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Potential association factors for
developing effective peptide-
based cancer vaccines
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Zhenkun Zhuang4, Geng Liu4, Wei Hong1,2,3, Bo Li4,
Xiuqing Zhang4 and Cheng-Chi Chao5*

1Department of Medicine, Baylor College of Medicine, Houston TX, United States, 2Dan L Duncan
Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States, 3Institute
for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States,
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Biomap, Inc, San Francisco, CA, United States
Peptide-based cancer vaccines have been shown to boost immune systems to

kill tumor cells in cancer patients. However, designing an effective T cell

epitope peptide-based cancer vaccine still remains a challenge and is a

major hurdle for the application of cancer vaccines. In this study, we

constructed for the first time a library of peptide-based cancer vaccines and

their clinical attributes, named CancerVaccine (https://peptidecancervaccine.

weebly.com/). To investigate the association factors that influence the

effectiveness of cancer vaccines, these peptide-based cancer vaccines were

classified into high (HCR) and low (LCR) clinical responses based on their

clinical efficacy. Our study highlights that modified peptides derived from

artificially modified proteins are suitable as cancer vaccines, especially for

melanoma. It may be possible to advance cancer vaccines by screening for

HLA class II affinity peptides may be an effective therapeutic strategy. In

addition, the treatment regimen has the potential to influence the clinical

response of a cancer vaccine, and Montanide ISA-51 might be an effective

adjuvant. Finally, we constructed a high sensitivity and specificity machine

learning model to assist in designing peptide-based cancer vaccines capable of

providing high clinical responses. Together, our findings illustrate that a high

clinical response following peptide-based cancer vaccination is correlated with

the right type of peptide, the appropriate adjuvant, and amatched HLA allele, as

well as an appropriate treatment regimen. This study would allow for enhanced

development of cancer vaccines.
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Introduction

Cancer is a heterogeneousdiseasewithmixed clinical outcomes

(1). Conventional cancer treatments tend to non-specifically kill

tumor cells. Some of these tumor cells survive due to resistance to

therapy and drug toxicity, eventually leading to tumor relapse and

metastasis (2, 3). Cancer immunotherapy is a treatment strategy

that uses a patient’s own immune system tofight the cancerous cells

(4, 5). Immunotherapy has become a promising alternative cancer

treatment after surgery, radiotherapy, and chemotherapy in recent

years because of its mild side effects and significant therapeutic

benefits (6–8). T cell epitope peptide-based cancer vaccine is one of

the representative strategies of cancer immunotherapy, relying on

shortpeptide fragments toengineer the inductionofhighly targeted

immune responses (9–11).

Previous studies (12–17) have demonstrated the effectiveness

of peptide-based cancer vaccines in treating several common types

of cancer, such as breast cancer, melanoma, colorectal and lung

cancer. This strategy exploits the fact that the surfaces of cancer

cells have various peptide epitopes (i.e., peptides of usually 8-17

residues in length), which bind to major histocompatibility

complex (MHC) proteins. T cells can attack these cancer cells

after recognizing the peptide/MHC complex (18). T cells aimed to

induce immune recognition of tumor cells are then able to

eradicate them by generating a sustained and potent anti-tumor

immune response. Therefore, a key determinant for an anti-tumor

immune response to lead to the effective killing of cancer cells is

the selection of immunogenic peptide epitopes as the target (19).

Many peptide epitopes have been identified and molecularly

characterized in experiments (12–17). While there are many

options in selecting immunogenic antigens, it is not clear which

selected epitopes can induce the dominant immune system

mediated by T cells. Many clinical studies in cancer vaccines

have been initiated to assess the therapeutic potential of active

immunization or vaccination with peptide epitopes in cancer

patients. However, it is still unclear what the ideal

characteristics of selected peptide epitopes should be and which

could induce stronger anti-tumor responses. Therefore, it remains

highly challenging to design an effective cancer vaccine that can

achieve a meaningful clinical benefit in patients.

There have been many breakthroughs in prior studies that

investigated the optimal conditions for designing a peptide-

based cancer vaccine (20–25). Thomas et al, Zhang et al, and

Liu et al found differences in the therapeutic efficacy of peptide-

based cancer vaccines prepared from different sources of

peptides (26–28). Furthermore, patients with certain HLA

alleles might be more sensitive to respond to cancer vaccines

(29, 30). The same cancer vaccine with different adjuvants might

also have an impact on the outcome of treatment (28, 31). In

addition, different treatment strategies could also affect the

efficacy and side effects of cancer vaccines, such as the dose of

vaccine used, injection interval, number of injections, and
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injection methods (28, 32). However, due to the limited

number of clinical trials available, combined with the

difference in cancer types and patient conditions, it is difficult

to improve a cancer vaccine design by directly referring to the

design of other cancer vaccines. Machine learning (ML) options

such as Random forest (RF) (33)could improve cancer vaccine

design by utilizing large data repositories to identify novel

features and more complex interactions among these features.

In this study, a library of peptide-based cancer vaccines used

in clinical studies from public and private sources was established

from multiple sources, such as PubMed, ClinicalTrials.gov, and

Web of Science, using databases up to January 1, 2022. The

statistical analysis of types of peptides, adjuvants, treatment

regimen, human leukocyte antigen (HLA) alleles of peptides,

and other features in vaccine therapy was obtained from the

results in high clinical response (HCR) and low clinical response

(LCR) in the database to find the associations which influence the

treatment effect of cancer immunotherapy. Finally, we built a

random forest model to help distinguish which kinds of cancer

vaccines in patients are most likely to achieve a high

clinical response.
Material and methods

Data utilized in this study screening
and extraction

We screen and extracted all the peptide-based cancer vaccine

relevant studies, retrieved from the PubMed, ClinicalTrials.gov,

and Web of Science, using databases up to January 1, 2022. All

studies were browsed, searched, prioritized, and filtered by the

investigators based on the keywords: peptide*, vaccine*, cancer/

tumor*, human, HLA, clinical. These extracted studies were then

reviewed according to the inclusion and exclusion criteria. In

cases in which the results obtained were different, the case was

discussed further to obtain consensus. Further details are

provided in the following sections. Finally, A total of 705

peptides resulting from 152 clinical studies containing peptide-

based cancer vaccine features and clinical treatment information

were registered in our library, which has been posted to our web-

accessible library, CancerVaccine (https://peptidecancervaccine.

weebly.com/).
Inclusion criteria

The inclusion criteria were as follows: 1. The study focused

on human cancer research. 2. The study used the peptide as the

vaccine to treat cancer patients. 3. They are not review reports;

there are cancer detail descriptions and treatment information

about the clinical trials.
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Exclusion criteria

The exclusion criteria were as follows: 1. The peptide-based

cancer vaccine was not associated with humans. 2. There was no

associated peptide information. 3. There was no treatment

information for the peptide-based cancer vaccine.
Feature selection procedure

Exploratory data analysis: First, we checked the types of

variables. There were no missing values in the data (Figure S3A).

Next, we created a bar graph for the categorical variables; if the

levels of all categorical variables looked correct, we kept the

original levels for these variables (Figure S3B). Finally, four

features were recommended for the model: injection interval

and injection time, adjuvants, and HLA alleles; the blue dot

represents the optimal solution, as shown in Figure S3C.
Classifier

We use a random forest model (random Forest package in R)

(34) to construct a feature-based classifier. The prediction

performance (estimated by 10-fold cross-validation) is best when

the top4 featureswith themostdifferentiationare included (injection

interval, injection times, adjuvant types, andHLA alleles), indicating

that these 4 features have the greatest differentiation power. Using

these 4 features as predictors, the area under the receiver operating

characteristic (ROC) curve (AUC) was 0.97. The ROC curves were

plotted using the pROC R package.
The area under the precision-recall curve

For computing the AUPRC, we used the function

metrics.precision_recall_curve and metrics.auc from the R package,

ROCR 1.0-11 version (35). We first randomly divided the library

cohort with known high or low clinical response into a training set

(50% randomly selected samples) and a test set (50% randomly

selected samples) basedon cancer type.Then, themerged training set

wasusedas the trainingset and themerged test setwasusedas the test

set. Finally,we logit-transformedAUPRCvaluesbefore testing (using

two-tailedWelch’s t-test).We carried out 1,000 replications of 5-fold

cross-validation; within each replication, across the 5-folds, we

obtained prediction scores for each cancer type from the fold in

which the cancer type was in the test set, enabling us to compute an

overall AUPRC within each replication.
Statistical analysis

The R statistical package was used for all data processing and

statistical analysis (R package: stats v3.6.2). All details of the
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statistical tests are specified in the associated text or figure

legends. For the statistical analyses, P-values were calculated

by using the “Wilcox_test” function from the R package: stats

v3.6.2, which applies the two-sided Wilcoxon rank-sum test and

corrected multiple testing using the Holm–Bonferroni method.

A statistically significant difference was assumed when P ≤ 0.05.
Results

Data filtering and features of selected trials

To investigatewhat classes of peptide-based cancer vaccine can

help achieve satisfactory results from clinical treatment, we

reviewed a total of 302 relevant studies, retrieved from the

PubMed, ClinicalTrials.gov, and Web of Science, using databases

up to January 1, 2022. PubMed.gov is a free search engine that

accesses the MEDLINE database on life sciences and biomedical

topics primarily at the U.S. National Institutes of Health’s National

Library of Medicine. The database of ClinicalTrials.gov is a service

of the U.S. National Institute of Health. After removing duplicates,

we screened 206 potentially relevant articles by scanning the titles

and abstracts.We reviewed the full text and screened the candidate

studies according to the inclusion criteria, and 43 studies were

excluded. Of the remaining 163 studies, 11 were excluded due to

describing the same repeated clinical trials. A total of 705 peptides

resulting from152 clinical studies containing peptide-based cancer

vaccine features and clinical treatment informationwere registered

in our library (12–14, 36–163). Details of the study identification

process can be found in Figure 1A. The final study population

included 6,713 participants. All studies were retrospective studies

published between January 1, 1997 and January 1, 2022, and

involved various tumor types. The details of the library in this

study have been posted to our web-accessible library,

CancerVaccine (https://peptidecancervaccine.weebly.com/).

In order to analyze this library in a comprehensive and in-

depth manner, we mapped the types of cancer and peptide,

adjuvant, HLA allele, and treatment regimen (injection interval

and injection times) landscapes of the library, as shown in

Figures 1B-G, respectively. We found that melanoma, colorectal

cancer, and breast cancer are the most common cancer types

investigated in cancer vaccine therapy (Figure 1B). The peptides

were divided into five categories based on the origin of peptides:

tumor expressed peptides, tumor overexpressed peptides, fusion

peptides, modified peptides, and single-nucleotide variant (SNV)

peptides. For tumor expressed peptides, the genes in which the

peptides were co-expressed are found in both cancer and normal

tissues (144, 164–166). For tumor overexpressed peptides, the

genes in which the peptides were located are found overexpressed

in the tumor tissue only (129, 167, 168). For fusion peptides, the

peptides were derived from gene fusion (57, 122, 130, 136, 155).

For modified peptides, the amino acids (AA) had been artificially

modified (15, 65, 67, 89, 99, 107, 110, 118, 134, 138, 147, 169–171).
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The SNV derived peptides were neoantigen, or a new AA

sequence that forms on cancer cells when somatic mutations

occur in tumor DNA sequences (40, 44, 58, 62, 67, 70, 80, 83, 84,

106, 114, 117, 123, 131, 143, 152, 156, 159, 161, 163, 165).

We found that more than half the peptides (51.4%) used in

cancer vaccine preparation were overexpressed in the targeted

tumor cells (Figure 1C). We also found that Montanide ISA-51

was the most widely used adjuvant in cancer vaccines. IL-2 was

the most widely used cytokine as a vaccine adjuvant in cancer

vaccines (Figure 1D). Interestingly, most clinical phase peptides

are focused on the HLA class I alleles, especially the A02 and

A24, as shown in Figure 1E. In addition, we noted that more

than half of peptide-based cancer vaccines were injected weekly

(53.9%, Figure 1F) and more than half of the patients had greater

than four vaccine injections (Figure 1G).
The prognostic evaluation of anti-tumor
effect in clinical trials

After building this library, we wanted to further explore the

causes which influence the effectiveness of peptide-based cancer

vaccine results. We divided these peptide-based cancer vaccine
Frontiers in Immunology 04
results into high clinical response (HCR) and low clinical

response (LCR) results based on their clinical efficacy and

safety (172).

The specific classification criteria and basis of a high clinical

response were presented in the form of an evolutionary tree, as

shown in Figure 2. The prerequisite criteria was whether there

have been any vaccine-related deaths; if there were vaccine-related

deaths, it was excluded from this study. A total of 78 peptides

which involved 673 patients were excluded from this study. We

next examined whether patients in the best objective response

(complete or partial response, according to modified World

Health Organization criteria) had been reported (172–174). Due

to the complex tumor microenvironment and vaccine technology

limitations, it is difficult to achieve a complete response with

vaccine therapy; therefore, the best objective response indicates

that the clinical response of the vaccine therapy is high (175). We

also looked at cases where there were no best objective response

patients, investigating whether more than 50% of patients

achieved stable disease (SD) or progression-free survival (PFS) if

the previous conditions were not met. If more than half of the

patients achieved SD or PFS, we took this as an indication that the

cancer vaccine was effective (174, 176). Finally, we compared

whether the overall survival time was significantly longer in the
A B C

D E

F G

FIGURE 1

Data filtering summary landscape of the library, CancerVaccine (https://peptidecancervaccine.weebly.com/). (A) Data filtering process. (B) The
landscape of cancer types. (C) The landscape of peptide types. (D) The landscape of adjuvants. (E) The landscape of HLA alleles. (F) The
landscape of treatment regimen (injection interval). (G) The landscape of treatment regimen (injection times).
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vaccine group than in the control group; a significantly longer

overall survival time in the vaccine group could also indicate that

the vaccine worked well (177, 178). If none of these progressive

conditions were met, then the clinical result was classified as a low

clinical response result. The clinical efficacy evaluation was

performed using the immune-related response criteria (irRC)

(179) and response evaluation criteria in solid tumors (RECIST

1.1) standard criteria (180). Toxicities were reported using the

World Health Organization grading system (181). In total, 273

high clinical response results (3,233 patients involved) and 354

low clinical response results (2,807 patients involved) were

included in this study (Figure 2).

To further investigate which factors influence the efficacy of

cancer vaccines, we specifically explored the types of peptides,

HLA alleles, adjuvants, and treatment regimens (injection interval
Frontiers in Immunology 05
and injection times) in the high and low clinical response groups.

Further details are provided in the following sections.
Modified and tumor overexpressed
peptides could be suitably selected for
cancer vaccines

Cancer vaccines face a number of challenges, including

finding suitable sources of peptides that work best in vivo. The

peptides were divided into five categories based on the origin of

peptides (182, 183): the tumor expressed peptides, tumor

overexpressed peptides, fusion peptides, modified peptides, and

single-nucleotide variant (SNV) peptides. We summarized their
FIGURE 2

Cancer vaccine criteria and feature comparison. The specific criteria of a clinical treatment response. A total of 78 peptides resulting which
involved 673 patients were excluded. 273 high clinical response results (3,233 patients involved) and 354 low clinical response results (2,807
patients involved) were finally included in this study.
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distribution in the results from high and low clinical responses

(Figure 3). As shown in Figure 3A, most of the peptides in the

library are expressed or overexpressed in cancer. The

overexpressed peptides achieved many of the high clinical

response results (41.3%), especially in colorectal cancer (59.6%

vs. 40.4% in high vs. low clinical response results, Figures 3A, C).

The fusion cancer vaccines were not as efficacious in clinical trials,

as they did not lead to any high clinical responses (Figure 3A).

However, modified peptides, in which the amino acids (AA) were

artificially modified, appeared to be the most suitable method for

cancer vaccine (69.6% of modified peptides achieved high clinical

response results), especially for melanoma immunotherapy

(84.2%, Figures 3B, C). In this study, we also listed the top 8

most frequent peptide gene names and the top 18 most commonly

used peptides, as shown in Figure S1.
HLA class II peptide-based cancer
vaccines could achieve high clinical
response results

The cytotoxic T cell (CTL) epitope peptides were restricted

with HLA alleles when they were prepared as cancer vaccines

(102, 184–186). Previous studies have reported that an accurate
Frontiers in Immunology 06
HLA allele is a key factor in successful cancer vaccinations (186,

187). More than 90% of cancer vaccines in our library are typed

for HLA Class I alleles (Figure 4A), with the most common being

HLA- A02, A24, A3sup, A26, and A01. This is generally

consistent with the proportional rank of these alleles in the

population (188, 189). We noticed that patients with melanoma

achieved more high clinical response results when using peptides

typed for HLA-A01 and HLA Class II. For example, all peptides

with HLA-A01 alleles achieved high clinical response results in

melanoma (13 vs. 0, Figures 4B, C), although this is limited by

the sample size and we may need more data to verify whether a

similar trend exists in other cancer types (Figure S4). The

peptides with HLA Class II alleles also achieved more high

clinical response results (28 vs. 15, P = 0.0049, Figures 4A, B),

especially for melanoma and lung cancer patients (Figure 4C).

HLA Class II alleles are highly associated with the CD4+ T cells;

CD4+ T cells primarily mediate anti-tumor immunity by

providing help for CD8+ CTL and antibody responses, as well

as via secretion of effector cytokines such as interferon-g (IFNg)
and tumor necrosis factor-a (TNFa). Under specific contexts,

they can also mediate anti-tumor immunity via direct

cytotoxicity against tumor cells (190–193). Therefore, peptide

epitopes targeting HLA Class II could be more likely to achieve

high clinical response results.
A B

C

FIGURE 3

Peptide types in high and low clinical response results. (A) Comparison of peptide types between high clinical response (HCR) results and low
clinical response (LCR) results. The distribution of peptide types in HCR and LCR results. (B) The distribution of peptide types in HCR and LCR
results. (C) The distribution of peptide types in HCR and LCR results in melanoma and colorectal cancer, respectively. P-values were calculated
using two-sided Wilcoxon rank-sum tests. NS., not significant.
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Montanide ISA-51 was identified as an
effective adjuvant in the treatment of
cancer vaccines, especially for breast
and colorectal cancers

An adjuvant is an ingredient that can help create a stronger

immune response in patients receiving the vaccine (194, 195). Many

cancer vaccines use adjuvants to enhance therapeutic efficacy.

We found that Montanide ISA-51 and Granulocyte-

macrophage colony-stimulating factor (GM-CSF) were the two

most widely used adjuvants in cancer vaccines (Figure 5A), and

they also appeared most frequently in high clinical response

results (P = 6.83e-19 and 0.045, respectively, Figures 5A, B).

Montanide ISA-51, in particular, was the most frequently used

adjuvant with high clinical response results (59.4%, Figure 5B),

especially in breast cancer and colorectal cancer (92.1% and

95.6%, respectively, Figure 5C). Cytokines in cancer immunity

and immunotherapy, cytokine modulation is necessary for

efficacious treatment of experimental neuropathic pain (196).

IL-2, IL-4, and IL-12 were the most widely used cytokines as

vaccine adjuvants, especially IL-2, which was used as an immune

adjuvant in many kinds of cancer types, such as lung cancer,

colorectal cancer, and melanoma (Figure 5C). However, IL-2, IL-

4, and IL-12 are not very effective when used alone in peptide-

based cancer vaccines (Figures 5B, C).
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Treatment regimens with weekly
intervals and greater than four injections
could be more likely to achieve a better
clinical response

The type of treatment regimen is also one of the major

challenges affecting the effectiveness of cancer vaccine therapy

(32, 197, 198). We evaluated the influences of treatment

regimens on cancer vaccine efficacy.

Our study found a significant difference in the vaccine

injection intervals between the HCR and LCR results

(Figure 6A, left). Treatment regimens with shorter vaccine

injection intervals yielded more high clinical response results.

The number of high clinical response results decreases from 141

to 4 with the increase in vaccine injection intervals, implying that

shorter vaccine injection intervals (weeks) may be more

favorable for patients to achieve high clinical response results,

as shown in Figure 6A. We also found that the number of

vaccine injections associated with high clinical response results

was significantly higher than that of the low clinical response

results (Figure 6A, right). Patients with greater than four

vaccination injections achieved more high clinical response

results (Figure 6C). We also found similar results in main

cancer types, such as breast cancer, melanoma, colorectal

cancer, and lung cancer. The details are shown in the
A

B C

FIGURE 4

HLA alleles in high and low clinical response results. (A) Comparison of HLA alleles between HCR and LCR results. (B) The distribution of HLA
alleles in HCR and LCR results. (C) The distribution of HLA alleles in HCR and LCR results in melanoma and lung cancer, respectively. P-values
were calculated using two-sided Wilcoxon rank-sum tests. NS, not significant.
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A

B

C

FIGURE 5

Adjuvants in high and low clinical response results. (A) Comparison of adjuvants between HCR and LCR results. (B) The distribution of adjuvants
in HCR and LCR results. (C) The distribution of adjuvants in HCR and LCR results in four main cancer types (breast cancer, melanoma, lung
cancer, and colorectal cancer). P-values were calculated using two-sided Wilcoxon rank-sum tests.
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supplement materials [injection interval (Figure S2A) and

injection times (Figure S2B), respectively].
Generation of a random forest model
from clinical responses for cancer
vaccines

Given that some redundant or irrelevant features in the new

data set may exert an influence on the classifying effects of a

machine learning model, the importance value of cancer vaccine

features was first calculated by means of a Random Forest

algorithm, followed by the selection of the optimal features

based on each feature ’s importance (Figure 7A and

Supplemental Figure S3). From the methodological perspective

of feature selection, the random forest is a kind of embedded

feature selector that can automatically produce the relative

importance of features during the model training process. We

investigated the relative importance of multiple features, such as

the peptide types, adjuvant, HLA alleles, tumor stages,

chemotherapy, and treatment regimens, in cancer vaccines. Four

features were chosen for the random forest-based modeling in this
Frontiers in Immunology 09
study: injection interval, injection times, adjuvant types, and HLA

alleles (Figure 7A).

For the random forest-based modeling, the library cohort

with known high or low clinical response was randomly split

into a training set (50% randomly selected samples) and a test set

(50% randomly selected samples) according to the cancer types.

The merged training set was used as the training set and the

merged test set as the test set. The model was trained on the

training set and tested on the test set, with 1,000 repeated nested

5-fold cross-validation. The model achieved a high area under

the curve (AUC) of 0.97 sensitivity on the test set (Figure 7B,

black curve). The prediction model’s performance was first

assessed in four independent cancer type cohorts (breast

cancer, melanoma, lung cancer, and colorectal cancer) with

the equilibrium of class distribution and balanced data. Our

model also achieved AUCs of 0.87, 0.99, 0.99, and 0.98 for

independent breast cancer, melanoma, lung cancer, and

colorectal cancer datasets, respectively, demonstrating that our

model could predict their vaccine responses from the features we

selected (Figure 7B). In addition, the prediction model was also

evaluated from the perspectives of the average precision score

and precision-recall (AUPRC) (Figure S3D).
A

B

C

FIGURE 6

Treatment regimens play an important role in cancer immunotherapy. (A) The distribution of treatment regimens (injection interval) in HCR and
LCR results. (B) The distribution of treatment regimens (injection times) in HCR and LCR results. (C) Comparison of treatment regimens
(injection interval and injection times) between HCR and LCR results. P-values were calculated using two-sided Wilcoxon rank-sum tests.
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Random forest yields high discriminative performance in

cancer vaccine clinical response prediction. Thus, the model

could be helpful in identifying cancer vaccines with high

clinical responses.
Discussion

Immunotherapies such as peptide-based cancer vaccines have

proven to be effective in enhancing the immune response in

cancer patients to fight cancer cells. Cancer vaccines that

specifically target high expression of gp100 in melanoma have

already been approved (199). However, one of the key factors

limiting the application of immunotherapy is how to rationally

design a peptide-based cancer vaccine that generates an anti-

tumor immune response leading to the effective killing of tumor

cells (200–202). The goal of our study is to determine the

key criteria for cancer vaccines that may lead to better

clinical outcomes.

We collected T cell epitopes from several databases that had

been applied to clinical studies to construct in silico a library of

peptide-based cancer vaccines. These candidate T cell epitopes

could activate CD8+ or CD4+ T cells to induce cytotoxicity for

tumor cells. The selected peptide epitopes could be used as

cancer vaccines or as target antigens for adoptive cell therapy of

DC, CTL, TCR-T, and CAR-T cells. To find the associations

which influence treatment effectiveness of cancer vaccines,

several critical factors, including types of peptides, HLA alleles,

adjuvants, and treatment regimens, were analyzed in patients

with high and low clinical responses.

We found that studies often chose tumor expressed or

overexpressed peptides to prepare cancer vaccines (Figures 1, 3).
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However, modified peptides in which the amino acids (AAs)

always were artificially modified, could be more suitable for cancer

vaccines, especially for melanoma immunotherapy (65, 67, 79, 99,

110, 118, 147) (Figure 3). The reason modified peptides are more

effective may be because the AAs of modified peptides are altered

and these modified peptides will be treated as exogenous peptides,

which are more easily recognized by T cells and therefore more

immunogenic (12, 203–205). Alternatively, the genes of these

modified peptides are always expressed or overexpressed in tumor

cells (Figure S1), and their comparative wild-type peptides are

usually known to have binding affinities for certain HLA alleles

(206–208). Based on this information, we could make targeted

modifications to the modified peptides, further enhancing the

affinity of modified peptides for pMHC, potentially making

modified peptides more immunogenic and therapeutically

effective. However, it is possible that modified peptides are also

expressed in normal cells, which could lead to uncertain side

effects (205, 208).

Based on our study, Montanide ISA-51, in particular, was the

most frequently used adjuvant with high clinical response results

(59.4%, P = 1.3e-17, Figure 5), especially in breast cancer and

colorectal cancer (92.1% and 95.6%, respectively, as shown in

Figure 5A, C). Montanide ISA-51 can enhance antigen-specific

antibody titers and cytotoxic T-lymphocyte responses. Doorn

et al. reported that a proper mixture of peptide epitopes and

Montanide ISA-51 could help effectively avoid or mitigate adverse

events (209, 210). Because cytokine modulation is necessary for

efficacious treatment of experimental neuropathic pain (196).

Many cytokines, such as IL-2, IL-4, and IL-12, were widely used

cytokines as vaccine adjuvants. IL-2 in particular was used as an

immune adjuvant in many cancer types, such as lung cancer,

colorectal cancer, and melanoma. However, as vaccination
A B

FIGURE 7

Features selection and model. (A) The variable importance for the selected features, such as injection interval, injection times, adjuvant types,
and HLA alleles. (B) Receiver Operating Characteristic (ROC) curve for the total test set (black) and independent breast cancer (green),
melanoma (light blue), lung cancer (blue), and colorectal cancer datasets (red).
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adjuvants, these cytokines are less efficient than Montanide ISA-

51 or GM-CSF (Figure 5). There are several possible explanations

for this. One explanation is that cytokines are susceptible to

degradation due to their short half-life (211, 212). Another

explanation could be that the main role of adjuvants is to

activate the immune system and activate effector T cells (194). If

we use IL-2, IL-4, and IL-12 as the adjuvant in cancer vaccine

therapy, we need them to activate effector T cells. However, IL-2

has a higher affinity and stimulatory effect on regulatory T cells

(Tregs). Therefore, IL-2 will activate Treg cells along with effector

T cells. Tregs are a specialized subpopulation of T cells that act to

suppress the immune response. Thus, it is difficult to achieve a

high clinical response with IL-2 alone. IL-4 is a cytokine that

induces the differentiation of naive helper T cells (Th0 cells) to

Th2 cells, thereby inducing immunosuppression (213). Therefore,

IL-4 generally does not have a good antitumor effect in cancer

vaccines as an adjuvant alone. IL-12 is an interleukin that is

naturally produced by dendritic cells (214). It has a strong anti-

tumor therapeutic effect, but IL-12 is difficult to use in molecular

therapy alone (215). Thus, IL-2, IL-4, and IL-12 are not very

effective when used alone in peptide-based cancer vaccines.

Antigen-specific specificity is important in cancer vaccinations.

However, antigen-specific cytokines do not exist; cytokines can

activate many non-specific or tumor growth promoting pathways,

which is ineffective and unhelpful for the specificity of a cancer

vaccine (216, 217). IL-2, IL-4, and IL-12 may need to be modified

or combined with other adjuvants, such as Montanide ISA-51 or

GM-CSF in peptide-based cancer vaccine therapies to

increase effectiveness.

In addition to these cancer vaccines that utilized various

adjuvants, we also observed that many cases did not use any

adjuvants in cancer vaccine preparation, which could be a factor

leading to the poor clinical outcomes of many peptide

vaccinations in clinical trials (38, 41, 49, 53, 68, 72, 74, 81, 82,

86, 95, 98, 110, 117, 127, 131, 143, 151, 160, 218–221)

The treatment regimen also plays an important role in the

therapeutic efficacy of cancer vaccines. The treatment regimens

with weekly injection intervals and greater than four vaccination

injections were more likely to achieve a high clinical response

(Figure 6). Short vaccine injection intervals and multiple

vaccinations could continually activate the immune system,

ensuring that there are enough cytotoxic T cells to kill tumor

cells, enhancing the tumor-killing effect and making it easier to

get a high clinical response (222). However, many of the

available treatment regimens did not use shorter vaccine

intervals and more frequent injections. This could be because

many of the patients who participated in the cancer vaccine

clinical trials had gone through various conventional treatments,

and many of them also had stage III or stage IV tumors. As a

result, they were already in a weakened condition. Shortened

vaccination intervals and an increased frequency could lead to

stronger side effects that would be difficult for these weaker
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patients to tolerate. Therefore, shorter intervals and more

frequent injections may be more appropriate for patients with

early-stage tumors, while relatively frail patients could have

longer injection intervals, but no less than four injections

are recommended.

Finally, we investigated the correlation between multiple

features, such as the peptide types, adjuvant, HLA alleles, and

treatment regimens, in cancer vaccines, and we built a random

forest model to distinguish the peptide-based cancer vaccines

with high clinical responses (Figures 7, S3). In addition, we also

investigated the effect of the tumor stages and chemotherapy,

which could reflect the patient’s health condition and medical

treatment prior to vaccination on the model prediction. We

summarized their distribution in the results from the high and

low clinical responses (Figures S4A, B). The relative importance

of the tumor stages and chemotherapy are weaker than the

peptide types, adjuvant, HLA alleles, and treatment regimens in

this study (Figure S4C). The prediction accuracy of our model

was also not improved by introducing them (Figure S4D).

Possible causes for this are that many clinical trials included

patients with different tumor stages, and some others omitted

patients’ tumor stages information. There is no significant

difference between the chemotherapy group and the no or

unknown chemotherapy group (Figure S4B). The cause could

be that many of the cancer vaccine trials included patients who

had undergone conventional medical treatments, which

included but are not limited to chemotherapy. Moreover, some

clinical trials excluded patients who had received chemotherapy

(41, 45) or required patients to wait a period of time after

chemotherapy before participating in cancer vaccine therapy to

eliminate and minimize the impact of chemotherapy on vaccine

therapy (49, 64, 74, 133, 220). Therefore, we think that the tumor

stage and chemotherapy may have less impact on the

improvement of prediction accuracy (Figure S4D).

We found a combination of the modified peptides,

Montanide ISA-51, a short interval between vaccine injections,

and multiple vaccinations could be helpful in effectively

activating the immune system to kill tumors, enhancing the

tumor-killing effect, and resulting in high clinical responses.

The severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) virus is prone to specific mutations that alter

viral surface peptide epitopes, making the virus more susceptible

to immune escape (223). Peptide-based tumor vaccine research

has also contributed to the development of COVID-19 vaccines

targeting COVID-19-specific peptide epitopes (224, 225).

There are several limitations noted in this study. First, there

are no prior studies that quantitatively distinguish between high

or low results in cancer vaccine clinical trials; it is possible that

we missed information in classifying a high or low response

result. Next, due to lack of sufficient data for a single tumor type,

we could not directly explore the difference in each cancer type

between the high- and low- clinical response groups.
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In addition, the effect of the tumor mutation burden, the

dose of the cancer vaccine, and the specific method of injection,

such as subcutaneous, intranasal, intravenous, and transdermal,

may also need to be further explored in the future studies. Lastly,

the effect of coupling multiple features on cancer vaccine efficacy

is complex and was not investigated in depth in this study. Thus,

future studies can explore further the effects of coupling multiple

features on cancer vaccine efficacy based on a larger cohort.

Altogether, we presented CancerVaccine, a peptide-based

cancer vaccine library that stored and aggregated the results of

peptide-based cancer vaccines and their clinical attributes.

CancerVaccine can be accessed at https://peptidecancervaccine.

weebly.com/. We demonstrated that CancerVaccine is a versatile

resource that can be used to screen for useful peptides epitopes and

aid in the design of new cancer vaccines. Our study describes a

design strategy in peptide vaccination treatment relating to the

appropriate types of peptides, suitable adjuvants, matched HLA

alleles, and suitable treatment regimens. Furthermore, we

developed a high AUC machine learning model, which could be

helpful in identifying peptide-based cancer vaccines with high

clinical responses. The results of this study could impact future

exploration of vaccine designs, taking into consideration

identifying suitable peptide antigens and treatment conditions for

cancer and personalized immunotherapy.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author/s.
Author contributions

C-CC and CJ conceived the project. CJ, JL, WZ, ZZ, and GL

prepared and analyzed the database. CJ and C-CC, evaluated the

conclusions, wrote the manuscript. CJ, C-CC, WH, BL, and XZ

reviewed and revised the content. All authors read and approved

the final manuscript. All authors contributed to the article and

approved the submitted version.
Frontiers in Immunology 12
Funding

This work is supported by the Cancer Prevention Research

Institute of Texas (CPRIT) (RR180061).
Acknowledgments

We would like to give special thanks to Chao Cheng and

other members of the Chao Cheng lab for their valuable

discussions and critical feedback. We especially thank Aude

Angelini, Xiaoshi Zhang, Si Qiu, Wenhui Li, and Xiuying Li for

their valuable suggestions.
Conflict of interest

Author C-CC was employed by the company Biomap, Inc.

Authors WZ, ZZ, GL, XZ and BL are employed by the company

BGI-Shenzhen.

The remaining authorsdeclare that the researchwas conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.931612/full#supplementary-material
References

1. Arora A, Olshen AB, Seshan VE, Shen R. Pan-cancer identification of
clinically relevant genomic subtypes using outcome-weighted integrative
clustering. Genome Med (2020) 12:1–13. doi: 10.1186/s13073-020-00804-8

2. Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, et al. Cancer stem cells and
signaling pathways in radioresistance. Oncotarget (2016) 7:11002–17. doi:
10.18632/oncotarget.6760

3. Lyakhovich A, Lleonart ME. Bypassing mechanisms of mitochondria-
mediated cancer stem cells resistance to chemo- and radiotherapy. Oxid Med
Cell Longev (2016) 2016:10. doi: 10.1155/2016/1716341
4. Wang R-F,WangHY. Immune targets and neoantigens for cancer immunotherapy
and precision medicine. Cell Res (2017) 27:11–37. doi: 10.1038/cr.2016.155

5. Fischbach MA, Bluestone JA, Lim WA. Cell-based therapeutics: the next
pillar of medicine. Sci Transl Med (2013) 5:179ps7. doi: 10.1126/
scitranslmed.3005568

6. Rosenberg SA. Progress in human tumour immunology and immunotherapy.
Nature (2001) 411:380–4. doi: 10.1038/35077246

7. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond
current vaccines. Nat Med (2004) 10:909–15. doi: 10.1038/nm1100
frontiersin.org

https://peptidecancervaccine.weebly.com/
https://peptidecancervaccine.weebly.com/
https://www.frontiersin.org/articles/10.3389/fimmu.2022.931612/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.931612/full#supplementary-material
https://doi.org/10.1186/s13073-020-00804-8
https://doi.org/10.18632/oncotarget.6760
https://doi.org/10.1155/2016/1716341
https://doi.org/10.1038/cr.2016.155
https://doi.org/10.1126/scitranslmed.3005568
https://doi.org/10.1126/scitranslmed.3005568
https://doi.org/10.1038/35077246
https://doi.org/10.1038/nm1100
https://doi.org/10.3389/fimmu.2022.931612
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2022.931612
8. Rook AH, Raphael BA. Progress in immunotherapy of cancer. N Engl J Med
(2012) 367:1168. doi: 10.1056/NEJMc1208946

9. Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide
vaccine: Progress and challenges. Vaccines (2014) 2:515–36. doi: 10.3390/
vaccines2030515

10. Stephens AJ, Burgess-Brown NA, Jiang S. Beyond just peptide antigens: The
complex world of peptide-based cancer vaccines. Front Immunol (2021) 12:696791.
doi: 10.3389/fimmu.2021.696791

11. Chukwudozie OS, Gray CM, Fagbayi TA, Chukwuanukwu RC, Oyebanji
VO, Bankole TT, et al. Immuno-informatics design of a multimeric epitope peptide
based vaccine targeting SARS-CoV-2 spike glycoprotein. PloS One (2021) 16:1–25.
doi: 10.1371/journal.pone.0248061

12. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti
AA, et al. Cancer immunotherapy. a dendritic cell vaccine increases the breadth
and diversity of melanoma neoantigen-specific T cells. Science (2015) 348:803–8.
doi: 10.1126/science.aaa3828

13. Peoples GE, Holmes JP, Hueman MT, Mittendorf EA, Amin A, Khoo S,
et al. Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention
of recurrence in high-risk breast cancer patients: U.S. military cancer institute
clinical trials group study I-01 and I-02. Clin Cancer Res (2008) 14:797–803. doi:
10.1158/1078-0432.CCR-07-1448

14. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C,
et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose
cyclophosphamide associates with longer patient survival. Nat Med (2012)
18:1254–61. doi: 10.1038/nm.2883

15. Weber JS, Dummer R, de Pril V, Lebbé C, Hodi FS. Patterns of onset and
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