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Mast cell tissue heterogeneity
and specificity of immune
cell recruitment

Peter W. West and Silvia Bulfone-Paus*

Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of
Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science
Centre, Manchester, United Kingdom
Mast cells occupy a unique niche within tissues as long lived perpetrators of IgE

mediated hypersensitivity and anaphylaxis, as well as other immune responses.

However, mast cells are not identical in different tissues and the impact of this

tissue heterogeneity on the interaction with other immune cells and on defined

immune responses is still unclear. In this review, we synthesize the characteristics

of mast cell heterogeneity in the gut and the skin. Furthermore, we attempt to

connect mast cell heterogeneity with functional diversity by exploring

differences in mast cell-induced immune cell recruitment in these two model

organs. The differential expression of certain receptors on mast cells of different

tissues, notably tissue-specific expression patterns of integrins, complement

receptors and MRGPRX2, could indicate that tissue environment-dependent

factors skew mast cell-immune cell interactions, for example by regulating the

expression of these receptors.
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Abbreviations: FcϵRI, high-affinity IgE receptor; IL, interleukin; MCs, mast cells; MRGPRX2, Mas-related

G-protein coupled receptor member X2; TNF, Tumor necrosis factor; TGF, transforming growth factor;

SCF, Stem cell factor; VEGF, Vascular endothelial growth factor; NGF, Nerve growth factor; MCP,

Monocyte chemoattractant protein; TLR, Toll-like receptor; PGD, Prostaglandin D; LTC, leukotriene C;

GM-CSF, Granulocyte-macrophage colony stimulating factor; IFN interferon; CTMC, Connective tissue

mast cell; MMC, Mucosal mast cell; EMP, Erythromyeloid progenitor; HSC, hematopoietic stem cell; CSF,

Colony stimulating factor; TRAIL, Tumor necrosis factor-related apoptosis-inducing ligand; FGL,

Fibrinogen-like protein; MadCAM, mucosal addressin cell adhesion molecule-1; VCAM, vascular cell

adhesion molecule; RIG-I, retinoic acid-inducible gene I; MDA-5, melanoma differentiation-associated

protein 5; NK, Natural killer; SP, Substance P.
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Introduction

Beyond their classical role in IgE-mediated hypersensitivity

reactions, mast cells (MCs) are now recognised to have diverse

immunological functions (1). Their longevity as tissue-resident

cells, particularly at barrier sites in the skin, intestine, lung and

around blood vessels makes them uniquely situated to initiate,

shape and resolve responses to insults, injury and infections

(2). Additionally, we now appreciate MCs exhibit remarkable

plasticity and specialisation such that, not only are their

phenotype and responses shaped by their specific tissue

environment in a steady-state, but also, the particular

repertoire of preformed and synthesised mediators they

release is context and stimulus-dependent (3). Here, we

highlight current understanding of the differing nature of

MC-induced immune cells recruitment, drawing on the

examples of skin and intestinal MCs as archetypes of the

traditional distinction between connective tissue and

mucosal MCs.
Mast cell mediator release

MCs of differing type and species produce a vast array of

biologically active molecules including proteases, biogenic amines,

cytokines, chemokines, growth factors and eicosanoids (4). While

some of these products are stored in secretory granules, for near

immediate release upon activation, others are newly synthesised

and secreted within hours. Secretory granules consist of a dense

gel matrix core formed of negatively charged proteoglycans

such as heparin and chondroitin sulphate and amines such are

histamine and serotonin as well as proteases, which typically,

but variably include tryptases, chymases, carboxypeptidase A3,

beta-hexosaminidase and cathepsins among others (5). Some

cytokines including most notably TNFa, but also IL-4, IL-5,

IL-13, IL-16, TGFb, SCF, and growth factors, VEGF and NGF

have been reported to be stored in MC granules in some

circumstances (6–10). The release of granules, or their

contents is tightly regulated and is an active process

requiring calcium signalling, nucleoside catabolism and actin

reorganisation (6).

Little is known about the cellular mechanisms of preformed

mediator-storage in MCs apart from that of TNFa, which differs

even between mice and human MCs, but involves transient

exocytosis and re-endocytosis in humans (11). However,

multiple different secretory vesicles and degranulation

pathways exist suggesting a great deal of complexity in the

control of secretion (12, 13). Apart from multigranular

exocytosis, MCs also release smaller amounts of granule

contents through piecemeal degranulation, kiss-and-run

exocytosis, extracellular vesicle release and immune synapse

formation. The release of de novo synthesised chemokines/

cytokines likely differs from secretory granule mechanisms (6).
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Whilst MC degranulation induced by FcϵR1a crosslinking,

C3a, or substance P, results in immediate release, and later de-

novo synthesis of chemokines/cytokines (14–16), activation of

other receptors [reviewed elsewhere (1)] leads to more finely-

tuned responses. For example IgE binding, in the absence of

antigen-crosslinking, induces the release of IL-6 (17) and

increases MCP-1 and CXCL8 release from IL-4-conditioned

MCs (18). Weak, low receptor occupancy, FcϵR1a-
crosslinking favours the production of chemokines, CCL2,

CCL3 and CCL4 over cytokine production (19). Toll-Like

Receptor (TLR) engagement results in the release of cytokines

(eg IL-6) and chemokines in the absence of degranulation (1).

MC responses are individualised to specific bacteria, where

pathogenic L.monocytogenes induces degranulation and high

levels of CXCL8 and MCP-1 release, while gut commensal

E.coli induces lower levels of CXCL8 and MCP-1 without

degranulation. Skin commensal S.aureus on the other hand

does not induce CXCL8 or MCP-1 release and induces PGD2

at much lower levels (3). MC responses to viral infection include

TNFa, type I interferon (20, 21), IL-4, IL-13, and chemokine

production (22, 23). Purinergic receptor activation of MCs also

releases cytokines (IL-6, TNFa, IL-33), leukotrienes, and

chemokines (CCL2, CCL7, CXCL2) (24, 25).

The full plethora or MC mediators, cytokines, chemokines

and their various roles are extensively reviewed elsewhere (1, 26).

Those that induce immune cell recruitment and their cellular

targets are listed in Table 1. MC-mediated activities that recruit

leukocytes across tissues involves increasing vascular

permeability (tryptase, histamine, VEGF, IL-6, CXCL8, LTC4,

PGD2) (65, 66), upregulating adhesion molecule expression

(TNFa) (26), recruitment of neutrophils (TNFa, IL-6, CXCL8,
CXCL2) (51) monocyte/macrophages (TNFa, IL-6, CCL2) (67),
ILCs (PGD2) (25), DCs (TNFa, GM-CSF, IL-1b) (68, 69), and
CD8+ T-cells, (CCL5, LTB4) (4, 70). For example TNFa is stored

and released by MCs from both skin and gut (71, 72), CCL2 is

widely secreted and belongs to the core MC-transcriptional

signature (44, 73, 74), and MCs have been shown to be

essential for cell recruitment in many murine models (50, 51,

75). Mediator release is influenced by the inflammatory

environment, for instance by IL-4, IL-5, IL-9, IL-33 and IFNg
(4, 76–79) which further regulate the expression of MC IL-2, IL-

13, IL-9 and IL-25 (25, 29, 80–82). However there are tissue-

specific aspects such as intestinal MCs lacking IFNg (27) and

skin MCs not producing LTC4 (57), which are yet to be

fully elucidated.
Mast cell heterogeneity between
and within tissues

The traditional categorisation of MCs based on histological

findings into connective tissue (CTMC) and mucosal MCs

(MMCs) in mice, and the human correlates of tryptase+
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TABLE 1 Key mediators and chemoattractants released by mast cells.

Mediator Role References

Cytokines

TNFa DC migration
T-cell proliferation
Monocyte Macrophage Activation
Neutrophil recruitment

(27, 28)

GM-CSF DC migration to lymph nodes (29)

IL-1 Eosinophil recruitment
Neutrophil recruitment
DC-migration
Inflammasome activation

(27, 29)

IL-2 T-regulatory cell recruitment
ILC2 proliferation

(30, 31)

IL-4 Eosinophil recruitment
Differentiation of Th0 cells to Th2

(32, 33)

IL-3 Mixed lymphocyte migration
MC and basophil growth and differentiation

(29, 34)

IL-5 Eosinophil migration and survival (35)

IL-6 Monocyte/Macrophage activation
Local Neutrophil recruitment

(27, 29)

IL-9 MC proliferation
DC migration
T-cell recruitment

(36)

IL-10 CD8+ T-cell recruitment
Inhibition of CD4+ T-cell recruitment
Inhibition of proinflammatory cytokine production

(37–39)

IL-12 CD4+ Effector T-cell recruitment
Th1 response induction
Induction if IFNg in NK, Th1, and MCs

(26, 40)

IL-16 T-cell recruitment
DC migration

(27, 41)

IL-17A B-cell recruitment (lung) (42)

IL-18 DC migration (27, 43)

Chemokines

CCL1 Monocyte recruitment
T-cell recruitment

(44)

CCL2 Neutrophil migration
Monocyte migration
T-cell recruitment
MCp migration

(45)

CCL3 Monocyte recruitment
T-cell recruitment

(44)

CCL4 Monocyte recruitment
T-cell recruitment

(44)

CCL5 CD8+ T-cell recruitment
Eosinophil recruitment
Basophil recruitment
Monocyte recruitment
NK cell recruitment
DC recruitment

(44)

CCL7 Monocyte recruitment
T-cell recruitment
NK cell recruitment
Immature DC recruitment
Basophil recruitment
Eosinophil recruitment
Hematopoietic progenitor cell recruitment

(46, 47)

(Continued)
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(MCT), tryptase+ and chymase+ (MCTC) and chymase+ (MCC)

is well established (83–86). However, at transcriptional level,

protease content exhibits greater tissue-specific heterogeneity

both between and within tissues (73, 87). Additionally, while

evolutionarily conserved, there are also differences between

human and mouse mast cells (88).

One source of tissue heterogeneity is the MC embryonic

origin. In both humans and mice, tissue MCs are seeded from

MC progenitors originating from both embryonic yolk sac and

adult bone marrow (89–91). During embryogenesis in mice, three

waves of MCs are seeded successively from early erythromyeloid

progenitors (EMPs), late EMPs and foetal hematopoietic stem

cells. At birth, early EMPs-derived MCs constitute over 15% of

MCs in pleural cavity, adipose tissue and skin, but less than 3% in

gut and spleen. In contrast HSC-derived MCs were much higher

in gut (>30%) than in skin (~8%) (89). In adult mice early EMP-

derivedMCs aremaintained in the adipose tissue, a likely stem cell

niche for MCs (92), but give way to other MC progenitors in skin

(89, 90). Although sharing a core MC signature, these cells are
Frontiers in Immunology 04
transcriptionally distinct. Both embryonic and bone marrow-

derived MCs, complete their maturation in peripheral tissues

(89, 92). They are therefore subject to tissue-specific cues during

that maturation process making them, to some degree, site

specific. Additionally, in mice skin MCs are known to undergo

in situ self-renewal by clonal expansion in the steady-state (93),

whereas mucosal MCs are dependent on recruitment of MCp

from the circulation (94–96). Nevertheless, both MMCs and

CTMCs can be augmented by recruitment of MCp from the

circulation during inflammation (93, 97, 98). Given the longevity

of MCs this implies that environmental interactions during a

lifespan can alter MC set points in the tissue which adds further

complexity to MC heterogeneity.

A growing body of transcriptomic work demonstrates that

MCs are distinct and highly variable between and within tissues.

Indeed, MCs form a distinct transcriptional cluster differing

greatly from other granulocytes. Furthermore, comparing

between different types of connective tissue MCs, nearly 1000

genes can be differentially expressed (73).
TABLE 1 Continued

Mediator Role References

CCL18 Naïve CD4+/CD8+ T-cell recruitment
Memory T-cell recruitment
B-cell recruitment
Immature DC recruitment

(44, 48)

CCL20 B-cell recruitment
Effector memory T-cell recruitment
CD11b+ DC recruitment

(44, 49)

CXCL1 Neutrophil recruitment (50)

CXCL2 Neutrophil recruitment
Eosinophil recruitment
Basophil recruitment

(44, 50, 51)

CXCL3 Neutrophil recruitment (44)

CXCL8 CD4+ T-cell recruitment
Neutrophil recruitment

(27)

XCL1 DC migration and cross presentation of antigen (44, 52)

CX3CL1 Monocyte and T-cell recruitment and survival (53, 54)

Lipid Mediators

LTB4 Neutrophil chemotaxis
DC chemotaxis
MC chemotaxis
CD8+ T-cell recruitment

(55, 56)

LTC4 Eosinophil migration (57–59)

LTD4 Eosinophil migration
Neutrophil migration

(60)

LTE4 Eosinophil migration
ILC2 migration

(61, 62)

PGD2 Eosinophil chemotaxis and activation
Basophil chemotaxis and activation
Th2 cell recruitment & activation
ILC2 migration
Vasodilation
Increased Vascular Permeability

(57, 63)

PGE2 DC migration (64)
fr
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Mouse MCs also display a marked tissue heterogeneity in

their receptor profile (87). In both humans and mice TLR4

expression is low in skin, peritoneal and duodenal MCs but

higher in colon and lung (99). Similarly, in mice the ATP

receptor P2X7 is expressed more greatly in MCs from colon or

lung rather than skin (24). C5aR1 expression also differs in some

circumstances, in humans (100, 101). MRGPR receptor gene

expression is a core component of murine foetal derived MCs

(89) and tissue-resident MCs (73). However, intriguingly

MRGPRX2, a receptor with wide agonist range and a key

driver of pseudo-allergic reactions, shows large variation

between tissues in humans (102). It is expressed at a high level

in human skin, fat and synovial MCs, i.e. CTMCs. It is only

expressed at low levels in lung and colonic MCs, which are

refractory to substance P stimulation (57). Thus, this would

suggest a distinct MRGPRX2-mediated response between

mucosal and connective tissue.

Single cell RNA sequencing (scRNA-seq) across disease states

in eosinophilic oesophagitis revealed a predominant tryptase and

amphiregulin positive population of MCTC in the lamina propria

during homeostasis with the development of persistent epithelial

localised chymase and cathepsin G high expressing MCs, and

transient CD117high, ST2high population during active disease.

In remission the transient locally proliferative population

disappears, while the chymase population remains in the

epithelium and the resident lamina propria MCs become

CSF1high. These changes exemplify the plastic nature of human

MCs which show both acute and chronic phenotypic alterations in

response to tissue environment and spatial compartmentalisation.

For example, MCs may switch from homeostatic to an

inflammatory IL-33-responsive, and end with an IL-13-

producing, macrophages supportive phenotype (103). Similar

results have been obtained from scRNAseq studies in chronic

rhinosinusitis in MCT cells (CD117low, FcϵR1alow), and MCTC

(CD117high, chymase+, cathepsin G+) from the epithelial and

sub-epithelial compartments respectively. MCTC expressed ST2,

CSF1 and IL-13 in addition to CCL2, CCL3 and CCL4, whereas

MCT expressed TRAIL, FGL2 and IL-17RB. In this tissue, the

authors discovered polarised states of a core set of MC genes that

distinguished them from proliferative and unpolarised MCs and

concluded that the polarised cells are primed to respond either

according to a pro-inflammatory (MCTC) or a Th2-skewed

pattern (MCT). Although similarities existed between MCTC in

this study and skin MCTC, the authors showed key differences in

C5aR1 and MRGPRX2 expression, not only between the two

populations but also within the lung (104). The continuous, rather

than discrete, nature of human MC heterogeneity in the

respiratory tract is supported by evidence from a large number

of expressed cell surface proteins which show a continuous

distribution in their expression (105).

Despite the marked transcriptomic heterogeneity observed

by several authors, proteomic comparisons between two types of

human connective tissue MCs, skin and fat, showed remarkably
Frontiers in Immunology 05
low levels of differentially expressed markers, at least in a

quiescent state (102). There was also a remarkable interspecies

correlation between mouse and human CTMCs and a common

mast cell protein signature (102). Additionally, although mouse

peritoneal MCs are reported to express the transcript for TLR4

(89), it was not found among 4620 MC expressed proteins

during proteomic analysis (102).

In summary, discussions about the role of MCs in a given

tissue drawn from general aspects of MC biology obtained across

multiple tissues, cell lines or models are worthwhile and useful

commentaries. However, one should challenge those views in

light of the well-established tissue-specific heterogeneity of MCs

and undertake a bigger effort in investigating MC-driven tissue-

specific aspects of immunity.
Mast cell-mediated immune cell
recruitment in the gut

Situated throughout the gastro-intestinal tract, MCs are

regarded as key in controlling organ homeostasis (106).

Contributing to the maintenance of the epithelial barrier, the

initiation and modulation of both innate and adaptive immune

responses to pathogens, and the cross-talk with the enteric nervous

system, MCs regulate tissue homeostasis and disease (107).

Intestine constitutive homing of MCp in mice, via

transendothelial migration, is controlled by MC a4b7 integrin

binding to adhesion molecules MAdCAM-1 and VCAM-1 (96)

while chemoattraction is dependent on MC CXCR2 (108). Since

germ-freemice have fewer intestinalMCs and express lower levels of

CXCR2 ligands, this process is thought to be driven by commensal

bacterial interactionswith intestinal epithelial cells (109). In humans,

intestinalMCs expressmainlya2b1 integrin, which is not expressed
in other mucosal or connective tissue MCs (110).

MCs play a key role in the acute inflammatory response of

the gut (see Figure 1). MC-derived TNFa recruits neutrophils,

eosinophils and macrophages (94). Furthermore, human

intestinal MCs produce an array of chemokines de novo when

primed with SCF or IL-4 and activated by FceRI-receptor
crosslinking. These include CCL1, CCL2, CCL3, CCL4, CCL5,

CCL18, CCL20, CXCL2, CXCL3, CXCL8 and XCL1 (44).

Interestingly, CCL2, but not CXCL8, release by intestinal MCs

in response to FcϵRIa activation exhibits a diurnal pattern

indicating a role for MCs in intestine circadian biology (111).

Moreover, in a gut injury mouse model, MC activation and

Mcpt5, Mcpt6 and CPA3 protease release, is associated with

neutrophil influx and alterations in epithelial barrier integrity.

MC stabiliser cromolyn sodium results in preservation of barrier

integrity, reduced neutrophil influx associated with significant

reductions in TNFa, CCL2, CCL5, IL-1b and CXCL1 (112).

Direct evidence of MC involvement in anti-parasitic

immunity of the gut is provided by a number of rodent

models. Trichinella spiralis infection induces an influx of MC
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to the gut which transiently alters their protease expression. This

is associated with a strong Th2 immune response, eosinophilia

and marked increase in barrier permeability. The MC influx and

the transiently-expressed MC-derived Mcpt1 is critical to

control worm burden (113). Additionally, Mcpt6 is required

for eosinophil recruitment (114). Mice lacking the proteoglycan

serglycin, important in granule storage, also exhibit a deficit in

worm clearance with lower circulating TNFa, IL-1b, IL-10, IL-
13 compared to wild type infected controls (115). Human skin

MCs also express these cytokines, and IL-13 downregulates Th1

responses in mice (116, 117), which raises the prospect that

intestinal MCs could be a critical source of these cytokines in

anti-parasitic immunity. Additionally Th2/Th9 cytokine IL-9,

released early during parasitic infections and important for

murine worm expulsion (118, 119) is also secreted by MC

activated synergistically with LPS (120, 121), although the

importance of MC-derived IL-9 in the intestine has not been

proven definitively. In this regard, MCs in human gut are also

immunoreactive for IL-5 and IL-16 both of which enhance T-cell

recruitment and activation (26, 99, 122).

MCs have also been described to limit human colorectal

cancers. In murine models MC-derived LTB4 was found to be

critical for CD8+ T-cell recruitment and anti-tumor

immunity (123).
Mast cell-mediated immune cell
recruitment in the skin

Like the gut, the skin is a barrier exposed to a wide array of

environmental insults on a nearly continual basis. However, the
Frontiers in Immunology 06
skin is generally a less permeable barrier than the gut and as such

MCs localise to the upper dermis around eccrine glands and

blood vessels and not to the epidermis (124). Therefore, they

regularly encounter fewer pathogens unless barrier integrity is

disturbed through mechanical (e.g. wound or bite) or

inflammatory means. This is thought to be a reason why TLR

and P2X7 expression in skin MCs appears low, and maintains the

cells in an unresponsive state (99). Low TLR4 expression might

imply a diminished role for skin MCs in human skin Th9

biology (125). To our knowledge IL-9 has not been

demonstrated in skin MCs. Nevertheless, skin MCs do

respond to lipoteichoic acid, a TLR2 agonist component of

commensal gram-positive bacterial cell walls, leading to

enhanced responses to pox causing vaccinia virus in mice

(126). Similar to recruitment in the gut, the skin microbiome

is responsible for MC maturation. In this case through TLR2-

dependent SCF production from keratinocytes (127) rather than

direct interaction. In humans their adhesion is probably

dependent on a different integrin avb3 (128). Large amounts

of retinoic acid can also overcome the P2X7 down regulation in

mouse skin MCs (129), emphasising the plasticity of tissue-

resident cells.

Like other MCs, skin MCs have been identified to store and

release TNFa in response to SP, FcϵRI, UVB and calcium

ionohpore activation (130–132). There is good evidence from

the murine passive cutaneous anaphylaxis model and delayed

hypersensitivity reactions in skin, that leukocyte recruitment is

dependent on MC-derived TNFa (51, 133), and that CD8+

dendritic cell migration to draining lymph nodes of the skin

also relies on MC TNFa (68, 134) (Figure 1). Skin MCs can also

exocytose TNFa containing granules which can be transported
FIGURE 1

Heterogeneity in immune cell recrutiment. Exemplary differences between mucosal gut mast cells and connective tissue skin mast cells are
shown. Differences in receptor expression include TLR4, P2X7, L1CAM, C5aR1, MRGPRX2 as well as integrin expression. Different mast cell
mediators have been shown to be released with altered down stream consequences for immune cell recruitment in infection or inflammation.
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to the draining lymph nodes to enhance antigen presentation

and antigen specific responses (135). This isn’t a phenomenon so

far identified in other tissues.

MCs have recently been shown to have antiviral immune

activities to dengue virus, a mosquito borne pathogen via

activation of innate response pathway RIG-I/MDA5 resulting

in TNFa, IFNa, CCL5, CXCL12 and CX3CL1 production. These
MC-derived cytokines appear to be critical to limiting viral

spread to lymph nodes through recruitment of NK and NKT-

cells to the infected skin in a mouse model (53). Additionally,

MCs form an immune synapse in infected skin with gdT-cells
which induced activation through the T-cell receptor (136).

There is also evidence that MCs are important in limiting

other intradermal viral infections through DC activation (137).

MC-derived TNFa and IL-6 have also been shown to be

important for protection from cutaneous herpes simplex virus

infection (138). In contrast, intestinal MCs are thought to have

deficiencies in IFNg production, and whilst RIG-I might be

present in lung mucosal MCs it has not yet been identified in gut

MCs (139).

The recently identified MC receptor for substance P

MRGPRX2 and its murine homologue mrgprb2 (140, 141) has

revealed a surprising dependence of a large degree of skin

inflammation and pain on MCs. Green et al. (142) observed

that Mrgprb2-/- mice had significantly reduced hypersensitivity

to inflammatory pain with not only ablated MC recruitment, but

also reduced neutrophil and monocyte recruitment to the

affected skin with a reduction in both CCL2 and CCL3 in

response to injury or SP treatment of skin tissue. There has

been much speculation about the involvement of gut MCs in

painful symptoms of disease, however such compelling evidence

is still lacking in other tissues and mucosal MCs have low

MRGPRX2 expression.

In different murine models and human tissue samples, it has

been demonstrated that skin MCs are sources of other cytokines

with a likely impact on inflammation and immune activation.

These include; IL-1b, which drives inflammasome activation and

neutrophil recruitment in the skin (143, 144), an association also

present in the gut (112); IL-2, not yet identified in gut MCs,

which supresses inflammation in contact-hypersensivity

through MC-dependent T-regulatory cell recruitment (30);

IL-4 which drives type 2 inflammation in atopic dermatitis

(32); IL-10 which as one of the first products of MCs, limit

contact hypersensitivity reactions (37, 145) and also has a role in

MC intestinal IBD pathology (146).
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Conclusions

Despite their heterogeneous origins, functionally, MCs from

diverse tissues share a common set of responses including not least

to IgE/allergen but also the release of key cytokines and chemokines

involved in the initiation of inflammation i.e. TNFa, IL-1b, CCL2.
MC plasticity then allows further functional differentiation based on

the tissue context and lifetime environmental interactions such as

pathogen or allergen exposure, or type I/type II inflammation. This

plasticity will be shaped by existing heterogeneity in receptor

expression such as C5aR1, MRGPRX2 and P2X7 which will limit

the form of response that the cells can mount to a particular

stimulus. For instance skinMCsmight be better equipped to release

IFNg than intestinal MCs (27) whereas skin MCs will be more

susceptible to neurogenic inflammation (57). Ultimately the

application of new multi-omics, single cell and imaging mass

cytometry technologies to isolated cells and tissues will reveal an

as yet unforeseen level of detail about tissue-specific heterogeneity.
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role for mast cells in interleukin-1b-Driven skin inflammation associated with an
activating mutation in the Nlrp3 protein. Immunity (2012) 37:85–95. doi: 10.1016/
J.IMMUNI.2012.04.013

145. Reber LL, Sibilano R, Starkl P, Roers A, Grimbaldeston MA, Tsai M, et al.
Imaging protective mast cells in living mice during severe contact hypersensitivity.
JCI Insight (2017) 2:1–13. doi: 10.1172/jci.insight.92900

146. Chichlowski M, Westwood GS, Abraham SN, Hale LP. Role of mast cells in
inflammatory bowel disease and inflammation-associated colorectal neoplasia in
IL-10-Defic ient mice . PLoS One (2010) 5 :e12220 . doi : 10 .1371/
JOURNAL.PONE.0012220
frontiersin.org

https://doi.org/10.1172/JCI122530
https://doi.org/10.1172/JCI122530
https://doi.org/10.3389/FIMMU.2021.688347
https://doi.org/10.1038/JID.2013.150
https://doi.org/10.1038/JID.2013.150
https://doi.org/10.1007/S00011-018-1164-5
https://doi.org/10.1007/S00011-018-1164-5
https://doi.org/10.1016/J.TIPS.2021.12.005
https://doi.org/10.1038/nature14022
https://doi.org/10.1016/j.neuron.2019.01.012
https://doi.org/10.1084/jem.20082179
https://doi.org/10.1016/J.IMMUNI.2012.04.013
https://doi.org/10.1016/J.IMMUNI.2012.04.013
https://doi.org/10.1172/jci.insight.92900
https://doi.org/10.1371/JOURNAL.PONE.0012220
https://doi.org/10.1371/JOURNAL.PONE.0012220
https://doi.org/10.3389/fimmu.2022.932090
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Mast cell tissue heterogeneity and specificity of immune cell recruitment
	Introduction
	Mast cell mediator release
	Mast cell heterogeneity between and within tissues
	Mast cell-mediated immune cell recruitment in the gut
	Mast cell-mediated immune cell recruitment in the skin
	Conclusions
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


