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Immunotherapy with therapeutic antibodies has shown a lack of durable responses in
some patients due to resistance mechanisms. Checkpoint molecules expressed by tumor
cells have a deleterious impact on clinical responses to therapeutic antibodies. Myeloid
checkpoints, which negatively regulate macrophage and neutrophil anti-tumor responses,
are a novel type of checkpoint molecule. Myeloid checkpoint inhibition is currently being
studied in combination with IgG-based immunotherapy. In contrast, the combination with
IgA-based treatment has received minimal attention. IgA antibodies have been
demonstrated to more effectively attract and activate neutrophils than their IgG
counterparts. Therefore, myeloid checkpoint inhibition could be an interesting addition
to IgA treatment and has the potential to significantly enhance IgA therapy.

Keywords: IgA, myeloid checkpoints, neutrophils (PMNs), cancer immonotherapy, immune checkpoint, antibodies,
CD47-SIRPalpha axis, macrophages
INTRODUCTION

For many patients, cancer is a devastating disease that is caused by an unfavorable imbalance
between the immune system and the tumor. Many current cancer immunotherapies attempt to
restore this balance by boosting the patient’s immune system through strategies such as monoclonal
antibodies (mAb), adoptive T-cell transfer, or therapeutic vaccines. mAbs are an established
therapeutic tool due to their well-documented clinical activity in many different tumor types and
indications. Following the approval of rituximab in 1997 for the treatment of B-cell lymphoma,
many others, including trastuzumab (approved in 1998 for HER2 overexpressing breast cancer) and
cetuximab (approved in 2009 for colorectal cancers) were developed (1). However, over recent years
it has become apparent that clinical responses to therapeutic antibodies are often critically affected
by the balance of immunostimulatory signals – typically mediated by immunoreceptor tyrosine-
org July 2022 | Volume 13 | Article 9321551
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based activation motifs (ITAM)-containing Fc receptors (but
also other molecules) – and immunoinhibitory signals mediated
by a plethora of different ITIM-containing molecules (2). The
term immune checkpoint blockade refers to the interference of
these interactions between immunoinhibitory molecules and
their ligands (3).

Identifying and blocking checkpoint molecules on T cells has
evolved as a successful strategy for cancer treatment. For
example, the discovery of cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) and programmed cell death protein 1
(PD-1)/programmed death-ligand 1 (PD-L1) accelerated the
field’s progress. Antibodies that inhibit these checkpoints,
thereby preventing inhibitory signals from suppressing T cells,
have been shown to improve anti-tumor responses. After the
discovery of these checkpoint molecules, in 2011, the FDA
approved ipilimumab, an anti-CTLA-4 blocking antibody, for
patients with metastatic melanoma (4). Pembrolizumab and
nivolumab, both PD-1 blocking antibodies approved for the
same indication, followed in 2014 (4). Later the FDA approved
atezolizumab and avelumab, both antibodies against PD-L1 (5).
In the following years, the list of indications for these antibodies
quickly expanded to many different tumor entities (6). However,
tumor types with typically low response rates were also observed,
which stimulated research into the mechanisms of antibody
response and resistance (7).

Today’s inhibitory checkpoint landscape extends beyond T cells
and adaptive immunity. Antibody-mediated phagocytosis of cancer
cells is a primary anti-tumor response mediated by macrophages in
innate immunity (8). Genome-wide CRISPR screens have identified
critical regulators of macrophage-mediated antibody-dependent
cellular phagocytosis (ADCP) of tumor cells. The well-known
CD47 anti-phagocytic factor and genes associated with protein
sialylation are among the top hits. Moreover, a novel gene,
adipocyte plasma membrane-associated protein (APMAP),
traditionally associated with white adipose tissue differentiation
but not previously associated with phagocytosis, was discovered to
strongly desensitize tumor cells to ADCP (9). Such regulators are
overexpressed on cancer cells to evade immune surveillance by
myeloid immune cells. For example, the binding of CD47 to signal
regulatory protein a (SIRPa) on macrophages reduces their anti-
tumor response, which can be restored by blocking this interaction
(10). Interestingly, SIRPa and other myeloid regulators are often
also expressed on neutrophils, which are the most abundant
immune cell in the circulation and are also found in many tumor
cell infiltrates (11).

Meanwhile, several CD47-SIRPa directed treatments are
being studied in combination with tumor-directed monoclonal
antibodies, which are of the human IgG1 isotype (12). While
IgG1 antibodies have been found to activate neutrophils, IgA
antibodies have been shown to be significantly more effective.
IgA-mediated antibody-dependent cellular cytotoxicity (ADCC)
by neutrophils outperforms IgG-mediated ADCC using this cell
subset, and when combined with CD47 blockade, the anti-tumor
capacity can be greatly increased using IgA antibodies (13, 14).

Although IgA has been proven to be particularly effective in
activating neutrophils, the numerous regulators overexpressed
Frontiers in Immunology | www.frontiersin.org 2
on tumor cells indicate that antibody-driven cytotoxicity alone is
insufficient to battle cancer, and that antibody therapy should be
combined with checkpoint inhibition to be effective (9). This
review summarizes myeloid checkpoint molecules and proposes
a novel combination strategy involving therapeutic
IgA antibodies.
MYELOID IMMUNE CHECKPOINT
MOLECULES

Traditional therapeutic antibodies, such as rituximab and
trastuzumab, generally rely on Fc receptor expression on
effector cells to induce cytotoxic effects such as cellular
activation, cytotoxicity, and phagocytosis of antibody-
opsonized tumor targets (15). The primary innate myeloid
population driving the anti-tumor response, likely by
phagocytosis, was proposed to be IgG-complex crosslinking to
FcgRIIIa on macrophages (16). Crosslinking of the IgG-complex
induced phosphorylation of the ITAM tyrosine residues and led
to downstream regulation of actin polymerization and activation
of phagocytosis (17). Just like the inhibitory Fc gamma receptor
FcgRIIb, myeloid checkpoint molecules contain immunoreceptor
tyrosine-based inhibitory motifs (ITIM) with tyrosine residues
that, when phosphorylated, initiate downstream signaling that
suppresses phagocytosis by counteracting ITAM signaling (18).

Weissman’s lab discovered the first myeloid checkpoint
molecule, the CD47-SIRPa interaction, in 2009 (19). Following
that, researchers have been looking for alternative myeloid
checkpoints. To date, ITIM bearing sialic acid-binding
immunoglobulin-like lectins (Siglecs) expressed on myeloid
cells have been discovered to bind to tumor cell ligands and
inhibit immune responses in a manner similar to the CD47-
SIRPa interaction. Moreover, leukocyte immunoglobulin-like
receptor subfamily B (LILRB) receptors 1 and 2 on myeloid
cells, were discovered to bind b2 microglobulin (B2M) exerting a
similar inhibitory response in myeloid cells. The role of these
myeloid checkpoint molecules (Figure 1) in cancer
immunotherapy will be further examined.
CD47-SIRPΑ AXIS

One of the most studied myeloid checkpoints is the CD47-SIRPa
axis. The ligand CD47, which is overexpressed on the tumor, has
an Ig-like domain in its extracellular region as well as five
transmembrane domains. It is ubiquitously expressed in
healthy tissues, including platelets and erythrocytes, and can
bind to integrins, thrombospondin-1, and signal regulatory
proteins, the most relevant of which is SIRPa, since other
signal regulatory proteins, such as SIRPb and SIRPg, bind with
minimal affinity to CD47, if at all (20).

Because of its demonstrated role in immunotherapy
resistance, CD47-SIRPa has received a lot of attention (21).
SIRPa is a plasma membrane protein that is expressed on
myeloid cells such as macrophages, granulocytes, some
July 2022 | Volume 13 | Article 932155
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dendritic cell subsets, and neurons (22). SIRPa was also found to
be overexpressed on natural killer (NK) cells after IL-2 activation
(23). In its extracellular region, the protein has three Ig-like
domains, where the NH2 terminal V-set domain is a critical
CD47 interaction site (24). Furthermore, two ITIMs are present
in its intracellular regions, which are phosphorylated by Src
family kinases upon interaction with CD47. Subsequently, Src
homology region 2 domain-containing phosphatase-1 (SHP-1)
and SHP-2 are recruited and activated. These phosphatases
prevent the assembly of myosin IIA at the immunological
synapse, preventing phagocytosis or trogoptosis (25).

In a physiological setting, the CD47-SIRPa interaction is a
critical mediator of hematopoietic cell homeostasis, most notably
in erythrocytes and platelets. Healthy cells are protected from
phagocytes by high CD47 expression, whereas senescent cells
have low CD47 expression and are quickly cleared (20).
Furthermore, recent research has discovered that functional
CD47-SIRPa interaction is crucial for the survival of T-and
NK cells in a steady state condition (26).

Tumor Cells Redirect the Immune System
by up Regulating CD47 Expression
In both solid tumors and hematological malignancies, such as
ovarian cancer, breast cancer, multiple myeloma and Non-
Hodgkin lymphoma (NHL), elevated CD47 expression is
associated with a poor prognosis (19, 27–35). Several
mechanisms have been proposed to explain regulation of
CD47 expression in cancer cells (Figure 2).

Transcriptional CD47 super enhancers were found in tumor
cells with a high level of CD47 expression. Moreover, additional
Frontiers in Immunology | www.frontiersin.org 3
research discovered the presence of a functional enhancer E7
upstream of the CD47 gene, with increased activity correlating
with CD47 overexpression in a number of cancer cell lines. Two
other enhancers, E5 at a downstream CD47 gene-associated
super enhancer and E3.2 within an upstream CD47 gene-
associated super enhancer, were discovered in some but not all
cancer cell lines, indicating that CD47 regulation may be tumor
specific (36).

While on the protein level, numerous cytokines secreted by
tumor-associated macrophages (TAMs) contribute to immune
evasion. Tumor necrosis factor alpha (TNF-a) promotes
translocation of nuclear factor kappa-light-chain-enhancer of
activated B cells (NFkB) to the nucleus in tumor cells. It binds to
E5 and possibly E7 at this site, allowing bromodomain-
containing protein 4 (BRD4) to be recruited to the super
enhancer site and promoting CD47 gene transcription (36, 37).
Co-culture of TNF-a with cancer cells at concentrations up to
100 ng/ml resulted in a maximum fourfold increase in CD47
expression due to enhanced CD47 promotor activity. This could
be reversed by using an anti-TNF-a antibody-to disrupt the
TNF-a – TNF receptor interaction (36, 38). Similarly,
interleukin-1b (IL-1b) was shown to activate NFkB and
enhanced CD47 expression in cervical cancer cells (39).

Other cytokines, such as interleukin-6 (IL-6) and interferon
gamma (IFN-g), also increased CD47 expression by activating
the signal transducer and activator of transcription 3 (STAT3)
pathway (32). Co-culture with these cytokines at concentrations
ranging from 20 ng/ml to 100 ng/ml decreased anti-tumor
ADCP of various cancer cells as a direct result of increased
CD47 expression (40).
FIGURE 1 | An overview of putative immune checkpoints molecules regulating myeloid cell function in human tumor microenvironments (TME). Receptor-ligand interaction
including the CD47-SIRPa axis, sialoglycans-Siglec axis and HLA1 (B2M)-LILRB 1/2 axis in the immune synapse between the myeloid cells, such as neutrophils and
macrophages and the tumor cells. Src family kinases phosphorylate the ITIM upon binding of checkpoint molecules to their respective receptors. The following recruitment and
activation of SHP-1 and SHP-2 suppresses the anti-tumor immune responses. Consequently, tumor cells are able to evade immune surveillance.
July 2022 | Volume 13 | Article 932155
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In addition, several transcription factors bind to the CD47
promotor to increase CD47 transcription. MYC, a transcription
factor involved in cell proliferation, differentiation, and
apoptosis, was discovered to promote tumorigenesis via direct
binding to the promotor of the checkpoint proteins CD47 and
PD-L1 (41, 42). MYC inactivation in various tumor cells down-
regulated cell surface expression of CD47 (41). Similarly,
recruitment of Snail Family Transcriptional Repressor 1
(SNAI1), Zinc Finger E-Box Binding Homeobox 1(ZEB1),
Hypoxia-inducible factor-1 (HIF-1), and the Pyruvate kinase
isozymes M2 (PKM2)-b-catenin- Brahma‐Related Gene‐1
(BRG1)- Transcription Factor 4 (TCF4) complex to the CD47
promotor increased CD47 expression (43–45).

Finally, microRNAs could negatively regulate CD47 gene
expression in cancer cells by degrading messenger RNA or
limiting translation. Numerous microRNAs that bind to the
CD47 3’ UTR and inhibit its expression have been identified.
MiR-133a, for example, is downregulated in esophageal
squamous cell cancer (46, 47). In T cell acute lymphoblastic
leukemia, miR-708 is downregulated and sustained CD47
expression (48, 49). Other miRNAs known to influence CD47
expression include miR-155 (50), miR-200a (51), miR-192 (52),
and miR-340 (53), which all act post-transcriptionally on
CD47 mRNA.
Frontiers in Immunology | www.frontiersin.org 4
CD47 Ligation Impairs Anti-Tumor
Response
The interaction between CD47 and SIRPa on macrophages
inhibits phagocytosis, serving as a “don’t eat me” signal, which
may counteract pro-inflammatory responses mediated by cancer
therapeutic antibodies, reducing therapeutic efficacy. Targeting
this axis is hypothesized to disrupt the inhibitory signal,
improving the efficacy of therapeutic cancer antibody
candidates targeting tumor associated antigen (TAA), such as
rituximab (31). Because CD47 is expressed in both hematological
and solid tumors, it is a promising and broadly applicable
therapeutic target. Although CD47-specific blocking antibodies
are capable of improving macrophage-mediated ADCP and
neutrophil-mediated ADCC, the mechanisms underlying CD47
targeted treatment are not restricted to these functions.

Some CD47 antibodies (Table 1) have been reported to
induce tumor cell death via a caspase-independent mechanism
(64). Apoptosis induced by CD47 ligation appears to be epitope-
dependent, as demonstrated by anti-CD47 clones MABL (60)
and CC2C6 (65), but not with clone B6H12 (19, 54).

Moreover, treatments using CD47 antibodies can promote
adaptive T-cell immune responses. Anti-CD47 therapy
administered intratumorally to colon adenocarcinoma tumor
(MC38)-bearing syngeneic WT C57BL/6 mice decreased tumor
FIGURE 2 | Regulation of CD47 expression in cancer cells. An overview of the mechanisms that cause CD47 overexpression in cancer. When the TNF receptor and
the IL-1 receptor are activated by extracellular TNF-a and IL-1, NFkB is recruited and translocated to the nucleus, where it binds to a super-enhancer to promote
CD47 expression. Extracellular IL-6 induces STAT3 signaling. Phosphorylated STAT3 complex and other transcription factors, including SNAI1, ZEB1, MYC, HIF-1,
PKM2-b-catenin-BRG1-TCF4 complex enhance CD47 expression by directly binding to the CD47 promotor. Extracellular IFN-g increased the CD47 expression,
albeit the exact mechanism is unknown. Subsequently, at a post-transcription level, microRNAs could bind to the 3’ untranslated region of CD47 mRNA, causing
translation to be disrupted.
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growth, but no effect was observed in T cell-deficient nude mice.
CD8+ T cell depletion revealed that the therapeutic effect was
mediated by cytotoxic T cells. Additionally, dendritic cells, but
not macrophages isolated from the tumor microenvironment
demonstrated increased cross-priming of the cytotoxic T cells
(55, 56). The infiltration of CD8+ dendritic cells into the spleens
of colon carcinoma tumor (CT-26)-bearing mice was increased
following treatment with ALX148, a high affinity anti-CD47
fusion protein with blocking capacities, Moreover the dendritic
cells were more activated. Increased levels of splenic effector
memory and central memory CD4+ T cells, as well as increased
numbers of central memory CD8+ T cells, were observed in these
mice (55). In a NHL model, CD47 mAb synergized with a CD19/
CD3 bispecific T cell engagers (BiTE) and activated both
macrophages and T cells. It was demonstrated that the CD47
mAb required macrophages, PBMCs, and possibly others for
optimal tumor clearance, as validated by macrophage depletion
using liposomal clodronate or NOD/SCID mice lacking human
PBMCs (57). It has been proposed that the association between
CD47 on tumor cells and thrombospondin-1 on T cells acts as an
immunological checkpoint, impairing T cell activation and
thereby decreasing antigen-dependent killing of tumor cells by
CD8+ T cells (58). Overall, inhibition of the CD47-SIRPa axis
promotes tumor antigen cross-presentation to CD8+ T cells by
dendritic cells, boosting the adaptive response.

Blocking the CD47-SIRPa Axis Improves
Macrophage-Mediated Phagocytosis
CD47 antibodies, such as the humanized B6H12 (often referred
as B6H12.2) and BRIC126 (Table 1) have been shown to be
effective in pre-clinical mouse models of acute myeloid leukemia
(AML) (19), acute lymphoblastic leukemia (27), T-cell
lymphoma (TCL) (54), and various solid tumors. After CD47
was blocked, TAMs in solid tumors could be converted to pro-
phagocytic (59, 61). Interfering with the CD47-SIRPa
interaction slowed tumor growth and prevented metastasis.
Both B6H12.2 and BRIC126 are first generation CD47
antibodies that disrupt the CD47-SIRPa interaction while also
triggering Fc-FcgR ADCC and ADCP, i.e. NK-mediated cell
death, via an intact IgG Fc tail. Monotherapy in PDX and
immunocompetent TCL mouse models using these antibodies
was proven to be efficient in killing tumor cells due to their Fc
Frontiers in Immunology | www.frontiersin.org 5
effector properties, whereas antibodies with blocking properties
need to be used in combination therapies (54).

Despite promising results in (pre)clinical studies, the field
remains concerned about the clinical applicability of this
approach. CD47 is expressed ubiquitously on somatic cells,
including platelets and erythrocytes, which is of major concern
for CD47 targeted therapy. Thrombocytopenia occurred
spontaneously in CD47-deficient mice due to uncontrolled
platelet phagocytosis. The CD47-SIRPa interaction was found
to be directly involved in the regulation of macrophage uptake of
CD47-negative platelets. Additionally, CD47-deficient mice
develop anemia and die prematurely as a result of rapid
erythrocyte clearance (62, 63, 66). As a result, CD47 must be
targeted with caution. Blocking antibodies such as F(ab)
fragments and Fc silent mAbs directed at CD47 were
developed to overcome dose-limiting toxicity. Again, these
blocking antibodies demonstrated that interrupting SIRPa
signaling requires the presence a pro-phagocytic signal, as the
blocking antibody alone had no effect on tumor suppression (19,
31, 67).

For example, Calreticulin and SLAMF7, are pro-phagocytic
receptors that are found in a variety of malignancies but are
minimally expressed on healthy cells. Calreticulin expression is
increased in a range of cancers, including leukemias, bladder
cancer, and ovarian cancer, whereas SLAMF7 expression is
increased in predominantly hematopoietic tumor cells (68).
When CD47 was blocked, Calreticulin overexpression resulted
in an increase in macrophage phagocytic capability. Surprisingly,
increased expression of SLAMF7 had no effect on macrophage
phagocytosis (54, 68, 69). Disrupting the CD47-SIRPa
downstream SHP-1 signaling in a melanoma mouse model by
using mutant mice lacking the SIRPa cytoplasmic tail had no
effect on tumor growth or metastasis. Tumor formation in these
mice was, however, prevented when combined with an anti-gp75
antibody (28, 70). It is clear that, in addition to removing the
‘brake’, an activating cue, whether a therapeutic Fc-active
antibody or another pro-phagocytic signal like calreticulin, is
required for optimal immune response.

Multiple pro-phagocytic signals may be beneficial in the
treatment of more advanced, resistant late-stage cancers.
Blocking CD47 did, in fact, synergize with rituximab and
improved macrophage-mediated phagocytosis in NHL
TABLE 1 | The characteristics of anti-human CD47/SIRPa antibodies and proteins.

Name Target Isotype Origin Status REF

ADU-1805 SIRPa IgG2 Humanized Research (54)
ALX148 CD47 Inactive Fc domain Fusion protein Phase 1/2/3 (55)
AO-176 CD47 IgG2 Humanized Phase ½ (56)
B6H12 CD47 IgG1 Mouse Research (57)
B6H12.2 CD47 IgG1 Humanized Research (19)
BI 765063 SIRPa IgG4 Humanized Phase 1 NCT04653142 (58),
BRIC126 CD47 IgG2b Mouse Research (59)
CC2C6 CD47 IgG1 Mouse Research (60)
CC-95251 SIRPa IgG1 Humanized Phase 1 NCT05168202
Hu5F9-G4 CD47 IgG4 Humanized Phase I/2 (61)
MABL sc(Fv)2 CD47 Sc(Fv)2 Mouse Research (62)
MY-1 CD47 IgG2a Rat Research (63)
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xenotransplant mouse models (31). In a pre-clinical model of
HER2+ breast cancer, a combination of a CD47 mAb and
trastuzumab was also found to successfully augment
macrophage-mediated phagocytosis (71).

The Development of Next-Generation
Antibodies
The humanized anti-CD47 antibody developed by Arch
Oncology, AO-176 (Table 1), has the distinctive property of
displaying low affinity to normal healthy cells and negligible
binding to erythrocytes and platelets. The differential binding
was most likely caused by the antibody’s binding epitope
characteristics, which allows it to bind more potently to
tumors in an acidic microenvironment (72, 73). Other novel
strategies for reducing the on-target toxicity of CD47 targeting
have been investigated. To reduce Fc-mediated effector
functions, the humanized 5F9 (Hu5F9) antibody was placed on
an IgG4 scaffold. Hu5F9-G4 inhibited the CD47-SIRPa
interaction and induced phagocytosis of AML cell lines by
macrophages. Furthermore, Hu5F9-G4 reduced NHL
engraftment in vivo, but total tumor clearance was only
achieved when combined with rituximab (74, 75). The on-
target toxicity of these modified antibodies is significantly
reduced. These agents, however, still face the issue of a large
antibody sink and are restricted to combination therapies as they
lack Fc-mediated effector functions.

ALX148 is a SIRPa-Fc protein engineered by fusing a
modified SIRPa to an inert human IgG1 Fc portion, not
capable of binding FcgR or C1q complement protein (55).
Binding to the neonatal Fc receptor, on the other hand, was
retained, which is beneficial for serum half-life. When compared
to the WT SIRPa, it was found to have a 7000-fold higher affinity
for human CD47. Because of the inert Fc portion on-target
adverse reactions were reduced. In vivo anti-tumor responses
were achieved in mantle cell lymphoma and gastric tumor
models using obinutuzumab and trastuzumab, respectively.
ALX148 promoted macrophage phagocytosis, induced
dendritic cell activation, and promoted T cell activation in
non-human primates with a favorable safety profile (55).

Another strategy to limit hematotoxicity are antibodies that
target SIRPa. Several SIRPa antibodies are currently undergoing
clinical trials or being researched, such as BI 765063
(NCT04653142), CC-95251 (NCT05168202), and ADU-1805
(76). These antibodies do not bind to erythrocytes and platelets
and show similar efficacies in vitro as CD47 antibodies (76–78).
However, validation in mouse models are difficult because of the
human specificity. MY-1 a SIRPa antibody that binds to the
NH2-terminal Ig-V–like domain of mouse SIRPa and thereby
blocks the CD47/SIRPa interactions in mice. MY-1 showed no
hematotoxicity in mice and improved ADCP and ADCC activity
(14, 79). Moreover, the antibody also binds the extracellular
region of mouse SIRPb1 and promoted anti-tumor immunity
independent of macrophage-mediated ADCP (80). SIRPb1 lacks
an ITIM motif and does not bind CD47 efficiently (81). It was
found that ligation of MY-1 to SIRPb1 promoted TNFa
secretion by macrophages and suppressed tumor growth
Frontiers in Immunology | www.frontiersin.org 6
through activation of a DAP12-Syk- MAPK signaling
pathway (80).

Small molecules are being investigated as a novel strategy for
disrupting the CD47-SIRPa interaction. A haploid genetic
screen revealed that the enzyme glutaminyl-peptide
cyclotransferase-like protein (QPCTL) is required for the
formation of pyroglutamate on CD47. QPCTL is an enzyme
that catalyzes the conversion of N-terminal glutamine and
glutamic acid residues to N-terminal pyroglutamate residues
(82). The CD47 protein’s N-terminal pyroglutamate is the
primary binding site for SIRPa (24). SEN177, a QPCTL
inhibitor, or QPCTL knockout abolished the binding of an
anti-CD47 antibody (CC2C6) that recognizes the same
recognition site as SIRPa (83). Pre-treatment of MDA-MB-468
and A431 cells with SEN177 for three days, decreased SIRPa-Fc
binding dose dependently and enhanced antibody-dependent
macrophage-mediated ADCP and neutrophil-mediated ADCC
(84). Traditional CD47 antibodies also bind to CD47 on healthy
cells, leading to a decrease in the antibody’s bioavailability, also
known as the antigen sink issue. Since pyroglutamate
modification occurs early in the cell cycle, before reaching the
cell surface, QPCTL inhibitors bypass the antigen sink problem
and may not compete with physiological SIRPa (83). It has not
been determined if tumor cells utilize the QPCTL enzyme to
stabilize the CD47-SIRPa interaction. The QPCTL expression
level did not correlate with the activation of phagocytosis in
response to anti-CD47 antibodies (54).

Small molecules/peptides are an intriguing study target due to
their favorable hematotoxicity profile. Both Pep-20 and RRx-001
are such small compounds that, when administered, disrupt the
CD47-SIRP axis with minimal systemic toxicity (85, 86). More
small molecules are likely to be discovered as a result of
optimized high throughput screenings for the discovery of new
CD47-SIRPa inhibitors (87, 88).

Furthermore , an ant i- le i shmania l drug , sodium
stibogluconate, was found to improve neutrophil-mediated
killing of B cell malignancies that were previously resistant to
anti-CD20 IgG antibodies. The drug had no direct effect on the
CD47-SIRPa axis, but was only effective when the CD47-SIRPa
interaction was disrupted. Despite the fact that sodium
stibogluconate inhibits the phosphatase SHP-1, the therapeutic
effect was not entirely dependent on SHP-1 (89). This indicates
that the CD47-SIRPa interaction is a key suppressor in the
tumor microenvironment.
ALTERNATIVE MYELOID CHECKPOINTS

Sialoglycans and Siglecs
Many tumor cells, including colorectal, breast, ovarian, prostate,
non-small cell lung cancer, and glioma, overexpress sialic acid
sugar-containing glycans known as sialoglycans, which have
emerged as important regulatory molecules in tumor
development (90, 91).

The hypoxic tumor microenvironment, as well as the
presence of oncogenic Ras, were proposed to support tumor
July 2022 | Volume 13 | Article 932155
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cell hypersialylation. The 2,6-sialyltransferase enzyme (ST6Gal-I)
found downstream of Ras oncogene signaling is responsible for
the addition of a2,6-sialic acid to termini N-glycans (92, 93). In
breast cancers, the cyclooxygenase COX-2 can increase the a2,3-
sialyltransferase enzyme (ST3Gal-I) expression (94). Moreover,
both ST6Gal-I and ST3Gal-(I, III and IV) overexpression was
associated with poor clinical outcome in different malignancies,
including myeloid leukemia, hepatocellular carcinoma and
bladder cancer (95–98).

By interacting with Siglecs, sialoglycans modulates
immunological responses (99). Siglecs are a family of 14-
transmembrane proteins that are expressed by the majority of
immune cells. They are classified into two groups: those with a
conserved structural motif (Siglec-1, -2, -4, and -15) and those
related to Siglec-3 (Siglec-3, -5 to -11, -14, and -16). Each Siglec
has an extracellular sialic acid-binding site that recognizes
sialylated proteins to which it can bind.

The majority of human Siglecs have an intracellular ITIM that
is phosphorylated in response to sialoglycan binding, which results
in the recruitment of SHP1/2 phosphates that inhibit downstream
activation pathways (100, 101). Among the ITIM-containing
Siglecs expressed on neutrophils, tumors predominantly express
sialoglycan ligands for Siglec-9 and to a lesser extent for Siglec-7
(90, 91). Siglec-9 recognizes botha2,3- and a2,6-linked sialic acids
at low affinity, but not a2,8-linked sialic acids. Whereas, Siglec 7
preferentially binds a2,8-linked sialic acids (102–104).

The removal of sialic acids from tumor cells using sialidase
impaired their interaction with Siglecs on immune cells. The
interaction of sialic acid on the tumor cell and Siglec on the
immune cell results in an inhibitory immunological response
mediated by activation of ITIM signaling in the tumor
microenvironment (105). Although the majority of Siglec
ligands remain undiscovered, certain ligands have been identified.

HLA I-LILRB Axis
LILRB receptors, also known as ILT, LIR, or CD85, are type I
transmembrane glycoproteins that have an extracellular Ig-like
domain and intracellular ITIM motifs. They are expressed in
human myeloid and lymphocyte cell populations. LILRB1 (ILT2,
LIR-1, CD85j) and LILRB2 (ILT4, LIR-2, CD85d) are currently
the best understood (106). Both receptors bindMHC class I (107),
where LILRB1 only binds B2M-associated MHC class I heavy
chains, while LILRB2 also binds B2M-free MHC class I heavy
chains (108, 109). Both LILRB1 and LILRB2 seem to have a role in
inhibiting phagocytosis by macrophages, albeit to a different
extent. In one study, LILRB1, but not LILRB2, was found to
inhibit macrophage-mediated phagocytosis. This could be due to
the lower surface expression level of LILRB2 inmacrophages (107,
110). In yet another study, LILRB2 ligation also decreased FcgR-
dependent phagocytic capacity and ROS production (111).

These LILRB receptors were discovered to be active in tumor
immune evasion due to their association with MHC class I. In
humans the MHC Class I complex is made up of HLA a chains
as well as the invariant B2M. MHC class I is ubiquitously
expressed on nucleated cells and is responsible for presenting
endogenous peptides to cytotoxic T cells (112). The peptide-
binding cleft is formed by two membrane-distal domains (a1
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and a2) that are non-covalently bound to two membrane-
proximal domains (a3 and Beta 2 Microglobulin). Domains a1
and a2 interact with the T cell receptor of the cytotoxic T cell,
while a3, which has a conserved Ig like domain, interacts with
the CD8 co-receptor (112).

MHC Class I molecules are classified as either classical (HLA-
A, B, and C) or non-classical (HLA-E,-G,-F). While LILRB1 and
LILRB2 recognize the conserved a3 and B2M domains in most
HLA haplotypes, HLA-G has emerged as an interesting binding
partner due to its more restricted expression on tumor cells. HLA-
G is mainly expressed on placental trophoblasts and thymic
epithelial cells in healthy tissue and is best known for
suppressing maternal immune responses (113). Tumor cells
express HLA-G de novo to evade immune surveillance, similar
to the immunosuppressive function seen in the placenta. High
HLA-G expression has been found in a variety of cancers,
including lung cancer (114), breast cancer (115, 116), colorectal
cancer (117), gastric cancer (118), and esophageal squamous cell
carcinoma (119). Furthermore, the presence of HLA-G on solid
tumors has been related to poor prognosis (120). HLA-G is also
expressed on hematological malignancies, although a connection
between expression and tumor growth has not been established
(121–124). Both LILRB1 and LILRB2 bind to HLA-G, however
LILRB2 binds with a more a3 domain dominant hydrophobic
interaction, confirming the B2M independency, suggesting a
higher affinity association than LILRB1-HLA-G (113).

LILRB1 was discovered to interact with HLA class I and
soluble HLA-G, and thereby reduce antibody-dependent NK cell
induced cytotoxicity. By blocking this interaction, cetuximab-
mediated ADCC was restored (120). Antibody-dependent
cytotoxicity was also shown to be impaired in macrophage-
mediated phagocytosis of tumor target cells (110). In this
study, LILRB1 was shown to be more prevalent than LILRB2
in both healthy donor-derived macrophages and tumor-
associated macrophages. These observations led to the
assumption that LILRB1 is the primary mediator of MHC class
I signaling in human macrophages (110).

Other LILRB members, LILRB3 (ILT5, LIR-3, CD85a),
LILRB4 (ILT3, LIR-5, CD85k) and LILRB5 (LIR-8, CD85c) are
orphan receptors with little information about their function
(125). Since LILRB5 is not expressed on myeloid cells, it plays a
minor, if any, role in myeloid immune regulation (125).
IGA ANTIBODIES

The majority of studies on the therapeutic relevance of myeloid
checkpoint therapy have concentrated on macrophage-
dependent phagocytosis. Myeloid checkpoints are typically not
restricted to expression on macrophages and monocytes.
Neutrophils, for example, account for the majority of white
blood cells in circulation, making them an intriguing effector
population. Ongoing clinical trials for CD47-targeted antibodies
are focused on combining mAb IgG therapy with CD47
blocking, primarily aimed at the effect of macrophages.
However, IgG antibodies can also activate neutrophils.
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Neutrophils express two classical activating FcgRs, namely
FcgRI (CD64) at less than 2000 molecules, and FcgRIIa (CD32a)
at 30.000-60.000 molecules (126). The majority of IgG-induced
neutrophil activation is mediated by FcgRIIa, the most prevalent
FcgR in neutrophils (127, 128). Both IgG1 and IgG2 are able to
induce neutrophil-mediated ADCC through FcgRIIA binding
(129). Moreover, the FcgRIIA-H131 allotype has increased
binding affinity to IgG1 and IgG2 compared to the FcgRIIA-
R131 allotype, which was also reflected in the ADCC capacity
(130). Engineered IgG antibody with a G236A substitution
enhanced FcgRIIA binding and improved ADCC (131, 132).

Moreover, neutrophils express FcaRI (CD89) which can
crosslink with IgA-complexes. Unexpectedly, IgA induced
substantially more robust neutrophil activation than IgG with
only about 10.000 molecules of FcaRI per neutrophil (133, 134).
IgA elicited much stronger ITAM signaling compared to IgG,
which was thought to be triggered due to the 1:2 stoichiometry,
resulting in the activation of four ITAMs at once (Figure 3).
(133, 135, 136) However, neutrophils also express the inhibitory
receptor FcgRIIb (CD32b) and GPI-anchored FcgRIIIb (CD16b).
The latter is expressed nearly 9-fold greater than FcgRIIa and
lacks an active intracellular signaling domain, thereby scavenging
away IgG and thus acts as a decoy receptor (137–139). FcgRIIIb
does not bind IgA but competes for binding IgG with activating
FcgRIIa, thereby reducing IgG Fc-FcgRIIa mediated ADCC
potential (138).
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IgA is the most abundant immunoglobulin produced in the
human body, with a daily production rate of 66 mg/kg (140,
141).A significant amount of IgA is found on mucosal surfaces,
mainly in dimeric or secretory form, where they play an
important role in mucosal defense. However, IgA is also
present in serum, with monomeric IgA being the second most
abundant immunoglobin at 1-3 mg/ml (142). In humans two
subclasses of IgA are found, IgA1 and IgA2 where the latter has
two major allotypes, IgA2m(1) and IgA2m(2). Structural
differences between IgA1 and IgA2 are primarily found in the
elongated hinge region of IgA1, and higher number of N-
glycosylation sites of IgA2. Both subclasses share a C-terminal
tailpiece of 18 amino acids needed for dimerization. About 95
percent of IgAs in serum are monomeric, of which 90 percent
being IgA1 and 10 percent being IgA2 (140, 143, 144).

Signaling Mediated by IgA Fc-FcaRI
IgA antibodies bind to FcaRI, a type 1 transmembrane receptor
expressed on neutrophils, eosinophils, monocytes, macrophages,
and some dendritic cell subsets (140, 145). IgA-complexes
associate with a dimer FcR gamma chain containing two
ITAMs, followed by tyrosine phosphorylation of the ITAMs.
This then acts as a docking site for the tyrosine kinase Syk, which,
when activated through calcium release, activates downstream
targets such as PI3K, phospholipase C-g and NADPH oxidase
(146–148). Furthermore, ITAM activation enhances
FIGURE 3 | IgG- and IgA-mediated activation of neutrophils. Neutrophils express various Fc receptors, the two most abundant of which, FcgRIIa and CD16b, are
important in modulating activation upon IgG ligation. FcgRIIb is expressed nearly 9-fold greater than FcgRIIa. FcgRIIa is an activating receptor that binds to IgG in a
1:1 stoichiometry and signals via one ITAM motif. Downstream ITAM signaling activates effector functions such as ADCC. Moreover, neutrophils express FcgRIIb,
which lacks an active intracellular signaling domain and functions as a scavenger receptor for IgG. IgA binds to FcaRI expressed on neutrophils, an activating Fc
receptor in a 1:2 stoichiometry. A total of four ITAMs cause a strong activation of ADCC.
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phagocytosis, oxidative burst, ADCC, and cytokine release (134,
144, 149). In soluble form, both IgA isotypes have low binding
affinity to the FcaRI with a Ka of 10 (6) M

-1, but this is increased
by 30-fold when IgA is immobilized (136, 140). Two domains on
IgA, the CH2 and CH3 domains, have been identified as critical
FcaRI binding sites (136).

Whereas ADCC by NK cells mediated by IgG induces
apoptosis of target cells via perforin and granzymes,
neutrophilic cytotoxicity is mediated by different mechanisms.
Neutrophil mediated cytotoxicity is distinguished by an irregular
neutrophil shape and a swarming effect towards the tumor cell
(150). In attempting to phagocytose larger tumor cells,
neutrophils adhere and spread around their target, a process
previously known as frustrated phagocytosis (151). Recently, this
mechanism of neutrophil-mediated effector function responsible
for superior killing of cancer cells was identified as trogoptosis. It
is a mechanism that involves active disruption of the cell plasma
membrane which results in lytic cell death (152). The first lytic
events were discovered to occur within 20 minutes, indicating
that neutrophils are very efficient at IgA-mediated cell
death (133).

IgA antibodies have been recombinantly engineered against a
variety of targets, including CD20, EGFR, GD2 and HER2 (153–
156). cetuximab IgA variants were developed and shown to block
the EGFR l i gand-b ind ing doma in , inh ib i t EGFR
phosphorylation, and inhibit EGF-induced cell growth in the
same way as IgG1 cetuximab (157, 158). When these IgG
antibodies were converted to IgA antibodies, their Fab-
mediated activities were unaffected (159, 160). Upon analyzing
antibody-mediated cytotoxic functions, it was demonstrated that
IgG1 antibodies primarily induced ADCC by peripheral blood
mononuclear cells (PBMCs) and to a much lesser extent by
polymorphonuclear leukocytes (PMNs). IgA variants, on the
other hand, induced ADCC mainly by PMNs but not by
PBMCs in an FcaRI-dependent manner (154). Furthermore,
IgA appears to play a role in macrophage-mediated phagocytosis
(161–164). However, when monocytes/macrophages were used
as effector cells, the difference was less pronounced, indicating
that PMNs are the most important effector cell population for
IgA mediated killing. Indeed, at an E:T ratio as low as 5:1, IgA
was able to induce PMN-mediated ADCC. In experiments with
IgA2-EGFR complexed with A431 cells using whole leukocytes,
mimicking physiological conditions, IgA2 outperformed IgG1 in
ADCC (157–159). Myeloid cell numbers can be easily increased
by GM-CSF and G-CSF and have been shown to improve IgA
anti-tumor effects. However, it was not required for effective IgA
mediated kill (153, 162, 165).

Although promising, preclinical studies with IgA therapeutic
antibodies have been challenging for decades. One of the
limitations include the short half-life of IgA compared to IgG.
IgA lacks the binding site for the FcRn, resulting in a significantly
shorter serum half-life. Additionally, hepatic clearance of
exposed terminal galactose by the asialoglycoprotein receptor
(ASGPR) reduces the half-life (166, 167). However, through
extensive antibody engineering, the IgA antibody has been
improved in producibility and stability (153, 154, 157–160).
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Moreover, In vivo studies have been limited by the absence of
FcaRI in mice and the rapid clearance of IgA. Pre-clinical models
to study IgA were developed by the generation of a functional
hFcaRI transgenic mouse, described here (168).

The first demonstration of the anti-tumor response of IgA in
vivo was shown in an EGFR model using FcaRI transgenic mice,
using both IgA1 and IgA2 EGFR antibodies (162). The typical
fast clearance of the IgA antibody was resolved by repetitive
dosing to match the serum levels of IgG. Multiple doses of 50 mg
IgA2 EGFR antibody restricted tumor growth in an A431 lung
carcinoma SCID model in a FcaRI dependent manner (162).
Furthermore, in A431 cell-based short-term intraperitoneal (i.p.)
models, i.p. treatment with multiple doses of 50 mg IgA
suppressed outgrowth while increasing macrophage and
neutrophil influx. However, the anti-tumor response appears
to be primarily Fab-dependent rather than ADCC-dependent. In
a short term i.p. syngeneic C57BL/6 model with Ba/F3-EGFR
cells IgA2 EGFR induced cytotoxicity, but it was primarily
mediated by macrophages/monocytes (162). IgA2 induced a
cytotoxic response that lasted longer than cetuximab in a long-
term immunocompetent C57BL/6 model (162). An engineered
variant of IgA2, termed IgA2.0, against EGFR inhibited
outgrowth as well. IgA2.0 has improved pharmacokinetics and
has been found to be beneficial in long-term in vivo models
(153). IgA2.0, was more effective than IgA2 in the i.p. model,
most likely due to its improved serum stability (153). Following
that, other models produced demonstrated comparable results
for other targets, including CD20 (13, 154), HER2 (155, 159) and
GD2 (169). To summarize, IgA antibodies have demonstrated
efficient anti-tumor responses in various tumor models
expressing various tumor target antigens.
COMBINING MYELOID CHECKPOINT
INHIBITION WITH IGA ANTIBODIES

The Role of Neutrophils in Myeloid
Checkpoint Inhibition
Killing of target cells by an anti-CD47 mAb was reduced in the
absence of macrophages, showing that macrophages mediate the
majority of therapeutic effectiveness (170). However, because
neutrophils play such a minor role in IgG immunotherapy, this
effector population is often overlooked. Nevertheless, recent
research has highlighted the importance of neutrophils in
myeloid checkpoint inhibition. In a variety of neuroblastoma
cell lines, knocking down CD47 or blocking SIRPa on
neutrophils increased the neutrophil-mediated ADCC induced
by dinutuximab (anti-GD2 antibody). Blocking the CD47-SIRPa
interaction also increased ADCC capacity in primary patient-
derived neuroblastoma spheroid cells as long as GD2 expression
was sufficient, once again highlighting the relevance of
combination therapy (Figure 4) (171, 172). Furthermore, anti-
CD47 monoclonal antibodies were shown to work synergistically
with trastuzumab to improve neutrophil ADCC against breast
cancer cell lines (28, 152). Cetuximab-opsonized A431 cells, as
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well as trastuzumab-opsonized A431 cells, demonstrated
enhanced neutrophil-dependent tumor killing in response to
CD47-SIRPa inhibition (152, 173). The role of neutrophil killing
in CD47 checkpoint inhibition was subsequently examined in
vivo, where disruption of the CD47-SIRPa axis significantly
reduced the metastatic load in the liver and was revealed to be
dependent on neutrophil killing (152). When the CD47-SIRPa
axis was blocked by an anti-human SIRPa antibody, KWAR23,
not only macrophages but also neutrophils infiltrated the tumor
in a human Burkitt’s lymphoma xenograft. Neutrophil depletion
resulted in tumor growth, suggesting that neutrophils, like
macrophages, also play an anti-tumor role (174).

To support the role of granulocytes, in NHL models, the
synergy between rituximab and anti-CD47 occurred
independently of NK cells or complement (31). Furthermore,
in melanoma, CD47 may protect NK cells from chronic
inflammation, and CD47 deficiency resulted in splenic NK cell
exhaustion (175). Since clinical IgG antibodies primarily act
through NK cell-mediated ADCC of tumor cells and, to a
lesser extent, interact with macrophages and neutrophils, it is
debatable whether IgG-mediated tumor killing is the best
strategy (176).

IgA Synergizes With CD47 Targeted Therapy
We hypothesize that the observed effects of myeloid cells upon
CD47 blockade could be enhanced even further by the use of IgA
antibodies, which primarily recruit neutrophils and macrophages
thereby potentially benefiting the most from CD47-SIRPa
targeted therapy.

Previous research has shown that targeting CD47-SIRPa in
combination with IgA therapeutic antibodies is beneficial. In
Frontiers in Immunology | www.frontiersin.org 10
vitro studies showed improved IgA-mediated ADCC by PMNs
upon disruption of the CD47-SIRPa interaction in SKBR3 and
A431 cells, either by blocking SIRPa or knocking out CD47 in
the tumor cell line. PMN-ADCC mediated by IgA2 trastuzumab
and IgA2 cetuximab in CD47KO SKBR3 and CD47KO A431
cells, respectively, improved ADCC more than 10-fold when
compared to IgG equivalents (14). The beneficial role of IgA in
CD47 blocking therapy was translated into in vivo findings as
well. In an A431 hFcaRI Tg xenograft mouse model, CD47 KO
A431 cells were subcutaneously injected in one side of the flank
andWT A431 cells in the other flank, and mice were treated with
either IgA anti-EGFR, cetuximab or control. Only the IgA
treated mice showed reduced tumor size for the CD47 KO
tumor. Improved anti-tumor response was also observed in a
shorter syngeneic i.p. Ba/F3-HER2 model, where consistent with
previous data, IgA outperformed trastuzumab in the absence of
CD47-SIRPa signaling. The CD47-SIRPa axis was disrupted at
the neutrophil site using an anti-SIRPa blocking antibody (clone
MY-1), demonstrating various strategies for disrupting the
inhibitory interaction. In this model, IgA-HER2 was
responsible for an enhanced influx of granulocytes to the
tumor, whereas trastuzumab did not improve the influx of
granulocytes (14). In a similar mouse model, but a different
approach to interrupting the CD47-SIRPa signaling, QPCTL
deficient Ba/F3-HER2 cells that lack pyroglutamate on CD47,
were effectively killed by neutrophils directed to the tumor by
IgA-HER2, in a similar fashion to CD47KO Ba/F3-HER2 cells
(83). These studies consistently show that IgA synergizes with
CD47 targeted therapy and outperforms IgG in a variety of
tumor cell lines and targets in both short and long term
mouse models.
FIGURE 4 | Regulation of neutrophil-mediated tumor cell death. The balance of pro-phagocytic and anti-phagocytic signals determines the fate of the tumor cell.
Pro-phagocytic signals are elicited by Fc receptor engagement to IgA-opsonized tumor cells, resulting in Fc activation and phosphorylation of downstream ITAM
tyrosines. Calreticulin is tethered to the cell surface by membrane glycans and interacts with lipoprotein receptor-related protein 1 (LRP1) receptor expressed on
neutrophils. Likewise, SLAMF7 (CD319) binds to macrophage-1 antigen (MAC-1, aMb2), these interactions promote tumor cell killing by neutrophils. In contrast,
overexpression of CD47 on tumor cells interact with SIRPa to inhibit neutrophil activation. Similarly, if expressed, the sialoglycans-Siglec axis, and HLA1 (B2M)-LILRB
axis if expressed decrease immune responses, allowing tumor cells to evade immune surveillance.
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The Immunosuppressive Function of
Siglecs in Myeloid Cells
While the sialoglycan-siglec and HLA1 (B2M)-LILRB1/2 axis
have rarely been explored in combination with IgA antibodies,
they have been found to be ITIM-mediated, comparable to the
CD47-SIRPa interaction. These alternative checkpoint receptors
have been shown to inhibit FcgR-mediated IgG responses in
monocytes and macrophages. Because of their expression on
neutrophils and the inhibition mediated by ITIM signaling, these
inhibitory receptors are likely to modulate FcaRI signaling in a
similar fashion.

The immunosuppressive function of Siglecs in neutrophils
has been well described for Siglec-9 in both bacterial infections
and tumor immunology (177, 178). Accordingly, Siglec-9
agonists were reported to prevent neutrophil activation and
NETosis in SARS-CoV-2, where NETosis is undesirable due to
respiratory damage (179). In a tumor co-culture in vitro
experiment, Siglec-9 ligation on neutrophils resulted in
decreased activation as measured by ROS generation (90).
Similarly, siglec-9 binding to glycophorin A on erythrocytes
inhibited NET formation and ROS production (180). The
activation of Siglec-9 suppresses both caspase-dependent and
caspase-independent neutrophil-induced apoptosis of tumor
cells (181).

Siglec-E (the mouse homolog of Siglec-9) expression allows
for preclinical mouse studies. Siglec-E was reported to have an
immunosuppressive effect on neutrophils in an acute
inflammatory model. Ligation of Siglec-E reduced the influx of
neutrophils, by inhibiting CD11b signaling (182). This inhibitory
response was controlled by activation of NADPH oxidase and
the production of ROS by Siglec-E (183). The inhibitory role of
Siglec-9/Siglec-E was also verified in an in vivo MC38 tumor
intravenous (i.v.) model, where Siglec-E knock out mice had
decreased lung metastasis (90). Siglec-E is found on infiltrating
neutrophils, macrophages and DCs in B16 and MC38
tumormodels (184). Furthermore, Siglec-9 is also expressed on
macrophages and has been demonstrated to reduce TNFa
secretion while increasing IL-10 production (185). Surprisingly,
contrary to the immunosuppressive findings, Siglec-E knock out
mice demonstrated increased M2 macrophage polarization in
later stages of tumor growth, indicating that the stage of cancer
should be considered when targeting Siglec-E/9 (90).

To generate a humanized immunocompetent mouse model,
Siglec-E was knocked out and human Siglec-7 and -9 were
introduced (184). B16 tumors were inoculated s.c. in this
model to assess the antibody tumor response. When treated
with the gp76 antibody, Siglec-E KO mice had less tumor
outgrowth than Siglec-7+/Siglec-9+ Siglec-E KO mice,
indicating that Siglec-7 and Siglec-9 decrease the antibody
response (184). Although it is evident that tumor cell
hypersialylation has an immunosuppressive function, little is
known about the Siglec-ligands.

These ligands have been investigated as potential novel
immunotherapy targets. Previously, it was discovered that
Mucin 1 (MUC1) and MUC16, which are frequently
overexpressed in adenocarcinomas, bind Siglec-9 (186, 187).
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MUC1 binding to Siglec-9 on macrophages induced calcium
flux, which activated the MEK-ERK pathway. This resulted in the
macrophages adopting an more immunosuppressive TAM
phenotype (188). Similarly, MUC 16 is highly expressed in
ovarian carcinoma where siglec-9 binding mediates inhibition
of anti-tumor immune responses (187, 189).

Moreover, lectin galactoside-binding soluble 3 binding
protein (LGALS3BP) or Mac-2 binding protein was recently
found as a Siglec-9, -5 and -10 ligand. However, Siglec binding is
likely not restricted to LGALS3BP and MUCs, and there may be
additional unidentified ligands (186). Recombinant LGALS3BP
inhibited both spontaneous and Lipopolysaccharides (LPS)-
induced neutrophil ROS generation, indicating decreased
neutrophil activation. Furthermore, when neutrophils were co-
cultured with LGALS3BP knock out HT-29 tumor cells,
neutrophil mediated apoptosis was higher than in WT HT-29
cells (190).

Siglec-7 is also expressed at low levels on neutrophils, but its
immunosuppressive function is less well characterized. One of
the Siglec-7 ligands was recently identified as GD2, which is
overexpressed on neuroblastoma cells. By activating neutrophil-
mediated ADCC and disrupting the Siglec-7-GD2 axis, GD2-
targeted mAbs effectively induced killing of neuroblastoma
cells (172).

The Immunosuppressive Function of
LILRB in Neutrophils
LILRB expression on neutrophils seems to be phase dependent.
Mainly LILRB2 is expressed on the cell surface of healthy
peripheral neutrophils in a steady state condition. While there
have been contradictory findings on the expression of LILRB1,
proteomic analysis has verified LILRB1 expression on
neutrophils (191). LILRB1 expression was increased in primed
neutrophils, indicating that LILRB2 controls immune responses
throughout the middle and late activation phases of the
neutrophil lifecycle, avoiding overactivation (111).

In neutrophils, LILRB2 has shown to reduce neutrophil
cytotoxicity. Both antibody-dependent phagocytic functions
and neutrophil ROS production were inhibited by HLA-G
interaction (111).

Despite the fact that LILRB3 and LILRB4 are orphan receptors,
they remain interesting receptors to investigate in the context of
myeloid cells. LILRB3 is expressed on neutrophils and suppresses
the formation of ROS via FcaRI in infectious diseases. After one
hour of incubation on an anti-LILRB3 or isotype control coated
plate, neutrophils were activated via FcaRI crosslinking. In this
study, ROS production was decreased when neutrophils were
incubated in wells coated with anti-LILRB3. Following that,
phagocytosis mediated by FcaRI was evaluated using IgA1-
opsonized microparticles. The phagocytic uptake of
microparticles was decreased in LILRB3-blocked neutrophils.
Similarly, LILRB3 impaired IgA-mediated phagocytosis of
bacteria (S. capitis) (192). Therefore, we should not limit our
attention to LILRB1 and 2.

Moreover, crosslinking of a different family member LILRB4
using immobilized anti-LILRB4 monoclonal antibody, inhibited
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FcgRI-dependent phagocytosis and TNFa production via
monocytes through phosphatase recruitment (193, 194).
Interestingly, LILRB4 expression was found on PMN- Myeloid
derived suppressor cells (MDSCs) but not on PMNs obtained
from healthy control donors in one study of 105 non-small cell
lung cancer patients, and expression was found to be inversely
related to patient survival (195). These findings suggest that
LILRB4 may play a role in neutrophil suppressive progression.
STRATEGIES TO COMBINE IGA
ANTIBODY TREATMENT WITH MYELOID
CHECKPOINT INHIBITION

As a result of checkpoint-related advancements in the IgG field,
we’ve acquired a number of ways for checkpoint inhibition in
IgA treatment. Since comparable approaches may be used, the
switch to IgA therapy is straightforward (Figure 5).

A straightforward strategy for proof-of-concept experiments
is to knock out target genes of interest. In CD47 studies, tumor
cells can be effectively knocked out, resulting in improved anti-
tumor response (173). Similarly, essential enzymes in the sialic
acid metabolism pathway can be knocked out to reduce
sialylation of surface glycans on tumor cells. One of these
enzymes is UDP-N-acetylglucosamine 2-epimerase/N-
acetylmannosamine kinase (GNE) (196).

Antibodies that bind to checkpoint molecules and block their
activity can also be considered to prevent the suppressive
interaction. Several antibodies have been developed to
interrupt the CD47-SIRPa axis, including anti-CD47 mAbs,
anti-SIRPa mAbs, and SIRPa-Fc fusion proteins (Table 1).
Moreover, anti-Siglec-7 antibody clone Z176, S7.7 and 1E8
have been successfully shown to bind Siglec-7 (90, 184). To
Frontiers in Immunology | www.frontiersin.org 12
target Siglec-9, antibody clone 191240, E10-286 and mAbA has
been tested in several studies (177, 178, 184). Furthermore,
antibodies against HLA Class I [clone W6/32 (110)], LILRB1
[clone GHI/75 (110) and BND-22 (197)] LILRB2 (clone 27D2)
(197) have been shown to inhibit the immunosuppressive
activities of the HLA/LILBR axis and enhanced anti-
tumor activity.

Small molecules and enzymes provide a novel approach to
checkpoint modulation. SEN177, a small molecule glutaminyl
cyclase inhibitor, for example, has been found to interfere with
QPCTL function and prevent pyroglutamate synthesis on CD47,
interrupting binding of SIRPa to CD47 (83). RRx-001, an
inhibitor of MYC downregulates CD47, while another small
molecule Pep-20 targets CD47 to disrupt the interaction with
SIRPa (85, 86). Sodium stibogluconate, albeit not directly
targeting the CD47-SIRPa axis, synergized with CD47
blockade and improved anti-tumor response (89).

Furthermore, cleaving surface sialic acid residues with
sialidase is a frequent method for modulating the sialoglycan/
Siglec interaction (198). A different approach is to target
sialyltransferases, which catalyze the conversion of sialic acid
residues to oligosaccharide chains by using cytidine
monophosphate N-acetylneuraminic acid (CMP-Neu5Ac) as
the donor. Hypersialylation can be prevented by inhibiting the
sialyltransferases (199).

Finally, several strategies are presented dependent on the
intended target. Small molecules and antibodies with clinical
promise have received increased attention throughout the years.
The majority of treatments, however, have not been clinically
studied and are still in the early stages of research.

Bispecific Approaches
Combination therapy with monovalent IgA antibodies and
CD47 targeted antibodies has limitations, such as the antigen
FIGURE 5 | Strategies for inhibiting myeloid checkpoints. 1) Genetic knock out of target genes involved in the inhibitory pathway. 2) Specific blocking of target
checkpoint molecules with mAbs or soluble ligand-Fc fusion proteins to inhibit receptor binding and checkpoint axis activation. 3) Bispecific antibodies that target
both TAA and checkpoint molecules simultaneously to avoid off-target side effects.4) Biologics that alter the structure of the target protein, preventing it from binding
to the receptor, or that inhibit expression or block the target protein.
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sink problem that traditional anti-CD47 antibodies suffer from
(200). Similarly, combination therapy with novel checkpoint
molecules will likely face the same challenge. Bispecific
antibodies (bsAbs) have gained recognition as a novel format
of antibody in recent years, and we believe they can potentially
fill the gap left by anti-checkpoint and TAA-antibody
combination therapies. Bispecific antibodies have a greater
affinity for dual antigen-expressing cells than for single
antigen-expressing cells, resulting in a more avid interaction.

The potential of bispecific TAA/CD47 targeting antibodies,
have been demonstrated by several studies. The novel HuNb1-
Ig4 antibody demonstrated a lower affinity for RBCs than the
anti-CD47 antibody Hu5F9-G4. The affinity for RBC was
reduced much further when developed into a bispecific
antibody and linked to the C-terminus CH3 domain of
rituximab. When compared to the combination treatment of
rituximab and HuNb1-IgG4, the bispecific CD20/CD47 HuNb1-
IgG4 significantly lowered tumor volume in vivo (201). However,
it is unclear whether this rituximab modification will affect the
ADCC capacity.

Another approach is the dual var iab le domain
immunoglobulin (DVD-Ig)format to generate a CD20/CD47
bispecific antibody (202). Using an amino acid linker, the
variable domain of one antibody was engineered on the N-
terminal variable domain of the other antibody. The CD47
variable domain was placed in the inner position because steric
hindrance was expected to reduce affinity. Indeed, the affinity of
CD47 in the bispecific antibody format was reduced by 20-fold
when compared to the affinity of CD47 mAb, whereas the affinity
of CD20 appeared to be unaffected. When incubated with RBCs,
the binding assay confirmed simultaneous binding to CD47 and
CD20, as well as preferential binding to dual antigen-expressing
cells. Furthermore, the bsAb was shown to increase phagocytosis
in the same way that anti-CD47 mAb and rituximab
combination therapy did. Additionally, in a subcutaneous Raji
NSG mouse model, the CD20/CD47 DVD-Ig reduced tumor
burden in a manner comparable to combination therapy (202).

Moreover, anti-CD47/CD19 (71) or anti-CD47/MSLN (72)
antibodies were generated in the kl body format, which has the
human IgG1 isotype (203). They differ from conventional IgG1
in that they have two different light chains, one kappa and one
lambda paired to the IgG1 heavy chain. The kappa light chain in
the kl body format targets CD47, while the lambda light chain
targets either CD19 or MSLN. To prevent undesired binding
from TAA-negative cells, the CD47 arm has a lower affinity.
When tested, the kl bsAbs demonstrated selective binding for
dual antigen-expressing cells, tumor killing in vitro, and were
superior to combination therapy with monovalent antibodies. In
vivo, bsAbs inhibited tumor growth in the same way that the
combination treatment did. These bsAbs were found to be at
least as effective in mediating phagocytosis as the monovalent
antibodies combined, with no undesired binding to erythrocytes
or platelets, making them potential clinical candidates (204, 205).

Sialylation does not occur exclusively on the tumor’s surface.
To avoid unfavorable side effects, it is critical to selectively
remove sialoglycans from tumor cells while leaving healthy
Frontiers in Immunology | www.frontiersin.org 13
cells undisturbed. However, targeting sialoglycans may involve
a slightly different approach. Antibody-enzyme conjugates could
provide a method for removing sialoglycans from tumor cells
specifically. In one study, a trastuzumab-sialidase conjugate
demonstrated specific sialic acid cleavage on HER2 positive
SKBR3 cells and had no effect on the HER2 negative MDA-
MB-468 cells. Furthermore, when compared to trastuzumab
monotherapy , the tras tuzumab-s ia l idase conjugate
demonstrated increased NK-cell mediated ADCC against a
variety of HER2 expressing cell lines, making this a promising
tool for avoiding on-target side effects while maintaining
improved anti-tumor capacities (105).

Glycoproteins and glycosaminoglycans are large proteins
found in the glycocalyx of both tumor and immunological
cells. Not surprisingly, the glycocalyx has been shown to
inhibit phagocytosis through steric and electrostatic hindrance.
As a result, removing this barrier and revealing tumor targets
may improve tumor killing. The removal of mucins from tumor
cells improved phagocytosis (206). Combination strategies, in
which the glycocalyx of the tumor cell is first stripped, followed
by targeting other checkpoint molecules in combination with
IgA treatment, could be an effective and novel strategy.
CONCLUDING REMARKS

IgA antibodies are an emerging novel strategy for antibody
therapeutics that, due to their unique mode of action, hold
promise for use in tumors infiltrated by neutrophils. These
tumors often have a poor prognosis with currently available
therapies (207) – supporting the need for new approaches.
Because myeloid cells are recruited, combining CD47-SIRPa
checkpoint inhibition with IgA antibodies might be a good
method for targeting resistant tumor cells. Similarly, we believe
that blocking other myeloid checkpoint molecules addressed in
this review could improve IgA-mediated tumor responses.
Combining IgA treatment with checkpoint inhibitors such as
those described in Figure 5 is proposed.

Alternatively, a bsAb IgA antibody directed against a TAA
and a checkpoint molecule could be used to circumvent some of
the limitations of monovalent antibody-based combination
therapy. We are confident that techniques comparable to those
used to generate IgG-based bsAbs can be utilized to create novel
IgA-based bsAbs as long as the modifications do not interfere
with FcaRI signaling. However, the efficacy of such bsAbs is
unclear and needs to be further investigated. These developments
could improve current therapies that use identified myeloid
checkpoint molecules, while also highlighting the potential of
myeloid checkpoints to accelerate the discovery of more
inhibitory molecules.
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ADCC Antibody-dependent cellular cytotoxicity
ADCP Antibody-dependent cellular phagocytosis
AML Acute myeloid leukemia
APMAP Adipocyte plasma membrane-associated protein
B2M b2 microglobulin
BiTE Bispecific T cell engager
BRD4 Bromodomain-containing protein 4
BRG1 Brahma‐Related Gene‐1
BsAb Bispecific antibody
CD47 Cluster of differentiation 47
CTLA-4 Cytotoxic T-lymphocyte-associated protein 4
DVD-Ig Dual variable domain immunoglobulin
GNE UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine

kinase
GPI Glycosylphosphatidylinositol
HCC Hepatocellular carcinoma
HIF-1 Hypoxia-inducible factor-1
IFN- g Interferon gamma
IL-1b Interleukin-1b
IL-6 Interleukin-6
ITAM Immunoreceptor tyrosine-based activation motif
ITIM Immunoreceptor tyrosine-based inhibitory motif
LGALS3BP Lectin galactoside-binding soluble 3 binding protein
LILRB Leukocyte immunoglobulin-like receptor subfamily B

(Continued)
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LPS Lipopolysaccharides
mAb Monoclonal antibody
MDSC Myeloid derived suppressor cell
MUC1 Mucin 1
NFkB Nuclear factor kappa-light-chain-enhancer of activated B cells
NHL Non-Hodgkin lymphoma
NK cell Natural killer cell
PBMC Peripheral blood mononuclear cell
PD-1 Programmed cell death protein 1
PD-L1 Programmed death-ligand 1
PKM2 Pyruvate kinase isozymes M2
PMN Polymorphonuclear leukocytes
QPCTL Glutaminyl-peptide cyclotransferase-like protein
ROS Reactive oxygen species
SHP1/2 Src homology region 2 domain-containing phosphatase-1/2
Siglec Sialic acid-binding immunoglobulin-like lectin
SIRPa Signal regulatory protein a
SNAI1 Snail Family Transcriptional Repressor 1
SOCS3 Suppressor of cytokine signaling 3
ST6Gal-1 2,6-sialyltransferase 1
STAT3 Signal transducer and activator of transcription 3
TAA Tumor associated antigen
TAM Tumor-associated macrophages
TCF4 Transcription Factor 4TCL T-cell lymphoma
TME Tumor microenvironment
TNF-a Tumor necrosis factor a
ZEB1 Zinc Finger E-Box Binding Homeobox 1
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