOD2 signaling targeting

through RIPK2 inhibition.
NLRP3

As mentioned previously NLRP3 inflammasome has been

implicated in a diverse array of diseases. This fact has fueled the

development and characterization of molecules that could

inhibit NLRP3 or other inflammasome components in order

to understand the molecular mechanisms implicated in disease

and their potential therapeutic applications. Several NLRP3

inhibitors have been reported to date, including those that

either directly or indirectly inhibit NLRP3 inflammasome or

related signaling events. However, the inhibitory mechanism is

not always well-characterized or the precise targets are not fully

elucidated. With the accumulation of evidence supporting the

implication of NLRP3 in asthma development, some authors

had started to consider and test these inhibitors as potential

asthma therapeutic tools.

One of the best characterized and the most potent of NLRP3

inhibitors is MCC950, first described by Perregaux et al. as a

compound capable of inhibiting LPS and ATP induction of IL1b
(168). MCC950 binds directly and specifically to NLRP3

irrespective of its activation state, impairing conformational

rearrangements, blocking NLRP3 in an inactive conformation,
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and preventing inflammasome assembly (169, 170). Primiano et

al. showed that oral administration of MCC950 prior to

sensitization in an acute HDM-induced asthma model, not

only efficiently inhibited NLRP3 and reduced IL1b levels, but

importantly, also blocked asthma development and reduced the

levels of Th2 cytokines and eosinophil and neutrophil

recruitment (154). In a steroid-resistant severe asthma model,

Kim et al. found that MCC950 treatment, even at low doses, was

capable of suppressing neutrophil recruitment and reducing

AHR (140). The efficacy of MCC950 has also been reported in

a model of chemically-induced asthma in mice. The

administration of MCC950 to a toluene diisocyanate-induced

asthma model blocked the activation of NLRP3 and

downregulated protein expression of caspase-1, IL1b, and

IL18. Furthermore, NLRP3 inhibition resulted in AHR

reduction, decrease of asthma histopathological features, and

suppression of Th2 and Th17 responses (157). Additionally,

other authors have also provided evidence for the efficacy of

MCC950 in the classic OVA-induced asthma model (155, 156).

Recently, another specific NLRP3 inhibitor was tested in a

murine model of asthma with promising results. Lunding et al.

reported that the administration via enriched mouse diet of

OLT1177, a specific NLRP3 inhibitor shown to be safe in

humans (171), reduced AHR, eosinophil, and neutrophil

numbers in BAL and inflammatory infiltrate in the lung in an

OVA asthma model (158).
Frontiers in Immunology 13
Interestingly, some compounds already in use for the

treatment of asthma or to attenuate airway inflammation have

been found to be effective at least partially because they are able

to inhibit the NLRP3 inflammasome. Among these compounds

with NLRP3 inflammasome suppressing capabilities, there are

several medicinal plants and natural products, such as the

Hibiscus noldeae (172), Suhuang (159), or the Yupingfeng San

(160) whose efficacy through NLRP3 have been unveiled in

murine models. The most relevant of the previously known

effective compounds is however dexamethasone. Guan et al.

recently reported using an OVA-induced murine model that

dexamethasone, alleviates allergic airway inflammation partially

by inhibiting NLRP3 inflammasome and reducing IL1b and

IL18 levels (161).

Alternatively, other authors have targeted the NLRP3

inflammasome downstream signaling, and more specifically

some of them have provided promising evidence targeting

IL1b. Ritter et al. reported that the administration of

Anakinra, a non-glycosylated recombinant form of the

naturally occurring IL1 receptor antagonist (IL1RA), reduced

asthma development in an OVA asthma model (173). Moreover,

in a study with healthy volunteers, pretreatment with Anakinra

significantly diminished IL1b, IL6, IL8, and airway neutrophilia

induced by LPS nasal challenge (174). These results and others

pointing to the potential efficacy of targeting IL1b have led to the
development of alternative agents such as rilonacept (IL1 trap)
TABLE 2 Compounds targeting the NLR pathway and their effects in asthma models.

Target Compound/
molecule

Effect on
target

Administration
route

Asthma Model Effects on asthma Author, Year

RIPK2 GSK583 Inhibition Oral/Diet HDM Reduction in eosinophilia, neutrophilia,
Th2, and Th17

Miller et al. (2020)
(153)

NLRP3 MCC950 Inhibition Oral HDM Reduction in neutrophilia, CXCL1, and
CXCL5

Primiano et al.
(2016) (154)

Intraperitoneal OVA/infection steroid resistant
murine model

Reduction in neutrophilia, and AHR Kim et al. (2017)
(140)

Intraperitoneal OVA + Alum Reduction in eosinophilia, neutrophilia,
IL4, IL13

Wang et al. (2018)
(155)

Intraperitoneal OVA + Alum Reduction in TSLP, CCL2 Lv et al. (2018)
(156)

Intraperitoneal Toluene diisocyanate Reduction in eosinophilia, neutrophilia
Th2, Th17, and AHR

Chen et al. (2019)
(157)

NLRP3 OLT1177
(dapansutrile)

Inhibition Intraperitoneal OVA Reduction in eosinophilia, AHR, IL4, IL5,
IL13

Lunding et al.
(2021) (158)

Intraperitoneal HDM Reduction in eosinophilia, neutrophilia,
and AHR

Lunding et al.
(2021) (158)

Oral/Diet OVA Reduction in eosinophilia, and AHR Lunding et al.
(2021) (158)

NLRP3 Suhuang
(YBZ00172008)

indirect
Inhibition?

Intragastric OVA + Alum (Rat) Reduction in neutrophilia, and IgE Qin et al. (2019)
(159)

NLRP3 Yupingfeng San indirect
Inhibition?

Intraperitoneal OVA + NaOH Reduction in eosinophilia, and
neutrophilia

Liu et al. (2017)
(160)

NLRP3 Dexamethasone indirect
Inhibition?

Intraperitoneal OVA + Alum Reduction in eosinophilia, neutrophilia,
IL5 and IL17

Guan et al. (2020)
(161)
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(175) and canakinumab (anti-IL1b antibody) (176) that could

also be potential tools for IL1b modulation in asthma.
Conclusions

NOD-like receptors are master regulators of innate

responses and their signaling pathways in different cell types

play pivotal roles in shaping adaptive immunity. In the context

of asthma, although many NLR functions and mechanisms are

still unknown, it is now clear that at least some of them, namely

NOD1, NOD2, and NLRP3, play crucial roles in the

development, regulation, and exacerbation of asthma.

However, despite the well documented genetic association of

both NOD1 and NOD2 with asthma development, and the

wealth of information about the implication of these two

receptors in other relevant mechanisms implicated in this

prevalent disease, a detailed understanding of the specific

mechanisms implicated in the development or exacerbation of

asthma via NOD1 and NOD2 are still not completely

understood. A myriad of reports have supported the

implication of NLRP3, however as is the case with the

a forement ioned NOD1 and NOD2, the comple te

understanding of the underlying mechanisms is still far from

our reach. Moreover, in the case of NLRP3, the existence of

contrasting findings further pinpoints the need for a deeper

understanding of asthma-related NLRP3 and inflammasome-

driven mechanism, and at the same time, underlines the

complexities of asthma. Notwithstanding, the available data

and knowledge about the implication of NLRs in asthma make

them very interesting targets for the development of

complementary or standalone disease-modifying treatments.

As a matter of fact, most current available asthma treatments,

both classic and biologic, while being safe and very effective in

some patients are designed to target asthmatic symptoms, with the

exception of allergen immunotherapy that can only be used in a

relatively small patient subset. Therefore, the development of new

therapies based on the modulation or inhibition of NLRs could

represent a leap in asthma treatment potentially providing new

alternatives to the already established and available treatments and

representing a new disease-modifying alternative by targeting

innate and adaptive upstream events.
Frontiers in Immunology 14
The available data about the NLR implication in asthma opens

new perspectives not only in the understanding of the mechanisms

of asthma but also for the future development of new alternative

preventive and therapeutic treatments for this prevalent disease.
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Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kB.
J Biol Chem (2001) 276:4812–8. doi: 10.1074/jbc.M008072200

30. Gutte PGM, Jurt S, Grütter MG, Zerbe O. Unusual structural features
revealed by the solution NMR structure of the NLRC5 caspase recruitment domain.
Biochemistry (2014) 53:3106–17. doi: 10.1021/bi500177.x

31. Ting JPY, Lovering RC, Alnemri ESPD, Bertin J, Boss JM, Davis B, et al. The
NLR gene family: An official nomenclature. Immunity (2008) 28:285–7.
doi: 10.1016/j.immuni.2008.02.005

32. Chin AI, Dempsey PW, Bruhn K, Miller JF, Xu Y, Cheng G. Involvement of
receptor-interacting protein 2 in innate and adaptive immune responses. Nature
(2002) 416:190–4. doi: 10.1038/416190a

33. Schorey JS, Cooper AM. Macrophage signalling upon mycobacterial
infection: The MAP kinases lead the way. Cell Microbiol (2003) 5:133–42.
doi: 10.1046/j.1462-5822.2003.00263.x

34. Franchi L, Warner N, Viani K, Nuñez G. Function of nod-like receptors in
microbial recognition and host defense. Immunol Rev (2010) 227:106–28.
doi: 10.1111/j.1600-065X.2008.00734.x

35. Inohara N, Koseki T, Lin J, Del Peso L, Lucas PC, Chen FF, et al. An induced
proximity model for NF-kB activation in the Nod1/RICK and RIP signaling
pathways. J Biol Chem (2000) 275:27823–31. doi: 10.1074/jbc.M003415200

36. Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Núñez G, et al. A
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