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MDA5 signaling induces type 1
IFN- and IL-1-dependent lung
vascular permeability which
protects mice from
opportunistic fungal infection
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Yun C. Chang1 and Kyung J. Kwon-Chung1*

1Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National
Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda,
MD, United States, 2Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology
and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of
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Lungs balance threat from primary viral infection, secondary infection, and

inflammatory damage. Severe pulmonary inflammation induces vascular

permeability, edema, and organ dysfunction. We previously demonstrated

that poly(I:C) (pICLC) induced type 1 interferon (t1IFN) protected mice from

Cryptococcus gattii (Cg) via local iron restriction. Here we show pICLC

increased serum protein and intravenously injected FITC-dextran in the lung

airspace suggesting pICLC induces vascular permeability. Interestingly, pICLC

induced a pro-inflammatory signature with significant expression of IL-1 and

IL-6 which depended on MDA5 and t1IFN. Vascular permeability depended on

MDA5, t1IFN, IL-1, and IL-6. T1IFN also induced MDA5 and other MDA5

signaling components suggesting that positive feedback contributes to t1IFN

dependent expression of the pro-inflammatory signature. Vascular

permeability, induced by pICLC or another compound, inhibited Cg by

limiting iron. These data suggest that pICLC induces t1IFN which potentiates

pICLC-MDA5 signaling increasing IL-1 and IL-6 resulting in leakage of

antimicrobial serum factors into lung airspace. Thus, induced vascular

permeability may act as an innate defense mechanism against opportunistic

fungal infection, such as cryptococcosis, and may be exploited as a host-

directed therapeutic target.
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Introduction

Cryptococcus gattii (Cg) is a fungal pathogen most

recognized for a relatively large outbreak of cryptococcosis

cases which occurred between 1997-2000 in the pacific

northwest of north America while its sibling species,

Cryptococcus neoformans, is mainly associated with deadly

infections in AIDS patients world-wide (1–3). Although earlier

reports suggested Cg to be a primary pathogen (4, 5), recent

literature suggests that Cg is an opportunistic pathogen which

often infects patients with uncharacterized pre-existing immune

deficits (6–12). Unlike C. neoformans, Cg infections most often

remain pulmonary in patients (8, 13) and experimental mouse

models (14).

Previous work demonstrated that pharmacological

stimulation of the host immune system protected mice from

cryptococcosis (15, 16). These studies utilized Hiltonol (pICLC),

a stabilized poly(I:C) derivative which signals through

melanoma differentiation-associated protein 5 (MDA5), a

cytosolic double stranded RNA sensor while other

preparations of polyI:C signal through TLR3 (17). Like poly(I:

C), pICLC is a molecular mimic of viral double stranded RNA.

The best characterized product of MDA5 signaling is type 1

interferon (t1IFN), a family of cytokines initially identified as

mediating antiviral effects, but more recent literature has shown

more diverse effects (18). Nearly all mammalian cells express

receptors for t1IFN and t1IFN signaling induces hundreds of

responsive genes, many of unknown function. While pICLC-

induced protection of mice from C. neoformans was dependent

on pICLC-mediated induction of cellular immunity (16), these

immune cells were all dispensable for pICLC-mediated

protection from Cg. Instead pICLC-induced resistance to Cg

was due to the induction of an iron restrictive-state caused by

increased iron binding proteins in the lung airspace, the

replicative niche of Cg (15). The presence of blood proteins in

the lung airspace suggested the possibility of increased

permeability in lung vasculature.

Studies show that increased lung vascular permeability is

highly associated with inflammatory phenotypes, especially IL-1

(19) which induces permeability by regulated disruption of

vascular adherens junctions. While the effects of IL-1 are the

best characterized, other inflammatory factors may have

important roles in regulating vascular permeability. Extensive
Abbreviations: ARDS, Acute Respiratory distress syndrome; Cg,

Cryptococcus gattii outbreak strain R265; pICLC, Hiltonol, poly IC

condensed with poly-L-lysine and carboxylcellulose; MDA5, melanoma

differentiation-associated protein 5; c48/80, compound 48/80, mast cell

degranulation reagent; t1IFN, type 1 interferon (IFN-b and many IFN-a’s);

MDA5 genetic deletion mice, MDA5 KO; IFNar1 genetic deletion mice,

IFNar1 KO; IL-1r1 genetic deletion mice, IL-1r1 KO; IL-6 genetic deletion

mice, IL-6 KO; Transferrin, Tfn; Ferritin, Ftn; Albumin, Alb; bronchoalveolar

lavage, BAL
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lung vascular permeability is a defining feature of acute

respiratory distress syndrome (ARDS), a devastating condition

(20, 21). Though viral infection is a frequent cause of ARDS and

poly(I:C) has been shown to exacerbate ventilator associated

acute lung injury in mice (22, 23), type 1 interferon has not been

shown to be directly associated with lung vascular permeability.

While some of the molecular pathways and clinical

consequences of lung vascular permeability have been

explored, we know little about why mammals induce vascular

leakage in response to inflammatory signals. We questioned

whether inflammation associated vascular permeability may

benefit the host in certain circumstances.

Our previous data showing induction of several blood

proteins in the lung airspace led us to hypothesize that

serum factors were being delivered by pICLC-induced

permeability in the lung vasculature. Our data show that

pICLC induces measurable lung vascular permeability

dependent on MDA5, t1IFN, IL-1, and IL-6. This vascular

leakage limited fungal Cg pulmonary growth whether induced

by pICLC or by a known inducer of vascular leakage, c48/80.

These data provide insights into the contribution of MDA5 and

t1IFN signaling pathways in the induction of lung edema and

the basis for the linkage of inflammation and the induction of

vascular permeability.
Materials and methods

Mice

Wildtype C57BL/6 mice and IL-6 -/- mice were purchased

from The Jackson Laboratory (Bar Harbor, ME). MDA-5-/-,

IFNar1-/-, and IL-1r1 -/- mouse strains were all purchased under

the NIAID supply agreement with Taconic. All mice were

females aged 8-12 weeks at the start of experiments.
Ethics statement

The Institutional Animal Care and Use Committee of the

National Institute of Allergy and Infectious Diseases approved

all animal studies (approval no. LCIM-5E). Studies were

performed in accordance with the recommendations of the

Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health.
Intrapharyngeal aspiration dosing
and compounds

pICLC, Cg, Compound 48/80, and iron chloride were dosed

to mice using intrapharyngeal aspiration as previously (15).

PICLC (Hiltonal) was a generous gift of Andres Salazar
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(Oncovir, Inc; Washington DC). PICLC was diluted in sterile

PBS and dosed at 5 µg in 20 µL at the indicated time points.

Compound 48/80 (Sigma-Aldrich) was diluted in sterile PBS and

dosed at indicated amounts. Iron (III) Chloride (Sigma-Aldrich)

was prepared as previously (15). Briefly, Iron chloride solutions

were sterile filtered, neutralized, and diluted in PBS and dosed at

6.25 µg per dose in 20 µL.
Cryptococcus strains and culture

Cryptococcus gattii strain R265 was maintained as frozen

glycerol stocks as previously (15). At the start of each

experiment, a fresh frozen aliquot was thawed and cultured

overnight in YPD (MP Biomedicals, Santa Ana, CA) at 30°C.

Yeast cells were harvested by centrifugation, counted by

hemocytometer, and diluted to 2.5x105 yeast per mL in sterile

PBS, resulting in 5000 yeast per mouse in 20 µL.
Mouse sample collection and analysis

See Supplemental Figure 1 for dosing and sampling

schematic. At indicated timepoints, terminal retro-orbital

bleeds for serum collection were performed under deep

isoflurane anesthesia. Then mice were immediately sacrificed

using CO2, their tracheas exposed, and bronchoalveolar lavage

(BAL) collected using 1 mL of sterile PBS containing EDTA-free

protease inhibitor (Roche). Lavage samples were cleared by

centrifugation and supernatants stored at -80°C. Lavage

samples were monitored for blood contamination and

contaminated samples were excluded from further analysis.

Note that preliminary experiments demonstrated significant

difficulty in collecting sufficiently pure lavage samples from Cg

infected mice at time points longer than 7 days post infection.

BAL and serum samples were analyzed for transferrin,

albumin, complement c3, ferritin, and lipocalin-2 protein

levels by ELISA kits purchased from Immunology Consultants

Laboratory, Inc (Portland, OR). Total protein levels were

measured by BCA Protein assay kit (Pierce from Thermo-

Fisher). Cytokine and chemokine levels were measured by

custom Procartaplex Luminex panel (Thermo-Fisher). ELISAs,

BCA assays, and Luminex analysis were all performed by

manufacturer’s specification.

For Fold change heat maps of cytokine and chemokine data,

fold change calculations were performed in Excel (Microsoft)

and statistical analysis in GarphPad Prism (San Diego, CA). Fold

changes for each condition were averaged and those with no

statistical difference from control (wildtype – PBS) were set to

black. Heat map image files were generated using the Morpheus

software (Broad Institute; https://software.broadinstitute.

org/morpheus).
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Dye tracer vascular permeability assay

Mice were pICLC or PBS dosed as indicated. Mice were then

intravenously injected with (4 µg in 200 µL PBS) FITC-dextran

70 kD average molecular weight (Sigma-Aldrich) then after

about 3 hours serum and BALs were collected as described

above. Fluorescein fluorescence was then measured in the BAL,

1:100 diluted serum samples, and Fdx standards of known

concentration using a Synergy H1 plate reader (BioTek) in

fluorescence mode with 485 nm excitation and 528 nm

emission. Sample Fdx concentrations, in µg/mL, were

calculated using standard curve interpolation. BAL/Serum

values in Figure 1I are BAL µg/mL divided by serum µg/mL

values from the same mouse.
Measurement of lung fungal load

Mice were euthanized and lungs excised at the indicated

timepoints. Lungs were homogenized in PBS containing EDTA-

free protease inhibitor (Roche). Colony forming units in each

lung were then calculated using colony forming unit

dilution plating.
Gene expression analysis

At indicated time points mouse lungs were harvested and

homogenized in TRIzol (Thermo-Fisher). RNA was purified

from samples using TRIzol Plus RNA Purification Kit with

Phasemaker Tubes (Thermo-Fisher). RNA concentration was

measured using a Nanodrop Spectrophotometer ND-1000

(Nanodrop Technologies), DNAse treated using DNA-free

DNA removal kit (Thermo-Fisher), and reverse transcribed

using TaqMan Reverse Transcription Reagents (Thermo-Fisher)

all according to manufacturer’s instructions. Taqman real time

PCR was performed using TaqMan Fast Advanced Master mix

(Thermo-Fisher), a QuantStudio 3 pPCR machine (Applied

Biosystems by Thermo), and the following TaqMan assay

probes from Thermo-Fisher: ifih1 (MDA5) Mm00459183_m1,

isg15 Mm01705338_s1, ifnb1 Mm00439552_s1, i l1b

Mm00434228_m1, i l10 : Mm00439614_m1, ch25h :

Mm00515486_s1, gapdh: Mm99999915_g1. Gene expression

fold change was calculated using delta delta Ct analysis using

gapdh as control.
Statistics

ANOVA and subsequent pairwise statistical analysis were

performed using Graphpad Prism (San Diego, CA) as indicated in

figure legends. All graphs indicate means with SEM error bars.
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Results

pICLC-induces alterations in lung
vascular barrier function

Previous data demonstrated that transferrin and other serum

iron-binding proteins were elevated in lung airspace samples

from pICLC-dosed mice (15) leading us to hypothesize that

pICLC induces permeability in the lung vasculature. To

convincingly demonstrate lung vascular permeability in rodent

models, the American Thoracic Society (ATS) suggests

presenting studies of three of the four common permeability

phenotypes (24): 1) alterations in alveolar barrier function, 2)

histological evidence of permeability, 3) induction of an

inflammatory response, and 4) physiological dysfunction.

To further demonstrate pICLC-induced alterations in

alveolar barrier function, mice were dosed once with pICLC or

PBS by intrapharyngeal aspiration on day 0 and bronchoalveolar

lavage (BAL) samples were acquired at various times thereafter.

BAL samples were also acquired after 7 days of ongoing pICLC-

dosing (Supplemental Figure 1). Transferrin (Tfn), ferritin (Ftn),

albumin (Alb), lipocalin-2 (Ngal), and complement c3 were all

induced into the lung airspace by a single pICLC dose and

ongoing dosing (Figures 1A–E). Additionally, total protein levels

were also elevated in BAL samples from pICLC-dosed mice

(Figure 1F). These parameters all displayed similar kinetics with

increased expression one day after pICLC-dosing, peaking at 3

days, then returned to nearly baseline after 7 days. The presence

of serum proteins and the elevation in total protein in BAL

samples is consistent with pICLC-induced alteration in lung

vascular permeability.

Interestingly, two distinct patterns emerged when analyte

BAL/serum analyte concentrations were compared. Tfn, Alb,

and c3 all show similar and relatively moderate BAL/serum

ratios while Ftn and Ngal had much higher BAL to serum ratios

(Figure 1G), suggesting that Tfn, Alb, and c3 are delivered to

lung airspace by vascular permeability while Ftn and Ngal seem

to be delivered to airspaces by other mechanisms. Thus, we

selected Tfn and Alb as markers for permeability in

further experiments.

Finally, to definitively demonstrate a pICLC-induced

alteration in lung vascular barrier function pICLC-dosed or

control mice were injected intravenously with FITC-dextran

and the concentration of FITC-dextran measured from serum

and BAL samples. FITC-dextran concentration (Figure 1H) and

FITC-dextran BAL/SERUM ratios (Figure 1I) were elevated in

BAL samples 1 day after pICLC dosing then returned to baseline.

Collectively, the pICLC-induced leakage of lung serum proteins

and tracer molecules into lung airspaces demonstrates pICLC-

induced alteration in lung vascular barrier function.
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pICLC-induces histological evidence of
lung vascular permeability

Moderate vascular permeability increases result from

endothelial cell junctions loosening, resulting in capillary

vessels dilation. Since alveolar walls themselves are not much

larger than their capillaries, increased vascular permeability

often presents histologically as thickened alveolar walls (24).

Histological lung samples were acquired one or three days after

dosing with PBS, pICLC, or compound 48/80 (C48/80), a known

inducer of lung vascular leakage (25, 26). PBS control samples

showed very thin alveolar walls (Supplemental Figure 2A left

image) while lung sections from pICLC dosed mice displayed

modestly thicker walls (Supplemental Figures 2B, C). High-dose

C48/80 induced more dramatic alveolar wall thickening

(Supplemental Figures 2D, E) and more lung vascular

permeability (see Figures 7A–C below). Some modestly

increased cellularity was also observed in pICLC dosed

sections (Supplemental Figures 2B, C) with higher cellularity

in C48/80 dosed mice (Supplemental Figures 2D, E). Also note

that obvious changes in fibrotic markers were not observed in

pICLC-treated lung sections (Supplemental Figure 2 left panels).

To confirm the increased cellularity in pICLC-dosed mice,

neutrophils and monocytic cells were enumerated by flow

cytometry showing a recruitment kinetic in pICLC-dosed

lungs similar to Tfn (Supplemental Figure 3). While these cells

are indicative of inflammatory levels, these recruited cells were

previously shown to be dispensable in this model (15). Overall,

pICLC induced some alveolar wall thickening and leukocyte

recruitment but without more drastic pathology seen in other

models of alveolar damage (24).
pICLC-induces robust
pro-inflammatory signals

Tissue damage and inflammation are the best characterized

drivers of vascular permeability (19, 24) however, evidence of

tissue damage was absent in pICLC-dosed lungs suggesting pro-

inflammatory mediators may underlie pICLC-induced vascular

permeability. Poly(I:C) and pICLC are routinely used to induce

t1IFN but inflammatory cascade induction by poly(I:C) is

substantially less characterized and probably context

dependent. Thus, a variety of cytokines and chemokines were

measured in pICLC and PBS dosed mice. As expected, pICLC

induced robust IFN-b/a responses (Figures 2A, B and

Supplemental Figure 4) which were detectable above

background after 2 hours, peaked after one day, then returned

to baseline after seven days. CXCL10 is a t1IFN-induced

chemokine (27) and its expression was also quite consistent
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FIGURE 1

Locally dosing mice with pICLC results in accumulation of serum proteins in the lung airspace. C57BL6 mice were dosed with 5 µg of pICLC by
intrapharyngeal aspiration either once at day 0 (black closed circles with lines) or repeatedly (grey open boxes; ongoing dosing) on days 0, 3,
and 6. (A–F) BAL samples were acquired at indicated time points. See Supplemental Figures 1A, B for dosing and sampling schematic. Analytes
from BAL samples were measured using ELISA (A–E) or total protein assay (F). N = 10-14 mice per timepoint per group combined from 3
independent experiments. Statistics analyzed by one way Brown-Forsythe ANOVA and subsequent multiple comparison corrected t-tests
compared to PBS control. (G) Paired serum and BAL samples were acquired 3 days following pICLC or PBS dosing and analyzed by ELISA. BAL
analyte concentrations were divided by serum concentrations from the same animals. N = 9-10 mice per group combined from 2 independent
experiments. (H, I) Mice were dosed once with pICLC or PBS as in A-F then intravenously injected with 4 µg FITC-dextran (Fdx). Fdx levels in
paired BAL and serum samples were measured 3 hours after Fdx injection. N = 8-10 mice per timepoint per group combined from 2
independent experiments. **** indicates p < 0.0001, *** indicates p < 0.0002, ** indicates p < 0.0021, * indicates p < 0.0332, nsd indicates not
statistically different.

Davis et al. 10.3389/fimmu.2022.931194
with t1IFN (Figures 2A, E). In contrast, IL-28 (IFN-l) was barely
observed (Figure 2A and Supplemental Figure 4).

PICLC also induced a robust pro-inflammatory response. The

IL-1 family cytokines IL-1b, IL-1a, IL-18, and IL-33 were all

induced by pICLC. Of this family, IL-1b and IL-18 were

particularly induced (Figures 2A, C and Supplemental Figure 4).

IL-6 (Figures 2A,D), TNF-a (Figure 2Aand Supplemental Figure 4)

and inflammatory responsive chemokines were also highly induced

(Figures 2A, F, G and Supplemental Figure 4). In general, these

cytokines showed similar kinetics to t1IFN. Thus, pICLC induces a

substantial pro-inflammatory response in addition to the well

characterized t1IFN response.

Taken together these data demonstrate that pICLC induces

inflammatory mediators, alterations in vascular barrier function,

and histological evidence of alveolar wall thickening which meet
Frontiers in Immunology 05
the guidelines for vascular permeability set by the ATS (24). We

next considered the physiological relevance of this conclusion

and the pathways involved.
MDA5 signaling induces t1IFN,
inflammatory mediators, and
vascular permeability

Previous data showed that pICLC-mediated protection of

mice from cryptococci depended entirely on MDA5 (15, 16),

however MDA5 signaling has not been shown to mediate

vascular permeability. To evaluate MDA5’s role in vascular

permeability and cytokine induction, we dosed MDA5-

deficient (MDA5 KO) and control mice with pICLC and
frontiersin.org
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measured cytokines, chemokines, and vascular permeability

markers. IFN-a/b and the IFN responsive chemokine,

CXCL10, were all highly induced by pICLC in wildtype mice

but not MDA5 KO mice (Figures 3A, B, E and Supplemental

Figure 5) confirming that t1IFN expression is MDA5

dependent. Notably, pro-inflammatory cytokine and

chemokine expression, including IL-1 and IL-6, was also

dependent on MDA5 (Figures 3C–G and Supplemental

Figure 5). Tfn, Alb, and total protein in BAL were elevated in

pICLC-dosed wildtype animals while they were at baseline in

pICLC-dosed MDA5 KO mice (Figures 3H–J). Together these

data show that t1IFN, pro-inflammatory mediators, and lung

vascular permeability were entirely dependent on MDA5,
Frontiers in Immunology 06
demonstrating a novel role for MDA5 signaling in lung

vascular permeability.
pICLC- and MDA5-induced vascular
permeability and pro-inflammatory
mediators depend on t1IFN

While several inflammatory cytokine pathways have been

shown to induce lung vascular permeability, t1IFN has not been

shown to impact this process. Thus, we tested pICLC-responses

in mice genetically deficient in the common t1IFN receptor

(IFNar1 KO). IFNar1 KO and wildtype control mice were
E

F

A B

C

D

G

FIGURE 2

pICLC induces type 1 IFN and inflammatory cytokines and chemokines. Mice were dosed with pICLC or control as in Figures 1A–F and cytokine
and chemokine levels were measured in BAL samples by bead-based assay. (A) Fold change values are displayed using a heatmap. (B–G) data
from select analytes are graphed as in (A-F). N = 10 mice per timepoint per group combined from 2 independent experiments. Statistics
analyzed by one way Brown-Forsythe ANOVA and subsequent multiple comparison corrected t-tests compared to PBS control. **** indicates
p < 0.0001, *** indicates p < 0.0002, ** indicates p < 0.0021, * indicates p < 0.0332, nsd indicates not statistically different.
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pICLC dosed and cytokines and lung vascular permeability

markers measured. IFN-a/b and CXCL10 expression were

markedly reduced in pICLC-dosed IFNar1 KO compared to

control mice (Figures 4A, B and Supplemental Figure 6),

consistent with previous reports that t1IFN exhibits positive

feedback by inducing its own expression (28–30). Expression of

IL-1b, IL-6, CCL2 and other pro-inflammatory factors was

significantly reduced in pICLC-dosed IFNar1 KO mice

compared to control mice (Figures 4A–G and Supplemental
Frontiers in Immunology 07
Figure 6). Together, these data indicate that the pICLC-MDA5

induction of IL-1 and other pro-inflammatory factors was

largely dependent on t1IFN signaling.

While Tfn, Alb, and total protein levels were strongly

elevated in pICLC-dosed wildtype mice, all lung vascular

permeability markers were at baseline in IFNar1 KO mice

dosed with pICLC (Figures 4H–J) or Cg infected IFNar1 KO

mice repeatedly dosed with pICLC (Figure 6A). Thus, pICLC-

induced vascular permeability is entirely t1IFN dependent.
E

F

A B

C

D

H

I

J

G

FIGURE 3

pICLC-induced cytokine and permeability responses are MDA5 dependent. MDA5 KO (KO) and C57BL6 control mice (wt) were dosed with PBS
(black symbols) or pICLC (green) and BAL samples acquired 1 day (A–G) or 3 days (H-J) later. See Supplemental Figure 1C for dosing and
sampling schematic. (A–G) Cytokine and chemokine levels measured in BAL samples by bead-based assay as in Figure 2 and displayed by
heatmap (A) or graphs of selected analytes (B–G). Markers of vascular permeability were measured by ELISA (H, I) or BCA assay (J) as in
Figure 1. For (A–J), N = 10-12 mice per group combined from 2 independent experiments. Statistics analyzed by two-way ANOVA and
subsequent Tukey multiple comparison tests. **** indicates p < 0.0001, *** indicates p < 0.0002, nsd indicates not statistically different.
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The pro-inflammatory pICLC-MDA5
response is downstream of t1IFN

To probe the role of IL-1 signaling in these processes, we

utilized mice deficient in the common IL-1 receptor (IL-1r1

KO). Interestingly, the cytokine response to pICLC was only

slightly reduced in IL-1r1 KO mice. Most measured pro-

inflammatory cytokines and chemokines, including IL-1 and

IL-6, showed only minor reductions in pICLC-dosed IL-1r1 KO

mice compared to wildtype mice (Figures 4A–F). In contrast, the

neutrophil attractant chemokines CXCL1 and CXCL2 were
Frontiers in Immunology 08
eliminated or significantly reduced respectively, in pICLC-

dosed IL-1r1 KO mice compared to similarly dosed wildtype

(Figures 4A, G and Supplemental Figure 6). IFN-a, IFN-b, and
CXCL10 expression were modestly reduced in pICLC-dosed IL-

1r1 KO mice (Figures 4A, B, E and Supplemental Figure 6)

suggesting t1IFN is only minorly dependent on IL-1 signaling.

Overall, the t1IFN and pro-inflammatory pICLC responses were

only slightly dependent on IL-1 signaling. Since IL-1 was highly

dependent on IFNar1 but t1IFN was largely not dependent on

IL-1r1, these data indicate that IL-1 and other pro-inflammatory

factors are downstream of t1IFN in this model.
E

F

A B

C

D

H

I
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G

FIGURE 4

pICLC-induced vascular permeability depends on both t1IFN and IL-1, while the pICLC-induced cytokine response depends mostly on t1IFN.
IFNar1 KO, IL-1r1 KO, and C57BL6 control mice (wt) were dosed with PBS (black symbols) or pICLC (green) and BAL samples acquired 1 day
(A–G) or 3 days (H–J) later. See Supplemental Figure 1C for dosing and sampling schematic. Cytokine and vascular permeability analytes
measured and displayed as in previous experiments. For (A–J), N = 10-12 mice per group combined from 2 independent experiments. Statistics
analyzed by two-way ANOVA and subsequent Tukey multiple comparison tests. **** indicates p < 0.0001, *** indicates p < 0.0002, nsd
indicates not statistically different.
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pICLC induced vascular permeability
depends on IL-1 and IL-6 signaling

IL-1, one of the pICLC-induced proinflammatory mediators,

has a relatively established role in inducing vascular permeability

(19). Thus, we hypothesized that IL-1 induced by pICLC was

mediating the observed lung vascular permeability. Tfn, Alb and

total protein were significantly reduced in BALs from IL-1r1 KO

mice compared to wildtype in single pICLC-dosed mice

(Figures 4H-J) and in Cg infected IL-1r1 KO mice repeatedly

pICLC dosed mice (Figure 6B). Thus, pICLC-induced vascular

permeability is strongly dependent on IL-1 signaling.
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IL-6 has also been shown to mediate lung vascular

permeability in some viral models (31, 32) and was also

induced by pICLC and t1IFN (Figure 5D). Thus, we

hypothesized that IL-6 may contribute to pICLC-induced lung

vascular permeability. Cg infected pICLC-dosed IL-6-deficent

mice showed marked reduction in BAL Tfn and Alb compared

to wildtype mice (Figure 6C). Thus, pICLC-induced lung

vascular permeability depends on both IL-1 and IL-6 while the

expression of these cytokines depends on t1IFN signaling. Taken

together these data suggest that pICLC, MDA5, and t1IFN

induce a multifactor pro-inflammatory response which

stimulates lung vascular permeability.
E F
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C D

G

FIGURE 5

t1IFN induces expression of MDA5 and ISG15 as well as downstream genes, including IL-1. IFNar1 KO and C57BL6 control mice (wt) were dosed
with PBS (time point 0) or pICLC and lung mRNA (A-F) or lung homogenate (G) harvested 1 or 3 days later. (A-F) mRNA levels for indicated
genes were measured by qPCR. (G) IL-1Ra levels were measured by ELISA. N = 8 mice per group combined from 2 independent experiments.
Statistics analyzed by two way ANOVA and subsequent Tukey multiple comparison tests. **** indicates p < 0.0001, *** indicates p < 0.0002,
* indicates p < 0.0332, nsd indicates not statistically different.
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T1IFN induces pro-inflammatory
response by inducing MDA5 expression
positive feedback

Figure 4 shows that t1IFN is upstream of IL-1 and IL-6

following pICLC-MDA5 stimulation. However other data show

that t1IFN and IL-1 have a complicated signaling interplay and, in

some contexts, a cross inhibitory relationship (33–38). Also,

t1IFN stimulates positive feedback mechanisms which

potentiate its own expression [Figures 4A, B and (28–30)]. We

hypothesized that t1IFN induces IL-1 and other pro-

inflammatory factors by enhancing the MDA5 signaling

pathway forming a positive feedback loop. Thus, lung RNA

expression was measured in IFNar1 KO and wildtype mice

dosed with pICLC or PBS. Consistent with protein data

(Figures 4B and C), IFNb and IL1b gene expression was

pICLC-induced and IFNar1 dependent (Figures 5A, B). MDA5

(Figure 5C) and ISG15 (Figure 5D) also showed IFNar1-

dependent pICLC-mediated induction. ISG15 has been shown

to increase the signaling efficiency and flux through the MDA5

pathway (28). These data support that pICLC-induced t1IFN
Frontiers in Immunology 10
induces factors enhancing MDA5 signaling. Consistent with

previous findings by other groups (36, 37, 39), pICLC mediated

IFNar1-dependent expression of IL-10 mRNA (Figure 5E),

Ch25h mRNA (Figure 5F), and IL-1Ra protein (Figure 5G).
pICLC-induced protection of mice from
Cg depends on IFNar1, IL-1, and IL-6

Our previous work demonstrated that pICLC-mediated

protection from Cg was mediated by iron scarcity due to a

pICLC-induced influx of iron-binding proteins (15). The data

above demonstrate that lung vascular permeability induced by

pICLC-, MDA5-, and t1IFN-dependent IL-1 and IL-6 delivers

serum iron proteins to lung airspaces. This predicts that pICLC

protection from Cg also depends on these cytokines. To probe the

role of these cytokines in the pICLC-induced protection from Cg,

genetically deficient or wildtype animals were Cg infected and

treated with pICLC or PBS. Consistent with previous data, IFNar1

KO mice dosed with pICLC lose substantial Cg inhibition

(Figure 6D). Similarly, IL-1r1 KO mice and IL-6 KO mice dosed
E

F

A

B

C

D G

FIGURE 6

pICLC-mediated protection from opportunistic C. gattii infection depends on t1IFN, IL-1, and IL-6. IFNar1 KO, IL-1r1 KO, IL-6 KO, IFNar1 and IL-
1r1 double KO, and C57BL6 control mice (wt) were infected with Cryptococcus gattii (5000 cells) and dosed with PBS (blue symbols) or pICLC
(green). 7 days post infection BAL samples were analyzed by ELISA for markers of vascular permeability (A–C) and lung homogenates were
analyzed for fungal load (D–G). See Supplemental Figure 1D for dosing and sampling schematic. N = 8-10 mice per group combined from 2
independent experiments. Statistics analyzed by two-way ANOVA and subsequent Tukey multiple comparison tests. **** indicates p < 0.0001,
*** indicates p < 0.0002, ** indicates p < 0.0021, * indicates p < 0.0332, nsd indicates not statistically different.
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with pICLC also lose substantial Cg inhibition (Figures 6E, F). Data

in Figure 4 suggest that t1IFN, IL-1 and IL-6 are all functioning in

the same pathway in the induction of vascular permeability. Yet,

since fungal loads were similar in the pICLC-dosed IFNar1 KO, IL-

1r1 KO, and IL-6 KO mice, it was unclear if these cytokines were

operating in the same pathway in the inhibition of Cg. To test this,

mice deficient in both IL-1r1 and IFNar1were infected with Cg and

dosed with pICLC. These IL-1r1/IFNar1 double deficient mice

showed an identical level of pICLC-mediated Cg inhibition loss

(Figure 6G) compared to either IFNar1 KO or IL-1r1 KO strains

(Figures 6D, E). While some vascular permeability independent

inhibition of Cg remains in IFNar1 KO, IL-1r1 KO, and IL-6 KO

mice, collectively these data show that substantial inhibition of Cg

requires t1IFN, IL-1, and IL-6 and that t1IFN and IL-1 act in the

same pathway to inhibit Cg infection.
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Vascular permeability inhibits Cg by
iron restriction

To probe if Cg inhibition is directly mediated by vascular

permeability, C48/80 was utilized to induce lung vascular

permeability by a distinct mechanism of action from pICLC (25,

26).Tocompare theseverityof lungvascularpermeability inducedby

C48/80 to that of pICLC, BAL lung vascular permeability markers

were measured from C48/80 or pICLC dosed mice. Samples from

mice given C48/80 showed dose-dependent levels of Tfn, Alb, and

total protein confirming that C48/80 induces lung vascular

permeability (Figures 7A–C). Notably the middle dose of C48/80

(25 µg) induced very similar levels of lung vascular permeability

markers as pICLC treatment. C48/80 also showed a dose dependent

inhibitionofCgwithvery similar fungal loads inpICLCandthe25µg
E

A
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D

FIGURE 7

Vascular permeability induced by pICLC or compound 48/80 inhibits C. gattii in mice. (A-C) C57BL6 mice were dosed with PBS, 5 µg of pICLC,
or indicated doses of compound 48/80. BAL samples were acquired after 3 days and vascular permeability marker levels measured by ELISA
(A, B) or BCA (C). See Supplemental Figure 1C for dosing and sampling schematic. N = 10-11 mice per group combined from 2 independent
experiments. (D) C57BL6 mice were infected with Cg and dosed with PBS, 5 µg of pICLC, or indicated doses of compound 48/80. Lung fungal
burdens were measured from lung homogenates after 7 days; see Supplemental Figure 1D. N = 8-12 mice per group combined from 3
independent experiments. For (A-D), Statistics analyzed by one way Brown-Forsythe ANOVA and subsequent multiple comparison corrected t-
tests compared to PBS control. (E) C57BL6 mice were dosed with PBS (Blue) or 50 µg compound 48/80 (orange) with or without additional
6.25 µg iron chloride the day before infection with Cg (6.25 µg iron chloride was included again in indicated groups). Compound 48/80 and
iron chloride dosing was repeated on day 2 and lung fungal burdens were measured from lung homogenates 3 days after Cg infection. See
Supplemental Figure 1E for dosing and sampling schematic. Statistics analyzed by two-way ANOVA and subsequent Tukey multiple comparison
tests. **** indicates p < 0.0001, *** indicates p < 0.0002, ** indicates p < 0.0021, * indicates p < 0.0332, nsd indicates not statistically different.
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c48/80 dose (Figure 7D). These data demonstrate a clear correlation

between the extent of induced lung vascular permeability and Cg

inhibition. Similar to pICLC(15),C48/80-inducedCg inhibitionwas

also iron restriction dependent as addition of exogenous iron

reversed Cg protection (Figure 7E). Thus, induced lung vascular

permeability inhibits Cg infection.
Discussion

We demonstrate that pICLC signaling throughMDA5 induces

both t1IFN and inflammatory factors including IL-1 and IL-6 and

all these pathways are critical for the downstream induction of lung

vascular permeability. While pICLC-induced lung vascular leakage

was robustly measurable, this observed pICLC-induced

permeability was moderate and did not seem associated with

adverse pathology. This moderate-level vascular permeability is

biologically significant as leakage delivers antimicrobial serum

factors to lung airspaces which effectively inhibit Cg.

While IL-1 and IL-6 have recognized roles in vascular

permeability (19, 31, 32), t1IFN has not been shown to be

similarly involved. Our data clearly demonstrate that pICLC-

induced lung vascular permeability entirely depends on t1IFN

signaling (Figure 4). While poly(I:C) and MDA5 have previously

been shown to induce some pro-inflammatory mediators (40), our

data demonstrate a critical role for t1IFN in the induction of a broad

pro-inflammatory response to double stranded RNA, including IL-

1 and IL-6 (Figures 4, 5). Althoughwe acknowledge that these IL-10

protein induction data are less robust than those published

previously by other groups, we demonstrate t1IFN-mediated

expression of IL-1-inhibitory factors (IL-10, IL-1ra, Ch25h), in

agreement with other data (34, 35, 39), suggesting that t1IFN both

potentiates and suppresses IL-1 signaling in this model.

This leakage induced iron nutritional immunity is probably

most effective against non-professional pathogens. Despite some

early controversy, Cg is probably a non-professional opportunistic

pathogen since many Cg-infected patients initially described as

immunocompetent have subsequently demonstrated subtle

immune deficiencies such as expression of cytokine neutralizing

autoantibodies (12). These and previous data (15) support that Cg

harvests Tfn iron inefficiently, further underlining Cg as an

opportunistic pathogen. Thus, permeability-delivered iron

binding proteins are restrictive to Cg [(15) and Figures 6, 7].

Because vascular permeability is entirely dependent on IFNar1

(Figures 4, 6) but pICLC-mediated protection from Cg was mostly

but not entirely dependent on IFNar1 (Figure 6) these data also

demonstrate the existence of vascular permeability independent

mechanisms of pICLC-mediated resistance.

Many fungal lung pathogens are considered opportunistic and

share iron acquisition strategies, and we and others have

demonstrated pICLC-induced protection against several fungal

species (16, 41). Thus, we speculate that MDA5-induced serum

factor leakage may protect against other microbes, especially fungal
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opportunistic pathogens while we acknowledge other pICLC-

responsive immune mechanisms are certainly involved (16, 41).

For example, while we surmise that permeability-mediated iron

restriction has some impact on C. neoformans infection, cellular

immunity is muchmore important in this model than in Cg. Utility

of serum leakage against secondary infection may not be limited to

iron nutritional immunity as other immune factors were delivered,

for example complement c3 (Figure 1) which has well-established

anti-microbial functions (42). Inflammation, pICLC, and t1IFN all

result in the recruitment of leukocytes (15, 16, 18). While these cells

are likely to be important for combating other infections, pICLC-

mediated protection from Cg infection has been shown to be

independent of these recruited cells (15). Thus, when combined

with the absence of overt host pathology these functional data

support that MDA5-induction of limited vascular permeability is

host beneficial suggesting a possible explanation for the evolutionary

conservation of inflammatory induction of vascular leakage.

In contrast, serious infections and other damage can induce an

uncontrolled and drastic level of vascular permeability resulting in a

deadly cascade of pathology (20, 21, 43, 44). Comparing the low-

level vascular permeability induced by pICLC-MDA5 to the

extreme edema observed during some viral infections suggests

that additional factors beyond MDA5 are involved in extreme

lung vascular permeability. Additional pathogen PAMPS or

DAMPS from host damage may modify or potentiate the

induction of the pro-inflammatory signals or perturb the

resolution of inflammation. Similarly, the induction of additional

cytokines or chemokines beyond those studied heremay contribute

to the exacerbation of vascular permeability observed in some

settings. Unlike some other fungal infections (45), Cg itself induces

little inflammation and a muted cytokine response (46–48) and Cg

infection does not alter vascular permeability levels (15).

Additionally, many pathogens associated with ARDS inhibit

t1IFN- and/or MDA5-signaling with specific virulence factors

(28, 49) which could also contribute to loss of host control over

these pathways. Prolonged or uncontrolled vascular permeability

can also contribute to pathogenic fibrotic responses (50). We hope

future studies will further illuminate the signaling perturbations

which result in uncontrolled permeability and edema.

These data suggest that t1IFN and MDA5 pathway

modulation may therapeutically benefit some ARDS cases.

Since induced vascular permeability in this model was entirely

t1IFN dependent (Figure 5) inhibiting t1IFN may be of

therapeutic benefit in some ARDS patients although this may

also be deleterious for anti-viral control. Additionally, many

anti-inflammatory-type signals, including those that oppose the

IL-1 pathway, are regulated by t1IFN [Figure 7 and (34, 35, 39)]

so t1IFN inhibition may detrimentally affect resolution

pathways. Alternatively, these data support efforts to block

proinflammatory pathways, such as IL-1 and IL-6, for

controlling ARDS which have met with some success in

COVID-19 (51, 52). Finally, nucleic acid sensing by MDA5

was sufficient to induce lung vascular permeability. Thus, the
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MDA5 and RIG-I common signaling pathway may also be an

interesting target for therapeutic manipulation.

Overall, the data presented here demonstrate that MDA5-

signaling induces both t1IFN and inflammatory cytokines.

T1IFN expression enhances the pro-inflammatory cytokine

signals by inducing positive feedback within the MDA5

pathway. This enhanced IL-1 and IL-6 expression mediates

limited lung vascular permeability which delivers serum

proteins to the lung airspace. Many of these serum proteins

have innate immune function and protect the host lungs from

microbial infection. Taken together, MDA5 sensing of viral RNA

induces controlled vascular leakage which enhances innate

immune defenses against opportunistic infection. These data

demonstrate an evolutionary basis for the selection of immune

control of vascular leakage and elucidate vascular permeability-

regulating pathways which may be of therapeutic interest.
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