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Rheumatoid arthritis (RA) is an autoimmune disease that severely affects

patients’ physical and mental health, leading to chronic synovitis and

destruction of bone joints. Although various available clinical treatment

options exist, patients respond with varying efficacies due to multiple factors,

and there is an urgent need to discover new treatment options to improve

clinical outcomes. Cuproptosis is a newly characterized form of cell death.

Copper causes cuproptosis by binding to lipid-acylated components of the

tricarboxylic acid cycle, leading to protein aggregation, loss of iron-sulfur

cluster proteins, and eventually proteotoxic stress. Targeting copper

cytotoxicity and cuproptosis are considered potential options for treating

oncological diseases. The synovial hypoxic environment and the presence of

excessive glycolysis in multiple cells appear to act as inhibitors of cuproptosis,

which can lead to excessive survival and proliferation of multiple immune cells,

such as fibroblast-like synoviocytes, effector T cells, and macrophages, further

mediating inflammation and bone destruction in RA. Therefore, in this study,

we attempted to elaborate and summarize the linkage of cuproptosis and key

genes regulating cuproptosis to the pathological mechanisms of RA and their

effects on a variety of immune cells. This study aimed to provide a theoretical

basis and support for translating preclinical and experimental results of RA to

clinical protocols.
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease

characterized by chronic synovitis, presence of multiple

autoantibodies, and bone and joint destruction (1). Genetic

factors (common risk variants), environmental factors

(smoking), genetic and environmental interactions (epigenetic

mechanisms), and metabolic abnormalities are risk factors for

RA (2). RA affects 1% of the global population and is more

prevalent in women than in men (3). Current clinical treatment

options for RA include disease-modifying anti-rheumatic drugs,

non-steroidal anti-inflammatory drugs (NSAIDs), and biological

and non-biological agents. Painkillers and NSAIDs reduce pain

and stiffness, but NSAIDs have limited effectiveness and may

cause stomach irritation, heart problems, and kidney damage

(1). Disease-modifying antirheumatic drugs (DMARDs) are the

primary treatment, and when used in combination, these drugs

can slow the progression of RA and protect joints and other

tissues from permanent damage. However, some DMARDs have

multiple adverse effects, such as nausea, liver damage, bone

marrow suppression, and development of lung infections (1).

Biological agents, including anti-TNF-a antibodies, are also

effective, but there are still adverse events, such as infection at

the injection site and variation in the efficacy (1). In addition,

proper l i f e s ty l e management , exerc i se , and food

supplementation are prescribed as complementary therapies.

However, due to multiple heterogeneous factors and a

complex network of immune-inflammatory pathological

mechanisms in RA, available therapies have shown limited

clinical efficacy in some patients (2). Therefore, innovative

discovery of new drug targets and elucidation of new

mechanisms are of great importance for the clinical

management of RA.

Cell death is closely associated with RA. Reduced apoptosis

in fibroblast-like synoviocytes (FLS) leads to harmful and

excessive proliferation, and other pro-inflammatory cell death

mechanisms (e.g., pyroptosis and necroptosis) promote

inflammation in RA (4). Tsvetkov et al. have characterized a

novel form of cell death called “cuproptosis” (5). Cuproptosis in

human cells occurs when mitochondrial respiration is disrupted,

primarily by the direct binding of excess copper to the lipid-

acylated components of the tricarboxylic acid (TCA) cycle. This

leads to aggregation of lipid-acylated-related proteins, loss of

iron-sulfur cluster proteins, and ultimately, cell death due to

intracellular proteotoxic stress (5). In addition, Tsvetkov et al.

identified 10 key genes for cuproptosis, including positive

regulation factors (ferredoxin 1(FDX1), lipoic acid synthetase

(LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide

dehydrogenase (DLD), drolipoamide S-acetyltransferase

(DLAT), pyruvate dehydrogenase E1 subunit alpha 1(PDHA1),

and pyruvate dehydrogenase E1 subunit beta (PDHB)) and

negative regulatory factors (metal-regulatory transcription
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factor-1 (MTF1), glutaminase (GLS), and cyclin-dependent

kinase inhibitor 2A (CDKN2A)) (5). A meta-analysis of 1444

patients with RA showed that their serum copper levels were

significantly higher when compared to that of healthy controls

(6). Similarly, Ma et al. found elevated serum copper and

decreased zinc and selenium levels in RA patients by

systematic evaluation and meta-analysis of common trace

metals in them, with possible geographical differences in all

three, and that serum selenium levels positively correlated with

steroid treatment (7). In addition, serum copper levels were

higher in patients with active RA, positively correlated with

erythrocyte sedimentation rate (ESR) and morning stiffness, and

negatively correlated with hemoglobin levels, which are auxiliary

markers for disease assessment (8). Therefore, given the excess

copper levels in RA, we sought to elucidate its potential

association with RA by searching for cuproptosis and

cuproptosis–related genes in PubMed to provide theoretical

references and guidance for the discovery and innovative

development of clinical treatment options for RA.
Relationship between cuproptosis
and RA

Tsvetkov et al. characterized an extensive and detailed

characterization of cuproptosis (5). First, the factors necessary

for cuproptosis include the presence of glutathione, and the

mitochondrial metabolism of galactose and pyruvate (5).

Second, cuproptosis appears to be more dependent on

mitochondrial respiration, which is inhibited under various

conditions such as hypoxia, and presence of mitochondrial

antioxidants, inhibitors of mitochondrial function and fatty

acids (5). Finally, the knockdown of seven genes that positively

regulate cuproptosis may inhibit cuproptosis. For example,

knockdown of FDX1 results in the loss of protein-lipid

acylation, decreased mitochondrial respiration, accumulation

of pyruvate and a-glutarate, and loss of iron-sulfur cluster

proteins (5). In addition, accumulation of regulatory gene

oligomers is important for the occurrence of cuproptosis (5).

Synovial tissue of patients with RA presents a hypoxic

environment due to chronic inflammation, vascular

proliferation, and excessive cell proliferation (9). Under

hypoxic conditions, multiple mediators of bone destruction

(matrix metallopeptidases (MMPs)), pro-inflammatory factors

(interleukin 8 (IL-8) and IL-6), and chemokines (chemokine (C-

C motif) ligand 20 (CCL20)) are involved in bone destruction

and inflammatory processes in RA (10, 11). Multiple cells in RA

are characterized by an imbalance between cell survival and cell

death. The metabolic mechanisms associated with cuproptosis

may be linked to these cells. For example, the overall glucose and

glutamine levels were reduced in RA FLS, showing enhanced

depletion, and indicating that glutamine plays an essential role in
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FLS proliferation. Glutamine is a critical factor in cuproptosis

and its reduced levels, which lead to significant inhibition of

cuproptosis, may contribute to the abnormal proliferation of

FLS. RA FLS have multiple tumor-like features and survive and

over proliferate in a tumor-like microenvironment. The aberrant

proliferation of RA FLS is partially attributed to the inhibition of

apoptosis (12, 13). The hypoxic environment may also inhibit

cuproptosis and thus may contribute to abnormal cell survival

and proliferation. The link between copper and hypoxia is

complex. Hypoxic conditions promote copper cytotoxicity by

inhibiting antioxidant defense mechanisms by increasing

reactive oxygen species (ROS), copper transport, and mitotic

phagocytosis, with specific molecular mechanisms possibly

involving MTF1 and the forkhead box O-3 (FoxO3) signaling

pathway (14). Additionally, similar to the inhibition of

cuproptosis by the glycolytic effect of FLS, effector T cells exert

their effect through the mTOR-dependent pathway, using

glycolysis to take in large amounts of glutamine and glucose to

provide energy, which may also inhibit cuproptosis, thereby

exerting a pro-inflammatory effect. Overactivation of the

glycolytic pathway may also inhibit Treg cell function (15).

Activated M1 pro-inflammatory macrophages are glycolytic

and release pro-inflammatory mediators through multiple

mechanisms to destroy tissues (15). These factors may

promote inflammatory effects by inhibiting the cuproptosis

process in pro-inflammatory cell populations (Table 1). Next,

we describe the potential association between critical genes

associated with cuproptosis and RA development.
Frontiers in Immunology 03
PDHA1

Lactate levels are significantly increased and glucose

concentrations are significantly decreased in RA synovial

membranes, suggesting excessive activation of glycolytic

pathways (16). Glycolysis converts glucose to pyruvate, and

the downstream pathways of glycolysis include lactate

fermentation and oxidation of pyruvate (17). PDHA has been

extensively studied in tumor cells. Tumor cells promote their

growth primarily by enhancing the glycolytic pathway and

attenuating oxidative phosphorylation, which appears to also

like the excessive glycolysis in RA FLS. During oxidative

phosphorylation, the pyruvate dehydrogenase complex

(PDHC) converts pyruvate to acetyl coenzyme A. PDHA1, a

subunit of PDHC, is a key component linking glycolysis and the

TCA cycle (18). PDHA1 inhibition affects PDHC activity,

leading to tumor cell glycolysis, enhanced consumption of

glucose and glutamine, and inhibition of oxidative

phosphorylation (19). Gut microbial-derived butyrate inhibits

sirtuin 3 and mitochondrial complex I in tumor cells to prevent

the conversion of TCA cycle intermediates to adenosine

triphosphate (ATP). Butyrate induces hyperacetylation of

PDHA1 to relieve the inhibition of PDHA1 phosphorylation

at serine 293 to promote tumor cell apoptosis (20). The

transcription factor RUNX family transcription factor 2

(RUNX2) promotes the expression of several glycolytic

proteins (phosphorylated protein kinase B (PKB), hexokinase 2

(HK2), and PDH kinase 1(PDHK1)), inhibits the expression of
TABLE 1 The potential function of cuproptosis-related genes in RA.

Gene May affect cells
in RA

Function

PDHA1 FLS, Macrophages PDHA1 inhibition may contribute to the FLS hyperproliferative state. PDHA1 may synergize with STAT3 to regulate the
macrophage inflammatory response.

PDHB Treg cell, FLS, PDHB may co-regulate Treg cells and maintain functional integrity with DJ-1. Downregulation of PDHB may contribute to the
abnormal proliferative state of RA FLS

GLS FLS, CD4+T cell (Th1,
Th2, Th17), B cell

GLS1 may promote aberrant proliferation of RA FLS, and GLS1 inhibition has different effects on different CD4+ T cell
subpopulations. GLS is involved in regulating B cell activation and antibody production.

LIAS Treg cell LIAS is mainly involved through the regulation of oxidative stress and inflammation and has potential links to RA.

DLAT FLS DLAT may influence the development of RA mainly by affecting pyruvate oxidation in the PDHC, TCA cycle, and mitochondrial
function

FDX1 Dendritic cells,
monocytes-
macrophages, Treg
cells

FDX1 mainly affects fatty acid oxidation and steroid regulation, affecting different cells.

MTF1 FLS, T cells MFT1 stimulates FLS recruitment and inflammatory factor production, promotes angiogenesis, and facilitates pro-inflammatory T
cell arrest in the joints.

CDKN2A Macrophages, T cells,
B cells, FLS

CDKN2A is a marker of cellular senescence and may be involved in the aberrant proliferation of FLS and regulation of inflammatory
factor release, promoting pro-inflammatory responses in monocytes and macrophages, and may be involved in the functional
regulation of abnormal T and B cells.

LIPT1 FLS LIPT1 is mainly responsible for regulating glutamine metabolism aiming to support mitochondrial respiration, TGA cycling, and
fatty acid production, which may promote the abnormal proliferative process of FLS.
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PDHA1 and sirtuin 6 (SIRT6), and suppresses the rate of

mitochondr ia l oxygen consumpt ion (a marker of

mitochondrial oxidative phosphorylation), thereby promoting

tumor cell proliferation (21). Therefore, it can be speculated that

PDHA1 may be involved in RA FLS by regulating the glycolytic

process. PDHA1 in RA FLS may be in an inhibited state, thus

contributing to the excessive glycolytic and hyperproliferative

state of FLS.

In addition to what has been described above, PDHA1 can

also be potentially linked to RA through the regulation of

inflammation. The release of the NLRP3 inflammasome and

related pro-inflammatory mediators plays an important role in

the inflammation in RA (4). Activation of the nucleotide-

binding oligomerization domain (NOD)-like receptor pyrin

domain containing 3 (NLRP3) inflammasome requires lactate

fermentation and inhibition of PDHA1 leads to impaired

pyruvate oxidation. NLRP3 inflammasome activation leads to

release of IL-1b pro-inflammatory mediators (17). Macrophages

are important effector cells that are involved in the inflammatory

response to RA. Macrophage SIRT-3 is deacetylated at lysine 83,

which activates PDHA1, and inhibits NLRP3 inflammasome

activation and IL-1b release (22). In addition, the LPS-induced

in vitro cell model is an important model for RA inflammation

(23). Melatonin receptor 1 (MT1) inhibits LPS-induced aerobic

glycolysis and impairs oxidative phosphorylation by promoting

PDHA1 expression to suppress inflammation (24).The role of

MT1 has been extensively studied in RA. MT1 plays critical roles

such as altering the Th1/Th17 balance to suppress inflammation

(25) and reducing inflammation and cartilage degradation

through the phosphatidylinositol 3−kinase (PI3K)/protein

kinase B (AKT), extracellular signal-regulated kinase (ERK),

and nuclear factor-kB (NF-kB) signaling pathways, as well as

tumor necrosis factor a (TNFa) and IL-1b (26). In summary,

PDHA1 appears to be a potent regulator of excessive glycolysis

and inflammation and is regulated by different transcriptional

mechanisms. Further studies specific to RA are still needed.
PDHB

PDHB is a subunit of pyruvate dehydrogenase, which is

similar in function to PDHA1 in that they both catalyze pyruvate

to acetyl coenzyme A (27). PDHB has been identified as a

susceptibility gene for RA and its expression is downregulated

in various tissues and cells (28). Deglycase DJ-1 was found to

bind PDHB in Tregs, inhibit PDHA phosphorylation, and

promote PDH activity and oxidative phosphorylation to

maintain Treg cell differentiation and the functional integrity

of T cells (29). In addition, PDHB has also been studied in

various tumor cells. As previously mentioned, it may be linked to

abnormalities in RA FLS. Maternally expressed gene 3 (MEG3)

inhibits miRNA (miR)-103a-3p, upregulates PDHB-induced

endoplasmic reticulum stress proteins’ expressions (glucose-
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regulated protein 78 (GRP78), activating transcription factor 6

(ATF6), C/EBP homologous protein (CHOP), caspase-3, and

caspase-9), inhibits cell viability, colony formation ability and

invasion, blocks the cell cycle, and induces apoptosis in tumor

cells (30). MiR-203, miR-146b-5p, and miR-363-3p promote

pro-tumor cell growth, invasion, inhibition of apoptosis, and

enhancement of glycolysis by targeting PDHB (31–33). PDHB

also inhibits RasV12-driven ERK signaling and tumor cell

proliferation (34). The interaction between PDHB and NIMA-

related kinase 10 (NEK10) may be necessary for maintaining

mitochondrial homeostasis, and NEK10 knockdown leads to

increased mitochondrial damage and dysfunction (35). Thus,

PDHB appears to be regulated by multiple miRNAs, while

abnormalities in multiple miRNAs contribute to the

pathological progression of RA, and the interconnection

between the two deserves further exploration (36). In

conclusion, downregulation of PDHB may contribute to the

abnormal proliferative state of FLS in RA and may lead to

defective Treg function through reduced binding to DJ-1.
GLS

GLS primarily includes two isoforms, GLS1 and GLS2, which

are the key enzymes for glutamine metabolism. GLS1 exists in

two splice variants: KGA and GAC (37). GLS1 may promote

abnormal proliferative processes in RA FLS. In response to the

inflammatory factor IL-17, the mRNA expression of GLS1 was

upregulated, whereas the expression of GLS2 was extremely low,

implying that GLS1 is primarily responsible for glutamine

metabolism. Furthermore, the inhibition of GLS1 suppresses

the proliferation of RA FLS and improves joint inflammation in

arthritic mice (38).

GLS1 inhibition has multiple effects on CD4+ T cells and

their subpopulations. First, it leads to a-CD3/CD28-induced
suppression of CD4+ T cell proliferation and decreased

expression of T cell activation markers CD25 and CD226 (39).

Second, it inhibits cytokine secretion frommultiple CD4+ T cell-

differentiated T cell subsets, e.g., IL-2 and interferon gamma

(IFN-g) (Th1 cytokines), TNF-a, IL-6, IL-4 (Th2 cytokines), and
IL-17a (Th17 cytokines) (39). Finally, the percentage of CD4+ T

cells expressing chemokine (C-C motif) receptor 6 (CCR6) and

C-X-C chemokine receptor 3 (CXCR3) is reduced (39), both of

which have essential roles in inflammatory chemotaxis in RA

(40, 41). Th17 is a critical pro-inflammatory mediator in RA that

releases IL-17 pro-inflammatory factors to promote

inflammation, which preferentially uses glycolysis and

glutamine catabolism to provide energy (42). Peroxisome

proliferator-activated receptor gamma (PPAR-g) expression is

significantly reduced in the synovial membranes of RA patients

(43). PPAR-g activation inhibits Th17 differentiation by

suppressing glutamine catabolism. On one hand, the specific

mechanism may involve PPAR-g inhibiting GLS1 and decreasing
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2-hydroxyglutarate (2-HG) levels, thereby regulating lysine

demethylase 5 (KDM5)-specific trimethylation of Histone H3

at Lysine 4 (H3K4me3) modifications in the promoter and CNS2

binding regions of the IL-17 locus. In contrast, PPAR-g inhibits
GLS1 and reduces GSH levels, increases ROS levels, and

downregulates retinoic acid-related orphan receptor gamma

(RORgt) expression (44). In conclusion, GLS1 may primarily

affect FLS, B cell and CD4+ T cell subsets in RA by promoting

FLS cell proliferation, inflammatory cell differentiation, and pro-

inflammatory cytokine release.
LIAS

LIAS is an iron-sulfur cluster mitochondrial enzyme that

replicates the final step of the ab initio pathway that catalyzes

lipoic acid biosynthesis, in which lipoic acid is a powerful

antioxidant (45). Lipoic acid can be synthesized in the

mitochondria by an enzymatic reaction involving octanoic

acid. Lipoic acid is essential for mitochondrial a-keto acid

dehydrogenase activity and plays an important role in

mitochondrial energy metabolism (46). Mitochondria are

important organelles in organisms and play several roles,

including providing energy to the cell through oxidative

phosphorylation and ATP synthesis. When mitochondria

produce energy, they store the electrochemical potential

energy in the inner mitochondrial membrane. On both sides

of the inner membrane, an asymmetric distribution of protons

and other ion concentrations results in the mitochondrial

membrane potential. Glycolysis oxidizes pyruvate and

combines it with coenzyme A, a reaction coupled with the

reduction of NAD+, to produce CO2 and acetyl coenzyme A.

Acetyl coenzyme A can enter the tricarboxylic acid cycle, which

produces ATP (or GTP), more CO2, FADH2, and NADH (47).

NADH is then involved in the electron transport chain and

oxidative phosphorylation. Oxidative stress is an important

factor in mitochondrial dysfunction that leads to RA injury

and RA-related atherosclerosis (48). LIAS is primarily associated

with oxidative stress, inflammation, and RA. Significantly lower

LIAS expression in mice after LPS induction is accompanied by

enhanced inflammatory response and tissue damage (49). LIAS

overexpression in experimental atherosclerotic mice

significantly increases the number of Tregs and reduces T-cell

infiltration (50). Similarly, reduced liver LIAS in mice with

hepatic fibrosis is accompanied by mitochondrial dysfunction

and morphological abnormalities, including mitochondrial

edema, reduced density or vacuolization of mitochondrial

cristae and matrix, reduced activity of mitochondrial

complexes I, II, IV, and V, increased mitochondrial fission

activity, and reduced mitochondrial fusion activity (51).

Overexpression of LIAS reduced hepatic oxidative stress in

non-alcoholic fatty liver disease in mice and protected

mitochondrial function by upregulating the nuclear factor
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erythroid 2–related factor 2 to reduce ROS production (52),

attenuated the chronic inflammatory response, inhibited NF-kB

activity in lung fibrosis in mice (53), significantly increased Treg

cell numbers, and reduced T cell infiltration (50). Mutations in

LIAS stabilizeHIF-1a in its non-hydroxylated form and promote

HIF-1 activation by inhibiting the activity of prolyl hydroxylases

(PHDs), which potentially leads to enhanced glycolytic effects in

cells (54). Therefore, LIAS and HIF-1 may be involved in

RA progression.
DLAT

E4 transcription factor 1 (E4F1) is a crucial gene involved in

controlling mitochondrial function and cell cycle checkpoints

that can interact with RA via P53 (55, 56). E4F1 regulates DLAT.

These two factors may synergistically regulate the pathogenesis

of RA (57). Mitochondrial PDHC is primarily involved

in pyruvate oxidation and the TCA cycle, and provides

energy to the body (57). Sirtuin 4 (SIRT4) has enzymatic

hydrolytic activity and it was significantly downregulated and

markedly correlated positively with anti-cyclic citrullinated

peptide (anti-CCP) antibody, ESR, and C-reactive protein

(CRP) levels in patients with RA (58, 59). SIRT4 can

hydrolyze the lipoamide cofactors of DLAT, thereby inhibiting

PDH activity (59). In addition, component 1 Q subcomponent-

binding protein (C1QBP) in the mitochondria is associated

with histological inflammation scores in RA. It can

regulate mitochondrial metabolism by affecting PDGH

activity through binding to DLAT (60, 61). Therefore,

DLAT may influence the development of RA primarily by

affecting pyruvate oxidation in PDHC, the TCA cycle, and

mitochondrial function.
FDX1

FDX1 is a member of the ferredoxin family, which comprises

iron-sulfur (Fe/S) proteins (62). The transcription factors c-Jun

and SF1 can synergistically promote the transcription and

expression of FDX1 (63). FDX1 influences immune cells

(dendritic cells, monocytes, macrophages, and iTreg cells) (64).

Monocytes in RA prefer to use fatty acid oxidation to provide

energy and drive receptor activator of nuclear factor kappa-B

ligand (RANKL)-induced osteoclast survival and the associated

bone destruction (65).FDX1 was found to significantly promote

ATP production in these cells. FDX1 knockdown significantly

promotes production of fructose 6-phosphate, thus affecting

downstream glycolysis, and decreases the levels of many long-

chain fatty acids, indicating that it promotes fatty acid

oxidation (64).

Abnormalities in and regulation of steroid production play

an important role in RA. For example, there are multiple
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abnormal steroid-related metabolites in patients with RA (66).

Increased pro-inflammatory factors in RA may be associated

with the reduced renal clearance of steroids (67). FDX1 may be

involved in RA development, by potentially influencing

this process. Ferredoxin reductase transfers electrons

from nicotinamide adenine dinucleotide phosphate (NADPH)

to FDX1, reducing members of the mitochondrial cytochrome

P450 protein family such as cytochrome P450 11A1 (CYP11A1)

and CYP11B (62). CYP11A1 catalyzes the conversion of

cholesterol to pregnenolone via side-chain cleavage in the

mitochondria, which is the rate-limiting step in adrenal steroid

biosynthesis (63). CYP11B promotes the conversion of cortisol

to corticosterone, or aldosterone (62). CYP11A1 also converts

vitamin D3 to the non-calcemic analog 20S-hydroxyvitamin,

which significantly reduces the release of pro-inflammatory T

cell subsets and pro-inflammatory cytokines, increases the

proportion of Treg cells, and improves symptoms in a mouse

model of arthritis (68).
MTF1

MTF1 is a classical metal-binding transcription factor

closely associated with copper homeostasis in eukaryotic

organisms (69). Copper loading induces transcriptional

activation of metallothionein (MT) through MTF1 and metal

responsive element (MRE)-dependent pathways and promotes

the nuclear express ion of MTF1 , which promotes

metallothionein expression (70). When copper is depleted,

MTF1 also binds to the MRE of CTR1B to promote its

transcription and expression of CTR1B, facilitating the

introduction of copper to maintain copper homeostasis (71).

In addition to MTF1 to maintain copper homeostasis,

mammalian cells express a variety of copper transporter

proteins or enzymes, such as copper transporter 1 (CTR1),

cytochrome c-oxidase 1 (Cox1), Cox2, Cox11, Cox17,

synthesis of cytochrome c oxidase 1 (Sco1), Sco2, superoxide

dismutase 1 (SOD1), antioxidant-1 (Atox1), ATPase copper

transporting alpha (ATP7A), ATPase copper transporting beta

(ATP7B), extracellular superoxide dismutase (ecSOD, SOD3),

and lysyl oxidase (LOX). Copper homeostasis can be divided

into several stages. Firstly, CTR1 uptake of copper, where the

copper is transported via protein interactions to three different

sites for further processing. For example, ligand-bound copper

ions and copper transport proteins, such as Cox1, Cox2, Cox11,

and Cox17, are subsequently transported to Sco1 and Sco2 in

mitochondria (72) whereas in the cytoplasmic lysates and

mitochondrial gap copper is transported to SOD1 (72).

Copper is transported via ATP7A or ATP7B to the secreted

enzymes EcSOD, SOD3, and LOX (72). Other copper

transporter proteins and their specific roles have been clearly

described, and here we focus only on cuproptosis-related

genes (72).
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MTF-1 can directly or indirectly regulate a variety of cellular

functions, and is mainly associated with hypoxic conditions in

patients with RA. The RA risk SNP (rs28411362) forms a 3D

contact with the MTF1 promoter during inflammatory factor-

stimulated chromatin remodeling of RA FLS, whose binding

motif stimulates FLS recruitment, and MTF1 inhibition

significantly suppresses FLS cytokine and chemokine

production and improves the mouse arthritis model (73).

Under hypoxic conditions, MTF-1 expression promotes the

transcriptional activation of phosphatidylinositol glycan

anchor biosynthesis class F(PIGF) to promote angiogenesis

and enhance endothelial growth and permeability via the

vascular endothelial growth factor (VEGF) (74). MTF1 also

promotes the activity of hypoxia-inducible factor-1 (HIF-1)

(75). HIF-1a is a major regulator of cells under hypoxic

conditions and is highly expressed in the RA synovium (10,

76, 77). HIF-1a can also induce MMP-3 production to promote

bone destruction (10). HIF-1a promotes pro-inflammatory T

cell arrest in joints and Th17 differentiation through

transcriptional activation of RORgT and tertiary complex

formation with RORgt and p300 recruitment to the IL-17

promoter. HIF-1 inhibits Treg development by targeting

forkhead box P3 (FOXP3) for proteasomal degradation (77).

HIF-1a promotes the conversion of pyruvate to lactate by

increasing LDHA activity. High concentrations of lactate

promote cell proliferation of FLS (10, 76, 77). Furthermore, in

addition to its effects on RA FLS, high lactate concentrations can

promote pro-inflammatory T-cell arrest in the joints. It is worth

noting that MTF1 responds to copper stimulation through

different binding genes (78), and phosphorylation of MTF1 is

essential for the functional activation of MTF (79). For example,

MTF1 promotes ATP7B expression by binding to the MRE in the

promoter region of ATP7B to promote Wilson’s disease caused

by copper overload (80). Phosphorylation of the kinase LATS of

the Hippo pathway and inhibition of MTF1 protects cells from

heavy metal-induced cytotoxicity (81). Thus, MTF1 primarily

responds to excess copper levels in RA, and the hypoxic

environment affects multiple pathological aspects of RA.
CDKN2A

The fraction of cells expressing p16 (CDKN2A) is a typical

marker of cellular senescence (82). Cellular senescence has been

associated with RA in various cell types. For example, senescent

T cells are highly inflammatory, secrete cytotoxic mediators, and

express natural killer receptors (NKR), bypassing their antigenic

specificity (83, 84). Histone deacetylase1 (HDAC1) is

overexpressed in RA FLS and promotes cell proliferation in

FLS (85). The deacetylase (HDA) inhibitor FK228 inhibits joint

swelling, synovial inflammation, and bone destruction in mice

with experimentally induced arthritis. It also inhibits the

proliferation of RA FLS in vitro by a mechanism that involves
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FK228, thereby inducing high histone acetylation and DKN2A

expression in synovial cells, upregulating p21, and decreasing the

release of TNF and IL-1b (86). However, it is noteworthy that

the senescent phenotype of RA FLS highly expresses CDKN2A

and releases more pro-inflammatory mediators in response to

TNF or oxidative stress stimuli to promote inflammation (87).

The histone methyltransferase EZH2 is strongly induced in

chronic inflammation of RA FLS, which may suppress

CDKN2A expression and thus contribute to the abnormal

response to FLS (88). In addition to its potential effects on RA

FLS, CDKN2A may affect RA by influencing the function of

macrophages, T cells, and leukocytes. Oxidized low-density

lipoprotein (ox-LDL) activates multiple immune cells in RA to

promote the secretion of pro-inflammatory mediators and

assemble Abs to promote the production of immune

complexes to mediate RA pathological progression (89). Ox-

LDL promotes the secretion of TNF-a and IL-1b by

macrophages and functions via the MEG3/miR-204/CDKN2A

axis (90). CDKN2A expression in macrophages inhibits LPS-

induced IL-6 production by a specific mechanism involving

CDKN2A, promoting ubiquitin-dependent degradation of

IRAK1 and impairing the activation of AP-1 (91). Reduced

expression of CDKN2A in leukocytes appears to be associated

with increased CD14++CD16++ monocyte subsets, increased

immune complex responses, and overproduction of pro-

inflammatory factors in RA (2, 92). EZH2 is also thought to

be essential for B and T cell development, and IL-17 in RA

patients with RA synovial fluid may inhibit EZH2 expression

downregulation in CD4+ T cells and suppress Treg
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differentiation (93). EZH2 also suppresses CDKN2A

expression in naive CD8+ T cells by reducing H3K27me3

levels at two loci (50) and by controlling B-cell maturation

(94). Therefore, EZH2 may work in combination with CDKN2A

to regulate abnormal T and B cell responses in RA.
LIPT1

LIPT1 primarily encodes LIPT1, which catalyzes the transfer

of lipoic acid from the H protein of the glycine cleavage system

to the E2 subunit of 2-ketoacid dehydrogenase, an essential step

in lipid acylation (95, 96). LIPT1 is primarily responsible for

regulating glutamine metabolism to support mitochondrial

respiration, the TGA cycle, and fatty acid production (95).

Mutations in LIPT1 impair mitochondrial proteolipid

acylation and TGA cycling, and promote the accumulation of

lactate and pyruvate (95). Among them, lactate and pyruvate can

stimulate synovial cell proliferation, angiogenesis, and vascular

opacification in patients with RA (97). Little research has been

conducted on LIPT1 in diseases, and further studies are

still needed.
Conclusion

A specific concentration of copper in an organism

contributes to organismal homeostasis. However, the

imbalance in copper homeostasis may affect the organism by
FIGURE 1

Potential association of cuproptosis and cuproptosis–related genes with RA. Copper can induce cuproptosis by binding to lipid-acylated TCA
cycle components, promoting lipid-acylated protein aggregation, and inducing protein stress. This may affect various cells in RA, such as FLS
and monocytes/macrophages, thereby aiding in inflammation, angiogenesis, and the bone destruction processes. Vital regulatory genes for
cuproptosis are potentially linked to RA through distinct biological functions. However, the specific mechanisms require further investigation.
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triggering cuproptosis, leading to disease development.

Cuproptosis is considered a potential therapeutic option for

oncological diseases, and its possible association with RA is

multifaceted (Figure 1). First, cuproptosis in multiple immune

cells may be suppressed, and this suppression contributes to

their over-proliferation in RA. Secondly, several essential

regulatory genes of cuproptosis have been identified to be

associated with multiple RA processes, such as aberrant FLS

proliferation and inflammatory processes in various immune

cells. PDHA1 regulates glycolysis and inflammation; miRNAs

primarily regulate PDHB, GLS1, and LIPT1 regulate glutamine

metabolism; DLAT regulates mitochondrial function and the

TCA cycle metabolism; and FDX1 regulates fatty acid oxidation

and steroidogenesis; MTF1 and LIAS regulate copper

homeostasis; and HIF-1 and CDKN2A regulate cellular

senescence. Finally, it is worth noting that cuproptosis is a

newly characterized form of cell death, and its specific

mechanisms and effects on disease are not as well studied as

other forms of cell death, such as apoptosis and ferroptosis.

Well-designed preclinical experiments and clinical trials are still

required for in-depth studies of cuproptosis and its associated

genes in the context of RA, which still present a significant

challenge. However, it is undeniably a research direction with

great potential.
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Glossary

RA rheumatoid arthritis

TCA
cycle

tricarboxylic acid cycle

NSAIDs non-steroidal anti-inflammatory drugs

FLS fibroblast-like synoviocytes

FDX1 ferredoxin 1

LIAS lipoic acid synthetase

LIPT1 lipoyltransferase 1

DLD dihydrolipoamide dehydrogenase

DLAT drolipoamide S-acetyltransferase

PDHA1 pyruvate dehydrogenase E1 subunit alpha 1

PDHB pyruvate dehydrogenase E1 subunit beta

MTF1 metal-regulatory transcription factor-1

GLS glutaminase

CDKN2A cyclin-dependent kinase inhibitor 2A

MMPs matrix metallopeptidases

IL interleukin

CCL20 chemokine (C-C motif) ligand 20

FoxO3 forkhead box O-3

PDHC the pyruvate dehydrogenase (PDH) complex

ATP adenosine triphosphate

RUNX2 RUNX family transcription factor 2

PKB phosphorylated protein kinase B

HK2 hexokinase 2

PDHK1 PDH kinases 1

SIRT6 sirtuin 6

PI3K phosphatidylinositol 3−kinase

AKT protein kinase B

ERK the extracellular signal-regulated kinase

NF-k;B nuclear factor-k;B

TNFa tumor necrosis factor a

NLRP3 the nucleotide-binding oligomerization domain (NOD)-like receptor
pyrin domain containing 3

MEG3 maternally expressed gene 3

miR miRNA

GRP78 glucose-regulated protein 78

ATF6 activating transcription factor 6

CHOP C/EBP homologous protein

NEK10 NIMA-related kinase 10

IFN-g interferon g

CCR6 chemokine (C-C motif) receptor 6

CXCR3 C-X-C chemokine receptor 3

PPAR-g peroxisome proliferator- activated receptor g

2-HG 2-hydroxyglutarate

KDM5 lysine demethylase 5

H3K4me3 trimethylation of Histone H3 at Lysine 4

ROS reactive oxygen species

RORgt retinoic acid-related orphan receptor gt

E4F1 E4 transcription factor 1

(Continued)
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SIRT4 sirtuin 4

anti-CCP the antibodies cyclic citrullinated peptides

ESR erythrocyte sedimentation rate

CRP C-reactive protein

C1QBP component 1 q subcomponent-binding protein

Fe/S iron-sulfur

RANKL receptor activator of nuclear factor k-B ligand

NADPH nicotinamide adenine dinucleotide phosphate

CYP11A1 cytochrome P450 11A1

MRE metal responsive element

PIGF phosphatidylinositol glycan anchor biosynthesis class F

HIF-1 hypoxia-inducible factor-1

FOXP3 forkhead box P3

PHDs prolyl hydroxylases

ox-LDL oxidized low-density lipoprotein

NKR natural killer receptors
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