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Immune landscape and
risk prediction based on
pyroptosis-related molecular
subtypes in triple-negative
breast cancer

Lixi Luo*, Qun Wei, Chenpu Xu, Minjun Dong
and Wenhe Zhao

Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of
Medicine, Hangzhou, China
The survival outcome of triple-negative breast cancer (TNBC) remains poor,

with difficulties still existing in prognosis assessment and patient stratification.

Pyroptosis, a newly discovered form of programmed cell death, is involved in

cancer pathogenesis and progression. The role of pyroptosis in the tumor

microenvironment (TME) of TNBC has not been fully elucidated. In this study,

we disclosed global alterations in 58 pyroptosis-related genes at somatic

mutation and transcriptional levels in TNBC samples collected from The

Cancer Genome Atlas and Gene Expression Omnibus databases. Based on

the expression patterns of genes related to pyroptosis, we identified two

molecular subtypes that harbored different TME characteristics and survival

outcomes. Then, based on differentially expressed genes between two

subtypes, we established a 12-gene score with robust efficacy in predicting

short- and long-term overall survival of TNBC. Patients at low risk exhibited a

significantly better prognosis, more antitumor immune cell infiltration, and

higher expression of immune checkpoints including PD-1, PD-L1, CTLA-4, and

LAG3. The comprehensive analysis of the immune landscape in TNBC indicated

that alterations in pyroptosis-related genes were closely related to the

formation of the immune microenvironment and the intensity of the

anticancer response. The 12-gene score provided new information on

the risk stratification and immunotherapy strategy for highly heterogeneous

patients with TNBC.
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Introduction

Breast cancer (BC) is the leading cause of cancer death among

women. Triple-negative breast cancer (TNBC), marked by negative

expression of estrogen receptor (ER), progesterone receptor (PR),

and human epidermal growth factor receptor-2 (HER2), is the most

challenging subtype of BC due to its high heterogeneity and lack of

effective target therapies (1). Tumor mutation burden (TMB) is

higher in TNBC than in other subtypes, suggesting a higher

probability of benefits from treatment with immune checkpoint

inhibitors (ICIs) (2). Several clinical trials have investigated the

feasibility of adding ICIs to chemotherapy in TNBC, and most of

these studies focus on inhibitors of the PD-1/PD-L1 pathway.

Pembrolizumab, an anti-PD-1 agent, has been demonstrated to

be helpful in improving the survival of both metastatic and early

stage TNBCs (3, 4). Meanwhile, the anti-PD-L1 agent atezolizumab

shows discrepant efficacy in advanced TNBC when combined with

paclitaxel or nab-paclitaxel (5, 6). Overexpression of CTLA-4,

another immune checkpoint molecule, is observed in breast

tumors (7). A single-arm pilot study suggested treatment

responses to combined anti-CTLA-4 antibody tremelimumab and

anti-PD-L1 durvalumab in three of the total of seven TNBC cases

investigated (8). However, the study was terminated due to the low

overall response rate that did not meet the required criteria.

Currently, randomized trials exploring anti-CTLA-4 treatment in

TNBC are ongoing, while no positive results have been reported (9,

10). It is worth mentioning that, compared to other cancers, the

TMB or microsatellite instability (MSI) in BC is still notably low

(11, 12), resulting in a less dramatic response to immunotherapy.

The narrow therapeutic window and ultimate drug resistance also

remain to be problems that need to be resolved.

Pyroptosis is a cytolytic and inflammatory form of

programmed cell death mediated by proteins from the

gasdermin family (13). It is characterized by pore formation and

cell swelling, followed by rupture of the plasma membrane and

release of cytokines, which trigger inflammatory responses

and cell death (14). Increasing evidence reveals various roles for

pyroptosis in cancer pathogenesis and progression (15).

Pyroptosis that occurs in only a fraction of tumor cells can

induce robust antitumor immunity and synergizes with anti-

PD-1 blockade (16). Gasdermin E (GSDME) expression is

inhibited in many types of cancer, including BC, and tumor

GSDME can activate pyroptosis, improving tumor suppression

through killer cytotoxic lymphocytes (17). The GSDME promoter

was found to be methylated in primary BC tissues with high

frequency, and the GSDME methylation status could increase the

risk of lymph node metastasis in BC patients (18). In contrast,

gasdermin B (GSDMB) is upregulated in breast carcinoma and is

correlated with increased tumor cell invasiveness and poor

survival in patients (19). Anti-GSDMB antibody loaded onto

nanocapsules efficiently reduces the aggressiveness of HER2-

positive BC (20).
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There are emerging studies suggesting the crosstalk between

pyroptosis and the tumor microenvironment (TME) (21). The

expression of gasdermin D (GSDMD), accompanied by the

upstream components of the NLRP3 inflammasome, is related to

the activation of the inflammasome in the tumor. NLRP3 signaling

in macrophages drives the establishment of an immune-suppressive

TME in pancreatic ductal adenocarcinoma (22). GSDME

expression suppresses tumor growth by enhancing the

functionality of tumor-infiltrating natural-killer (NK) and CD8+

T lymphocytes (17). Currently, few studies have elucidated the

collaborative effects of combined pyroptosis-related genes (PRG) on

BC pathogenesis. Given the complex roles of PRGs in cancer, a

comprehensive understanding of PGR-mediated TME alterations

in TNBC is needed to provide new insights into patients’ risk

prediction and treatment decision.

This study disclosed the global characteristics of PRG

alterations in TNBC and defined two distinct molecular

subtypes based on 58 PRGs. Using differentially expressed

genes (DEGs) between pyroptosis subtypes, we constructed a

12-gene-based risk score capable of predicting long-term overall

survival (OS). A comprehensive characterization of the immune

landscape in TNBC was performed based on the risk

stratification system, paving the way for the identification of

optimal candidates and potential regimens for efficient

immunotherapy in TNBC.
Materials and methods

Data sources

Supplementary Figure S1 shows the workflow of this study. BC

samples were obtained from The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/) and Gene Expression Omnibus

(GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases. A total of

1,366 samples were involved in this study (including 113 normal

tissues and 1,253 primary BC tumors). The transcriptome profiling

of 542 TNBC samples was collected from three cohorts, including

162 samples from the TCGA-BRCA program, 273 from the

GSE96058 dataset, and 107 from the GSE58812 dataset. Of these,

cases from TCGA-BRCA and GSE96058 were used as the

development cohort for differential analysis, risk model

establishment, and internal validation, while the GSE58812

dataset acted as an independent external validation cohort. The

fragments per kilobase million (FPKM) values in the RNA

sequencing data were transformed into transcripts per kilobase

million (TPM). Gene expression data derived from both RNA

sequencing and microarray were combined, with batch effects

removed using the “ComBat” function in R. Clinicopathological

information was collected, including patient phenotype (age,

menopausal status, stage, and tumor grade) and survival

endpoints (vital status, days to the last follow-up, and days to
frontiersin.org

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2022.933703
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2022.933703
death). Masked somatic mutation data of 144 TNBC samples and

986 all BC samples were retrieved from the TCGA-BRCA database.
Mutation analysis of PRGs

Fifty-eight PRGs were collected from the “REACTOME_

PYROPTOSIS” gene set of the GSEA/MSigDB Team (http://

www.broad.mit.edu/gsea/msigdb/) and published papers (23–

25), as shown in Supplementary Table S1. The somatic

mutations of the 58 PRGs were visualized using the “maftools”

and “RCircos” packages in R software.
Identification of differentially expressed
PRGs and prognostic PRGs

Package “limma” was used to identify differentially

expressed PRGs between normal and TNBC samples. The

correlations between PRG expression and OS of the patients

were drawn using Kaplan–Meier curves using the “survival” and

“survminer” packages.
Consensus clustering of PRGs and
functional enrichment

To build a classification of molecular subtypes for TNBC,

consensus clustering was performed based on patient PRG

expression patterns using the package “ConsensusClusterPlus.”

The maximum number of clusters, K, was defined as 9 to draw

the heatmaps from the consensus matrix. The optimal K was then

determined from 2 to 9 according to the consensus matrix heatmap

and the cumulative distribution function (CDF) curves. Principal

component analysis (PCA) was performed to verify the disparity in

pyroptosis transcription profiles among distinct subtypes.

Differences in PRG expression levels, clinicopathological

characteristics, and OS among different subtypes were compared.

The expression of PD-1 and PD-L1 was also analyzed. The Kyoto

Encyclopedia of Genes and Genomes (KEGG) signaling pathways

in which different subtypes were involved were investigated by gene

set variation analysis (GSVA) using the MSigDB curated gene set

“c2.cp.kegg.v7.4.” The abundance of immune cells infiltrating the

TNBC TME was assessed by single-sample gene set enrichment

analysis (ssGSEA).
Determination of DEGs among
pyroptosis subtypes

DEGs among different pyroptosis subtypes were determined

using a “limma” package with a log2-fold change > 1.5 and an

adjusted p-value < 0.05. Functional enrichment of these subtype-
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relatedDEGswas performed usingGeneOntology (GO) annotation

and KEGG pathway analysis with the “clusterProfiler” package.
Development of a DEG-based risk score
and determination of prognostic
predictors

Univariate Cox regression was conducted to identify OS-related

genes from subtype-based DEGs. Consensus clustering, according

to the expression of these prognostic DEGs, was conducted to

categorize tumors into distinct gene subtypes. Relations between the

OS of the patients and the gene subtypes were revealed by Kaplan–

Meier curves. The expression patterns of prognostic DEGs among

patients with different gene subtypes or different clinicopathological

characteristics were visualized using a heatmap. The differential

expression of PRGs between gene subtypes was also evaluated. We

then randomly partitioned the TNBC samples from the

development cohort into a training set (n=218) and a validation

set (n=217) to build a risk model for OS of patients, based on the

expression of prognostic DEGs related to pyroptosis. To improve

the accuracy of the prediction and resolve the problem of

overfitting, LASSO regression was used using the “glmnet”

package in R. A 10-fold cross-validation for parameter selection

of the LASSOmodel was performed with the minimum criteria (the

value of lambda that gives a minimummean cross-validated error).

The candidate genes were finally selected by a multivariate Cox

model regression analysis to generate a risk score in the training set.

The OS-related risk score was calculated as:

Risk   Score =o
n

i=1
bi*Expi

bi and Expi represented the coefficients and expression levels of

each candidate gene. Using the median score as a cutoff value,

patients were divided into high- and low-risk subgroups. Kaplan–

Meier curves were plotted to analyze survival differences between

two groups. Receiver operating characteristic (ROC) curves were

generated to assess the model efficacy for 2-, 3-, 5-, 7-, or 10-year

OS. Both Kaplan–Meier curves and ROC curves were reanalyzed in

the validation set and in the whole development set. Comparisons

of risk scores between pyroptosis subtypes and gene subtypes are

shown in boxplots. Differentially expressed PRGs were analyzed

between high- and low-risk groups. Furthermore, 107 TNBC cases

from the GSE58812 dataset were used as an independent external

validation cohort to test the risk score model.
Tumor immunity analysis based on risk
score stratification

CIBERSORT was used with the LM22 signature to assess the

abundance of 22 immune cell types in the TME of TNBC

between the high- and low-risk groups according to the gene
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expression data (https://cibersort.stanford.edu/). Correlations

between the risk score and the fractions of 22 immune cells

infiltrating the tumor were analyzed separately. The

“ESTIMATE” package was used to calculate the scores for

tumor purity, the level of stromal cells, and the level of

immune cells present in tumor tissues (https://bioinformatics.

mdanderson.org/estimate/). The expression of 58 immune

checkpoints was evaluated between two risk groups in all

sample sets.
Somatic mutation and drug sensitivity
analysis between risk groups

The somatic mutation information of the high- and low-risk

groups was analyzed using the “maftools” package based on the

TNBC cases from TCGA-BRCA dataset. TMB and MSI were

compared. The MSI was calculated using the scoring system

described in the study from Kautto et al., named Microsatellite

Analysis for Normal Tumor InStability (MANTIS), which

displayed superior performance compared to the previously

published computational tools for MSI detection (26). Using

the RNA-based stemness score (RNAss) signature from the

UCSC XENA browser, we also investigated the relation

between cancer stem cells and the risk score (https://xena.ucsc.

edu/). To predict the chemotherapeutic response in TNBC

patients of different risk groups, we compared the half

maximum inhibitory concentration (IC50) of commonly used

chemotherapy drugs through the “pRRophetic” package in R.
Statistical analysis

A two-sided probability value of p<0.05 was considered

statistically significant. Data processing and data visualization

were performed in RStudio (version 2021.09.1 + 372, https://

www.rstudio.com/).
Results

Somatic mutation analysis of PRGs

The somatic mutation frequencies of 58 investigated PRGs

were significantly higher in patients with TNBC (84.03%) than

in all BC cohorts (40.67%) (Figures 1A, B). TP53 was the most

frequently mutated PRG, which was seen in 82.64% of TNBC

patients (119/144 samples) and in 34.18% of all BC patients

(337/986 samples). CASP8 with somatic mutation was found in

2% of TNBC samples.

Copy number variations (CNVs) were detected in all 58 PRGs

in both the TNBC set (Figure 1C) and the entire BC set (Figure 1D).

Among patients with TNBC, AIM2 showed the highest frequency
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of increase in copy number (with 36.48% of the TNBC samples

showing a higher copy number), followed by NLRP3 (32.08%),

CHMP6 (32.08%), GSDMC (28.93%), and GSDMD (23.90%).

Copy number loss was discovered more frequently in CASP9

(35.22%), ELANE (30.82%), GPX4 (30.19%), NLRP6 (18.24%),

and TIRAP (17.61%). Different patterns of CNV were observed

in all BC patients, among which GSDMC, CHMP6, GSDMD,

NLRP3, and GSDMB exhibited the highest incidence of increased

CNV, while CASP9, IL18, TIRAP, GPX4, and ELANE represented

PRGs with the most frequent decrease in CNV. Copy number

alteration loci of PRGs on chromosomes in TNBC patients are

plotted in Figure 1E.
Identification of differentially expressed
PRGs and OS-related PRGs

RNA sequencing data of 162 TNBC samples and 113 normal

tissues from TCGA-BRCA were used to investigate differentially

expressed PRGs. Different expression levels between cancer and

normal samples were detected in 44 of the 58 PRGs (Figure 2A).

PRGs showing significant CNV gain, including AIM2, GSDMC,

and GSDMD, were significantly upregulated in TNBC samples.

Similarly, PRGs with high CNV loss frequency, such as CASP9,

ELANE, GPX4, and TIRAP, were also markedly downregulated

in TNBC. However, there were other PRGs that showed a

discrepancy between copy number alterations and mRNA

expression (such as NLRP3 and TP63), indicating that CNV

could contribute to the regulation of PRG mRNA levels in

TNBC, but was not the only factor involved.

A total of 435 individuals with TNBC from the development

cohort (162 cases of TCGA-BRCA and 273 of GSE96058) were

included in the subsequent survival analysis. The differential

expression of 31 PRGs was significantly associated with OS in

these patients (Figures 2B–M, Supplementary Figure S2),

suggesting the vital role of pyroptosis in the development of

TNBC. The interactive network and the prognostic value of

PRGs in TNBC are visualized in Figure 2N.
Classification of pyroptosis subtypes in
TNBC

The PRG expression profile of 435 TNBC samples from the

development cohort was recovered for consensus clustering

analysis. Fifty-six PRGs, detected in both TCGA-BRCA and

GSE96058 datasets, were included in the subtype clustering

(Supplementary Table S2). The heatmap of the consensus

matrix and the CDF curves identified k=2 as the optimal

group number, which classified the TNBC samples into group

A (n=211) and group B (n=224) (Figure 3A, Supplementary

Figure S3). PCA verified the distinct features of the pyroptosis

transcriptomes between two groups (Figure 3B). Furthermore,
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Kaplan–Meier curves revealed markedly better OS in patients of

subtype A than those of subtype B (p=0.003) (Figure 3C). The

heatmap in Figure 3D also displayed disparate PRG expression

patterns between two pyroptosis subtypes. The clinico

pathological characteristics of different subtypes were further

compared. The comparative proportions of T1, T2, and T3–T4

tumors between subtypes A and B were 50.98% vs. 39.64%,

41.67% vs. 50.45%, and 7.35% vs. 9.91%, respectively (p=0.040),

suggesting that tumors of subtype A tended to have a lower T

stage (Figure 3D).
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TME characterization of pyroptosis
subtypes

GSVA analysis of the canonical pathway of 435 TNBC

samples distinguished subtype A as the subtype with

dramatically higher enrichment in activated immune pathways,

including NOD-like receptor signaling, cytosolic DNA sensing

pathway, JAK-STAT signaling pathway, chemokine signaling

pathway, cytokine–cytokine receptor interaction, antigen

processing and presentation, T-cell receptor signaling, and B-cell
B

C

D E

A

FIGURE 1

Somatic mutation analysis of PRGs. (A, B) Mutation frequencies of 58 PRGs in TNBC samples and all BC samples. (C, D) Copy number variations
of 58 PRGs in TNBC samples and all BC samples. (E) Copy number alteration loci of PRGs on 23 chromosomes in TNBC patients.
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receptor signaling pathway (Figure 3E). ssGSEA showed that 27 of

the total 28 immune cell types investigated had markedly higher

infiltration levels in the TME of subtype A compared to that of

subtype B (Figure 3F). Furthermore, the expression of both PD-1
Frontiers in Immunology 06
and PD-L1 was also remarkably elevated in subtype A samples

compared to those of subtype B (Figures 3G, H). These results

suggested a stronger immunogenicity and antitumor response in

patients with TNBC of subtype A.
B C D E

F G H I

J K

L M

N

A

FIGURE 2

Identification of differentially expressed PRGs and OS-related PRGs in TNBC. (A) Differential expression was detected in 44 PRGs between
cancer and normal samples. (B–M) PRGs significantly associated with overall survival of TNBC patients. Twelve OS-related PRGs showed
statistical significance in both survival curves and Cox regression analyses. The other 19 OS-related PRGs with p<0.05 in Kaplan–Meier curves
are illustrated in Supplementary Figure S1. (N) Interactive network and prognostic value of PRGs in TNBC. The thickness of green and pink lines
represent the strength of interactive correlation between different PRGs. * p < 0.05, ** p < 0.01, *** p < 0.001.
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B C

D

E

F

G H

A

FIGURE 3

Classification and TME features of pyroptosis subtypes in TNBC. (A) Two pyroptosis-related subtypes and their correlation area defined by
consensus matrix heatmap. Fifty-six PRGs listed in Supplementary Table S2 are included in the subtype clustering analyses. (B) PCA analysis
verified the remarkable differences in pyroptosis transcription profiles between two subtypes. (C) TNBC patients defined as PRG subtype A
exhibited significantly better OS compared to those from PRG subtype (B, D) Comparisons of PRG expression and clinicopathological features
between two PRG subtypes. (E) GSVA canonical pathway analysis discovered PRG subtype A samples with dramatically higher enrichment in
multiple immune-related pathways. (F) Twenty-seven immune cell types showed distinctly higher infiltration levels in the microenvironment of
subtype (A, G, H) Expressions of PD-1 and PD-L1 were remarkably elevated in subtype A. ** p < 0.01, *** p < 0.001.
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Identification of DEGs among pyroptosis
subtypes and development of DEG-
based gene subtypes

To disclose the biological differences related to different

subtypes of pyroptosis, we identified 844 DEGs between

subtype A and B tumors (Supplementary Table S3). The GO

annotations of DEGs in terms of their biological process (BP),

cellular component (CC), and molecular function (MF) are

summarized in Figure 4A. The top-ranked GO terms were

mostly related to hemopoietic cells and immunological

processes, such as T-cell activation, leukocyte-mediated
Frontiers in Immunology 08
immunity, external side of the plasma membrane, immune

receptor activity, and cytokine receptor activity. The pathway

in which most DEGs were involved was the cytokine–cytokine

receptor interaction, followed by multiple immune-related

pathways including cell adhesion molecules and the

chemokine signaling pathway (Figure 4B). The results of

functional enrichment highlighted the potential role of

pyroptosis in the immune response of TNBC.

To further differentiate TNBC patients with varied DEG

patterns, we screened 346 genes that were significantly

associated with OS from the 844 DEGs related to pyroptosis

by univariate Cox regression (Supplementary Table S4). Among
B C

D

E

A

F

FIGURE 4

Development of gene subtypes based on differentially expressed genes between PRG subtypes. (A, B) GO and KEGG enrichment of DEGs identified
between two PRG subtypes. (C) Consensus matrix heatmap defined two gene subtypes based on 346 prognostic DEGs. (D) Thirty-eight PRGs were
differentially expressed between two gene subtypes. (E) TNBC patients defined as gene subtype I showed significantly better OS. (F) Comparison of
gene expression and phenotype features between two gene subtypes. * p < 0.05, ** p < 0.01, *** p < 0.001.
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them, 337 genes were favorable predictors, while 9 genes were

risk factors. According to the 346 prognostic DEGs, we classified

patients into two gene subtypes using the consensus clustering

algorithm (Figure 4C; Supplementary Figure S4). Gene subtype I

included 211 patients, while the other 224 cases were defined as

gene subtype II. Consistent with the pyroptosis-based

classification, differential expression of PRG was observed

between gene subtypes (Figure 4D). Furthermore, survival

analysis showed a worse OS in patients with gene subtype II

tumors compared to those with gene cluster I tumors (p<0.001)

(Figure 4E). The comparison of gene expression and phenotype

characteristics between two gene subtypes is illustrated in

Figure 4F. The pyroptosis subtypes and the gene subtypes

exhibited high concordance in the patient distribution. In gene

subtype I, 90.05% of the samples were from pyroptosis subtype

A, while 90.63% of the samples from gene subtype II were from

pyroptosis subtype B. As shown in the heatmap, a large

proportion of DEGs, most of which were favorable predictors

of OS, showed particularly higher expression in gene subtype I

(consistent with the better survival outcome in subtype I

patients). Similarly, subtype I samples had lower T

stage (p=0.028).
Construction of a risk score based on
pyroptosis-related prognostic DEGs

Four hundred thirty-five cases from the development cohort

(composed of TCGA-BRCA and GSE96058) were included in

the risk model exploration. The alluvial diagram in Figure 5A

shows the patients’ distribution between different subtypes, risk

groups, and vital status. The patients were randomly partitioned

into a training set (n=218) and an internal validation set

(n=217). Based on the survival outcomes of the patients and

the expression of 346 prognostic DEGs related to pyroptosis, we

selected 12 candidate genes by LASSO regression and cross-

validation (Figure 5B; Supplementary Figure S5). Using

multivariate Cox regression analysis, we finally used the 12

DEGs (CCL13, CELF2, EFNA3, EGFL6, EMILIN3, FAM20A,

FCGR2B, LGALS2, MCOLN2, RARRES1, SERPING1, and

SNX10) and established the risk score with their coefficients

and expression levels. Nine DEGs (CCL13, CELF2, EGFL6,

FAM20A, LGALS2, MCOLN2, RARRES1, SERPING1, and

SNX10) were favorable predictors, while the other three were

high-risk factors (EFNA3, EMILIN3, and FCGR2B)

(Supplementary Table S5). The expression heatmap of the 12

DEGs between the two risk groups is illustrated in Figure 5C.

A median score of −3.898 in the training set was defined as

the cutoff value to distinguish high- and low-risk patients

(Figure 5D). The vital status plot revealed that patients in the

high-risk group had a higher death rate than those in the low-

risk group (Figure 5E). The Kaplan–Meier curves confirmed

significantly worse OS in high-risk individuals (Figure 5F):
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comparison of the 2-year OS rates between the high- and low-

risk groups was 82.71% vs. 96.92%, while the 5-year OS rates

were 53.72% vs. 85.45% (p<0.001). In ROC curve analysis, the

areas under the curve (AUCs) for the prediction of 2-, 3-, 5-, and

7-yea r OS were 0 . 855 , 0 . 834 , 0 . 800 , and 0 .879 ,

respectively (Figure 5G).

Risk stratification was repeated in the internal validation set

using the median score of the training set (Supplementary Figure

S6). Vital status and Kaplan–Meier curves verified favorable

survival outcomes in the low-risk group with p-value <0.001

(Supplementary Figures S7, 8). The AUCs for the 2-, 3-, 5-, and

10-year OS prediction were 0.644, 0.719, 0.736, and 0.757,

respectively, in the internal validation set (Supplementary

Figure S9). Furthermore, differential expression of 32 PRGs

was detected between high- and low-risk groups among all

patients in the development cohort (Figure 5H). Among the

435 individuals in the entire development cohort, patients from

both pyroptosis subtype A and gene subtype I, which

represented activated cancer immunity and better OS, had a

markedly lower risk score compared to subtype B and subtype II,

respectively (p<0.001 in both tests) (Figures 5I, J), suggesting

that the lower risk score could be associated with upregulated

immune defense in the microenvironment of TNBC.

To further validate the prognostic value of the risk model, we

performed the risk score calculation in an independent external

validation cohort (GSE58812). A better long-term OS was

observed in low-risk cases (p=0.025, Supplementary Figure

S10), who had a significantly higher 5- and 10-year OS rate

compared to high-risk patients (81.26% vs. 69.47 at 5 years,

78.80% vs. 59.47% at 10 years). The AUC for the prediction of

OS at 3, 5, 7, and 10 years were 0.714, 0.766, 0.721, and 0.725,

respectively (Supplementary Figure S11), demonstrating good

performance of the 12-DEG-based risk score in the prediction of

long-term prognosis for patients with TNBC.
Evaluation of tumor immune
microenvironment based on risk
stratification

To explore tumor immunity and the microenvironment in

TNBC from different risk groups, we analyzed the correlation

between risk score and immune cell abundance using the

CIBERSORT algorithm. The risk score was positively related

to the fraction of three non-activated or pro-tumorigenic cell

types (resting CD4+ memory T cells, M0 macrophages, and M2

macrophages) and was negatively correlated with seven types of

antitumor immune cell types (CD8+ T cells, gamma delta T

cells, follicular helper T cells, activated CD4+ memory T cells,

memory B cells, M1 macrophages, and activated dendritic cells)

(Figure 6A). The 22 immune cell types analyzed exhibited a

statistically significant correlation with at least one of the 12

DEGs of the scoring model (Figure 6B). The results of low-risk
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score samples with high abundance of antitumor immune cells

were consistent with the finding that low-risk patients were more

likely to exist in immune-activated subtypes.

The “ESTIMATE” package was utilized to calculate the TME

score, containing a stromal score (capturing the presence of

stromal cells in tumor tissue), an immune score (representing

the infiltration of immune cells), and an ESTIMATE score (a

combination of stromal and immune scores that inferred tumor

purity). TNBC patients from the low-risk group scored higher in

all three fields (Figure 6C), indicating a lower tumor purity with

higher infiltration of both stromal cells and immune cells.

Furthermore, the expression of immune checkpoints between

different risk groups was compared. Thirty-three immune

checkpoints, including PD-1 (PDCD1), PD-L1 (CD274),

CTLA-4, and LAG3, showed markedly upregulated levels in
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low-risk samples (Figure 6D), implying better response to

immunotherapy for low-risk patients with TNBC.
MSI and mutation analysis

The MSI status was investigated between the risk groups.

More than 95% of patients with TNBC were defined as

microsatellite stable (MSS) regardless of risk stratification

(Figure 7A), consistent with previous reports that MSI

incidence was rarely observed in BC compared to other types

of cancer (12, 27). The MSI score values did not have statistical

correlation with the pyroptosis-related risk scores (Figure 7B,

p=0.33), and no difference in the distribution of the risk score

was observed between the MSI and MSS cases (Supplementary
B C

D

E

F G

H I J

A

FIGURE 5

Establishment of a risk score based on pyroptosis-related prognostic DEGs. (A) Alluvial diagram of patients’ distribution between different subtypes, risk
groups, and vital status. (B) OS-related DEGs identified by univariate Cox analysis were screened by LASSO regression. (C) Expression heatmap of the 12 hub
DEGs between two risk groups. (D) Risk score distribution in patients from training set. A median score of −3.898 was defined as the cutoff value. (E) Vital
status plot showed higher death rate in patients from high-risk group in training set. (F) TNBC patients from high-risk group had markedly worse OS than
low-risk patients. (G) AUC of ROC curves showed good performance of the 12-gene-based risk score in predicting 2-, 3-, 5-, and 7-year OS for patients in
training set. (H) Differential expression of 32 PRGs between high- and low-risk groups. (I, J) Patients from both pyroptosis subtype A and gene subtype I,
which represented activated anti-tumor immunity and better OS, had significantly lower risk score compared to subtype B and subtype II. * p < 0.05,
** p < 0.01, *** p < 0.001.
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Figure S12). A trend of higher RNAss was observed with

increasing risk score, while no statistical significance was

observed (Figure 7C).

The TMB level was low in patients with TNBC and in all

patients with BC (Supplementary Figure S13). No differences in

TMB were observed between the two groups (Figure 7D). The
Frontiers in Immunology 11
waterfall graphs (Figures 7E, F) represented the characteristics of

the somatic mutation between high- and low-risk individuals

from the development cohort. A total of 143 patients with

mutational data from TCGA-BRCA program were involved in

the analysis. TP53, TTN, PIK3CA, PTEN, KMT2D, MUC16,

MUC4, FAT3, CSMD3, and MUC17 ranked the top 10 most
B C

D

A

FIGURE 6

Evaluation of TME features based on the 12-DEG risk score. (A) Correlation between immune cell infiltrating fractions and the 12-DEG-based
risk scores in TNBC samples. (B) Correlation between the 12 DEGs from the scoring system and the abundance of 22 analyzed immune cell
types. (C) TNBC samples from low-risk patients showed higher stromal, immune, and ESTIMATE scores, indicating lower tumor purity with more
stromal cells and immune cells in TME. (D) A total of 33 immune checkpoints were upregulated in low-risk TNBC patients. * p < 0.05,
** p < 0.01, *** p<0.001.
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frequently mutated genes in both groups. Among them, a higher

mutation rate of TTN, PIK3CA, KMT2D, MUC4, and MUC17

was observed in high-risk patients.
Drug sensitivity analysis

To select the optimal treatment for patients with TNBC, we

evaluated the susceptibility of commonly used chemotherapy
Frontiers in Immunology 12
drugs among high- and low-risk cases. Patients at high risk

were more sensitive to the AKT inhibitor VIII, bicalutamide,

imatinib, and sorafenib, while low-risk patients in low-risk

groups had lower IC50 for bleomycin, doxorubicin,

gemcitabine, gefit inib, methotrexate, and paclitaxel

(Figure 7G). The drug susceptibility results implied that the

classic regimen of chemotherapy based on taxane or

anthracycline for BC could be avoided in patients with high-

risk TNBC.
B C D
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A

FIGURE 7

Analyses of microsatellite instability, somatic mutation, and drug susceptibility based on risk stratification. (A) Distribution of MSI incidence
among high- and low-risk patients. (B) Correlation between MSI score and risk score of TNBC samples. (C) Correlation between RNA stemness
score and risk score. (D) Comparison of TMB between risk groups. (E, F) Somatic mutation frequencies in high- and low-risk TNBC tumors.
(G) Drug susceptibility analyses (IC50) of commonly used chemotherapy reagents between high- and low-risk patients.
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Discussion

Recent studies have unraveled the crucial role of genes

associated with pyroptosis in breast tumor immunity, most of

which elucidate the pro- or antitumor mechanism of a single PRG

(28–30). Few studies have focused on the collaborative effects of

multiple PRGs on the immune microenvironment specifically in

TNBC. In the present study, we disclosed genetic alterations and

expression patterns of more than 50 PRGs in patients with TNBC.

It is worth mentioning that TP53 gene, mutated in over half of all

human malignancies (31), showed frequent mutation (82.64%) in

TNBC in this study, which was concordant with previous research

results that TNBC had the highest prevalence of TP53 mutation

among all breast cancers (32). However, the somatic mutation of

TP53 did not cause its alteration in measured expression levels in

TNBC compared to normal tissues (as shown in Figure 2A, TP53

was not among the differentially expressed PRGs). The role of

TP53 in pyroptosis has not been fully studied. Expression of

GSDME could be induced by p53, a tumor suppressor protein

encoded by TP53 (33). Zhang et al. also discovered that the

upregulation of p53 in non-small-cell lung cancer could prompt

pyroptosis and produce antitumor effects (34). Further studies are

needed to explore the association between TP53 mutation and

pyroptosis in TNBC.

Based on PRG expression profiling, we identified two

pyroptosis subtypes that harbored distinct characteristics of the

TME and survival outcomes. Patients with pyroptosis subtype A

had a lower T stage and notably better OS compared to patients

with subtype B tumors. Additionally, subtype A TNBC samples

exhibited fully activated immune microenvironments, with

significantly higher infiltration levels of 27 types of immune cells,

including B cells, CD4+ and CD8+ T cells, gamma delta T cells, and

macrophages. Activation of multiple immune-related pathways was

also detected in subtype A tumors, including NOD-like receptor

signaling, chemokine signaling pathway, cytokine–cytokine

receptor interaction, antigen processing and presentation, T-cell

receptor signaling, and B-cell receptor signaling pathway.

Furthermore, transcriptome profiling differed dramatically

between pyroptosis subtypes, and DEGs identified between two

subtypes were involved in immunological processes such as T-cell

activation and immune receptor activity. Using the expression of

DEGs associated with survival, we further classified TNBC patients

into two gene subtypes. More than 97% of OS-related DEGs were

survival benefiting, and most were distinctively elevated in gene

subtype I. Furthermore, gene subtype I showed a high concordance

in patient distribution with pyroptosis subtype A and a longer OS

compared to subtype II. The above findings revealed that PRG

alterations were closely related to the activation of the cancer

immune microenvironment and the intensity of the antitumor

response, which could lead to significant changes in OS of

TNBC patients.

We utilized the pyroptosis-related prognostic DEGs and

constructed a 12-gene-based score with reliable performance
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and robust efficacy in risk prediction. Remarkable differences

were observed between high- and low-risk patients with respect

to short- and long-term prognosis, TME characteristics, immune

checkpoint expression, somatic mutation patterns, MSI scores,

and susceptibility to chemotherapy.

Innate and adaptive immune cells in the TME modulate

cancer progression and the therapeutic response (35). Evidence

has shown the vital role of pyroptosis in maintaining the

diversity and complexity of TME in breast tumors (36).

Meanwhile, cytotoxic T cells and helper T cells are required

for pyroptosis-induced tumor regression (16). In this study,

TNBC samples from different pyroptosis subtypes and risk

groups differed distinctly in the degree of immune cell

infiltration. The presence of tumor-infiltrating lymphocytes

(TILs) is predictive of a better response to immunotherapy

and a favorable prognosis in BC (37–40). CD8+ T-cell

infiltration in BC is independently associated with a reduced

relative risk of cancer-related death (41), while TNBCs with CD8

positivity have greater possibilities to benefit from

immunotherapy (42). These findings correspond to our results

of more CD8+ T cells in the TME of pyroptosis subtype A and

low-risk group that had higher expression of PD-1 and PD-L1

and better OS. Functional follicular helper T cells (Tfh) oriented

by T-helper 1 (Th1) cells can promote humoral and cytotoxic

immune responses in human breast cancer (43), and the

presence of CXCL13-producing Tfh cells in tertiary lymphoid

structures (TLS) of breast tumors robustly predicts positive

clinical outcomes (44). Gamma delta T cells target tumor cells

in TNBC (45), and their numbers in TME are positively related

to the immunotherapy response of patients with advanced BC

(46). Activated CD4+ memory T cells are also related to better

survival in different cancer types (47–49). In this study, the

above three types of T cells showed higher infiltration in subtype

A patients and patients with low scores, indicating the potential

of our pyroptosis-related risk score to identify TNBCs with

greater sensitivity to immunotherapy. Tumor-infiltrating B cells

(TIL-B) are another key component of TILs. TIL-B functions in

anti-BC responses through antibody production, Th1 responses,

and antigen presentation (50). CXCL13-producing Tfh cells can

promote memory B-cell differentiation, thus facilitating humoral

immune defense in BC (51). Hu et al. reported that memory B-

cell transcription signatures were associated with improved

overall and disease-free survival in patients with BC (52).

Furthermore, memory B cells within TLS are associated with

an improved response to immune checkpoint blockade (53). The

sustained presence of memory B cells in TNBC is required for

the control of myeloid-derived suppressor cells and for the

durable efficacy of ICI treatment (54). Consistent with existing

evidence, we observed a higher proportion of memory B cells

within subtype A tumors and low-score samples, suggesting the

role of memory B cells as an indicator of prognosis and ICI

response in TNBC. Subpopulations of macrophage exhibit

different functions in TME. Macrophages of the M1
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phenotype, reprogrammed with the D2 dopamine receptor, can

induce pyroptosis of GSDME-executed breast tumor cells (55).

In our study, patients in the low-risk group, who had increased

expression of nearly 30 PRGs compared to high-risk patients,

showed a higher abundance of M1 macrophages in TME,

suggesting the crosstalk between pyroptosis and macrophage-

mediated cancer immunity. In contrast, M2 macrophages, the

other polarized phenotype, are immunosuppressive and pro-

tumorigenic. Zhang et al. revealed that TNBC cells induced an

elevation of YAP expression in macrophages, which polarized

macrophages to the M2 phenotype and increased the pro-

metastatic potential of cancer cells via MCP-1/CCR2 pathway

(56). In line with previous studies, we discovered a positive

correlation between the increase in the risk score and the

p ropo r t i on o f M2 mac rophage s in the immune

microenvironment of TNBC, while the presence of M1

macrophages was negatively associated with the value of the

risk score in patients. Dendritic cells, which are critical for T-cell

activation and immunosurveillance in BC (57), also showed a

lower infiltration rate as the risk score increased according to our

findings. The correlation between immune cell abundance and

pyroptosis-related risk stratification in our study implied the

pivotal role of pyroptosis in shaping an activated antitumor

microenvironment in TNBC.

BC has been defined as immunologically “cold” due to low

T-cell infiltration and inefficient T-cell priming compared to

other malignancies (58, 59). Non-synonymous DNA mutations,

capable of increasing the presence of neoantigens and inducing

the immune cell response, are also found with relatively low

burden in breast tumors (60, 61). Despite the non-immunogenic

nature, the magnitude of TILs varies within and between BC

subtypes (37, 62). Increasing evidence has revealed that TNBC

patients, previously termed the most aggressive subtype with a

poor prognosis, have a higher abundance of TIL than non-

TNBC patients, which could contribute to better survival after

ICI treatment (37, 63, 64). However, extensive heterogeneity of

the TME and biological behavior still exists within the TNBC cell

population. In the present study, we identified individuals with

“hot” immune status from TNBC patients based on the

clustering of pyroptosis-related subtypes and stratification of

risk scores. In addition to increased infiltration of tumor

suppressor immune cells in TME, lower tumor purity

calculated by the ESTIMATE algorithm was also observed in

low-risk patients. A favorable OS has been found in patients with

a high stromal score and an immune score in other cancer types

(65). Similarly, our findings showed that TNBCs with low-risk

score presented a higher immune score and lower tumor purity

than high-risk cases. Hou et al. has discovered that PD-L1 can

mediate GSDMC expression and trigger pyroptosis in BC cells

(66). Beyond that, little is known about the interaction between

pyroptosis and PD-1/PD-L1 function. In this study, we
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demonstrated higher expression of PD-1 and PD-L1 in both

the pyroptosis subtype A and low-risk group. In addition, there

were an additional 31 immune checkpoints showing a

significantly higher level in low-risk-score TNBC, suggesting

the ability of the pyroptosis-related risk score to predict the

response of ICI therapy in TNBC. The results also provided a

potential strategy of blocking other immune checkpoints for

early-stage TNBC, including anti-CTLA-4 reagents, which are

currently being used in mouse experiments and clinical trials for

advanced BC (10, 67, 68). TMB and MSI predict a stronger

response to ICI and prolonged survival in colorectal cancer, non-

small cell lung cancer, and melanoma (69–72). However, no

differences in TMB or MSI were detected between two risk

groups, possibly due to the rare incidence of non-synonymous

mutations and mismatch repair in BC patients (11, 12, 27). In

line with existing research, the low-TMB/low-MSI nature of BC

discovered in our study suggested that better predictive

biomarkers for response to immunotherapy are needed for

TNBC patients. Our findings also indicated the capacity of our

scoring model to identify immune “hot” cases among the low-

TMB/low-MSI TNBC population.

The major limitation of this study was that the data used for

the analyses were derived from public databases, and some

clinicopathological information, including patients’ history of

systemic treatment, was unavailable. Prospective studies and

exploratory experiments are needed to further validate the

efficacy of this pyroptosis-based risk stratification model.
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