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Pharmacological modulation of
myeloid-derived suppressor
cells to dampen inflammation

Chiel van Geffen, Constantin Heiss, Astrid Deißler
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and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population

with potent suppressive and regulative properties. MDSCs ’ strong

immunosuppressive potential creates new possibilities to treat chronic

inflammation and autoimmune diseases or induce tolerance towards

transplantation. Here, we summarize and critically discuss different

pharmacological approaches which modulate the generation, activation, and

recruitment of MDSCs in vitro and in vivo, and their potential role in future

immunosuppressive therapy.
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1. Introduction

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous immature immune

cell population, originating from the common myeloid progenitor cell, with potent

immunosuppressive effect on T cell proliferation and activity (1). MDSCs were first

described in cancer patients and associated with increased tumor growth and T cell

dysfunction (2). In this respect, MDSCs are mainly studied in the tumor

microenvironment, where they inhibit the anti-tumor immune response and support

tumor angiogenesis (1, 3). In the context of the tumor microenvironment, dampening

MDSCs may decrease metastatic niche formation (3–5). However, MDSCs not only play

a role in cancer but also in a variety of other pathological conditions associated with an

inflammatory state, such as, chronic infections, autoimmunity, asthma, or obesity (6–9).

In autoimmune diseases, MDSCs can be useful to protect against tissue damage driven by

an imbalanced immune reaction. Furthermore, if the immune response needs to be

dampened, e.g. after allograft transplantation, or in conditions such as graft-versus-host

disease (GVHD), MDSCs’ immunosuppressive potential might be beneficial. So far, the

majority of imbalanced immune conditions are treated by corticosteroids and other

immunosuppressive drugs which include substantial side effects. Therefore, MDSCs are a
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promising therapeutic target due to their immunosuppressive

properties (10). This review discusses pharmacological

approaches involved in the generation, recruitment and

activation of MDSCs, providing possible clues for novel

cellular immunosuppressive therapies.
1.1 Subsets

Due to the heterogeneity of the MDSC population, most

marker proteins are not unique to MDSCs nor universally

expressed. Nevertheless, two major subtypes can be distinguished:

polymorphonuclear (PMN-) andmonocytic (M-)MDSCs based on

their similarities to neutrophils and monocytes, respectively. In

mice, PMN-MDSCs are defined as CD11b+ Ly-6G+ Ly-6Clow and

M-MDSCs as CD11b+ Ly-6G- Ly-6Chigh, while in humans PMN-

MDSCs express CD11b+ CD14- CD15+ or CD11b+ CD14- CD66b+

and M-MDSCs CD11b+ CD14+ HLA-DR-/low CD15-. Only by

means of these markers, PMN-MDSCs and M-MDSCs are

undistinguishable from neutrophils and monocytes, respectively,

and functional assays, such as T cell proliferation and cytokine

release assays, are needed to evaluate the immunosuppressive

activity (11). Unfortunately, MDSC heterogeneity as well as the

significant overlap with more ‘conventional’ immune cell

populations complicate the refinement of a universal distinctive

MDSC signature. Quantitative tools, such as single-cell RNA

sequencing and mass cytometry, as well as other advances

contributing to the multi-omics approach, are starting to provide

more insights into the phenotypic, morphological and functional

heterogeneity of MDSCs. Recently, lectin-type oxidized low-density

lipoprotein receptor 1 (LOX-1) has been described as a new marker

for PMN-MDSCs in humans. LOX-1 can be found on

macrophages, endothelial and smooth muscles cells, but

importantly is not expressed on neutrophils and therefore

presents a surface marker that helps to identify PMN-MDSCs

(12). Furthermore, CD84 and JAML were recently identified as

potential markers of MDSCs in breast cancer (13). Additionally,

two arginase-1-expressing myeloid clusters were identified –

Spp1+Apoe+C1qa+ and Gpnmb+Vegfa+Clec4d+Trem2+ – in

murine tumors, where Trem2 was found to be associated with

immunosuppressive function (14).
1.2 Origin and generation of MDSCs

During normal hematopoiesis common myeloid progenitor

cells develop from hematopoietic stem cells and differentiate via

immature myeloid cells into red blood cells, granulocytes,

monocytes, thrombocytes and mast cells under the influence of

growth factors, interleukins and other regulatory molecules.

Under certain pathological conditions such as cancer, with
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chronic stimuli of a relatively low intensity, two signals are

required for MDSCs proliferation. The first signal is responsible

for stimulation of myelopoiesis with the inhibition of maturation

and differentiation of progenitor cells and the expansion of

immature myeloid cells while the second signal promotes the

transformation into immunosuppressive MDSCs (15). Factors

shown to be involved in MDSC expansion and activation

include granulocyte-macrophage colony-stimulating factor

(GM-CSF), granulocyte colony-stimulating factor (G-CSF),

macrophage colony-stimulating factor (M-CSF), stem cell factor

(SCF), cyclooxygenase (COX-) 2, prostaglandins (PG), vascular

endothelial growth factor (VEGF) and interleukin (IL-) 6 (1). The

Janus kinase (JAK) 2/signal transducer and activator of

transcription (STAT) 3 pathway appears to be the most

important regulator for MDSC expansion (1). For example,

GM-CSF, G-CSF, and IL-6 induce the expansion of MDSCs

through activation of STAT3 (15–18). The transcription factor

interferon regulatory factor (IRF) 8 – downregulated by GM-CSF

and G-CSF – acts as a STAT3- and STAT5-dependent negative

regulator of MDSC generation (19). In addition, the b2-adrenergic
receptor (AR) has been shown to play a role in MDSC generation

and activation through STAT3 (20). Further underlining the

importance of STAT3, several studies revealed that STAT3

inhibition dampened MDSCs in the tumor microenvironment

and proved to be a useful anticancer therapy (21–23). Interferon

(IFN-) g activates the STAT1 pathway and leads to activation of

MDSCs (24). Similarly, activation of the STAT6 pathway through

IL-4 and IL-13 can induce immunosuppressive properties of

MDSCs (15). Pro-inflammatory mediators such as tumor

necrosis factor (TNF-) a, IL-1b, IL-12, PGE2 or Toll-like

receptor (TLR) ligands enhance the immunosuppressive

capacities of MDSCs through the nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB) pathway (25–30).

In detail, activation of PGE2 receptor (EP) 2 and EP4 inhibits

receptor-interacting protein kinase 3 (RIPK3), which in turn

enhances the NF-kB pathway, as activated RIPK3 is involved in

its downregulation (31). Furthermore, the endoplasmic reticulum

(ER) stress response pathway ends up in the NF-kB pathway and

promotes the activation of immunosuppressive MDSCs. The

function of this pathway is to protect the cell from cellular

stress like shortage of nutrients, hypoxia, or low pH (12).

Furthermore, inhibition of the Notch pathway and activation of

the adenosine receptor promote the expansion of MDSCs (32, 33).

Those mechanisms create possible targets for in vitro and in vivo

generation of MDSCs. MDSCs themselves are considered as

immature cells with a high plasticity. Under hypoxic conditions,

MDSCs are able to differentiate into tumor-associated

macrophages, M2-like macrophages, inflammatory dendritic

cells or fibrocytes (34). Hence, some researchers state that

MDSCs are not a definitive cell group, but rather cells in

transitory states, whose differentiation is ongoing.
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1.3 Recruitment

Once generated, MDSCs are recruited to the site of activity

by chemokines. The role of several cytokines, chemokines and

their receptors in MDSC recruitment is reviewed elsewhere (35).

These chemokines have been described to play an important role

in MDSC recruitment through their interaction with

corresponding G-protein coupled chemokine receptors: C-X-C

motif ligand (CXCL)1/CXCL2/CXCL5 with C-X-C motif

receptor (CXCR)2, CXCL8 with CXCR1/CXCR2, CXCL17

with CXCR8, C-C motif ligand (CCL)2/CCL12 with CCR2,

CCL3/CCL4/CCL5 with CCR5, and CCL15 with CCR1.

Specifically, CXCR2 appears to be critical for MDSC

recruitment (4, 36–42).
1.4 Mechanisms of immunosuppressive
activity

Activated MDSCs carry out their suppressive activity on T cell

proliferation by different mechanisms, which were reviewed by

Gabrilovich and Nagaraj (1). Upon upregulation of transcription

factors like STAT1, 3, 6 and NF-kB, the expression of reactive

oxygen species (ROS), arginase-1 (Arg-1), inducible nitric oxide

synthase (iNOS), NF-kB and idoleamine 2,3-dioxygenase (IDO) is

increased. Production of ROS by nicotiamide adenine

dinucleotide phosphate (NADPH) oxidase suppresses T cell

function by destroying proteins, lipids and inducing apoptosis

among other mechanisms (43, 44). Both Arg-1 and iNOS deprive

L-arginine – an amino acid essential for T cell metabolism – from

the microenvironment and thus, inhibit T cell proliferation by

suppressing T cell cycle progression (45). In addition, the iNOS

product nitric oxide (NO) suppresses T cell function and induces

apoptosis by itself through different mechanisms (1).

Simultaneously, IDO inhibits T cell proliferation by depleting

tryptophan from T cell metabolism as well as increasing

regulatory T cells (Treg) recruitment (46). Shifting the T cell

population towards immunosuppressive forkhead box (Fox) P3+

Tregs presents another effective way of immunosuppression (47,

48). In addition, MDSCs have been shown to suppress B cell

responses (49). There are also subset specific differences: M-

MDSCs mainly use NO produced by iNOS to suppress T cell

function, while PMN-MDSCs express higher levels of ROS and

peroxynitrite, a product from the reaction of NO and superoxide

anion (50, 51). Both M- and PMN-MDSC secrete Arg-1 (50).
2. Pharmacological approaches to
modulate MDSCs

There are in principle two main pharmacological

approaches for MDSC generation: Expanding MDSCs ex vivo
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and adoptively transferring them into patients or stimulating

endogenous MDSC expans ion/act ivat ion . Poss ib le

pharmacological approaches for MDSCs generation,

activation and recruitment are presented in Table 1 as well

as Figure 1.
2.1 Adoptive transfer of in vitro/ex vivo
generated/activated MDSCs

Non-stem cell-based cell therapies that use cells such as

CAR-T cells, dendritic cells and natural killer cells are promising

and rapidly evolving (92). MDSC cell therapy may be another

promising strategy in this list, especially considering its potent

immunosuppressive capacity and its role in maintaining

immune tolerance in transplantation and autoimmunity.

Several pre-clinical studies have shown promising therapeutic

effects of the adoptive transfer of MDSCs in organ

transplantation, autoimmune diseases as well as in a variety of

other immune-related disorders, such as cyclosporin A-induced

hypertension, heart failure and asthma (63, 69, 93–100). Here,

we briefly discuss some of the cytokines and pharmacological

compounds that have been identified to promote the generation

and/or activation of MDSCs in vitro/ex vivo and were applied as

MDSC cell therapy.

2.1.1 Cytokines
Park et al. demonstrated the beneficial role of in vitro

generated MDSCs in the context of GVHD (101). Here, the

highest efficiency of in vitro production of MDSCs from CD34+

human umbilical cord blood cells was achieved with a

combination of GM-CSF and SCF, whereas G-CSF/SCF and M-

CSF/SCF were less effective (101). Adoptively transferred MDSCs

were shown to ameliorate GVHD and prolong survival in a

murine xenogeneic model of GVHD by promoting Tregs and

inhibiting the T helper (Th) 1 and Th17-driven inflammatory

responses (101). MDSCs generated with GM-CSF/SCF were

shown to exhibit increased immunosuppressive activity after the

transfer in vivo compared to MDSCs generated in the presence of

either G-CSF/SCF or M-CSF/SCF (101). Hsieh et al. also showed

beneficial effects of adoptive transfer of MDSCs in renal fibrosis

and diabetic neuropathy in diabetic mice (102). Here, murine

bone marrow-derived MDSCs were induced with GM-CSF, IL-1b
and IL-6 in vitro. In addition, Yang et al. induced M-MDSCs with

combinations of M-CSF/IFN-g and M-CSF/TNF-a, respectively,
and demonstrated prolonged skin allograft survival upon adoptive

transfer (103, 104). In vitro generated MDSCs, induced by GM-

CSF, G-CSF, and IL-6, efficiently ameliorated autoimmune

arthritis in mice (105). Recently, another group demonstrated

that the adoptive transfer of splenic CD11b+Gr-1+ MDSCs,

obtained from G-CSF-treated donor mice, are capable of

prolonging heart allograft survival (93).
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As already discussed above, there are many cytokines and

cytokine combinations identified to play important roles in

MDSC generation and activation. Here it is important to

consider that certain cytokine signaling is required to induce

MDSCs, and the discussed pharmacological compounds are

insufficient to induce in vitro/ex vivo MDSCs without

additional cytokine signaling.
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2.1.2 Glucocorticoids
Zhao et al. induced MDSCs in vitro by means of GM-CSF

and dexamethasone (63). Adoptive transfer of dexamethasone-

induced MDSCs into mice prolonged heart allograft survival,

likely through increased levels of iNOS and increased number of

Tregs (63). Indeed, dexamethasone is already an established

immunosuppressive drug, and these findings show that a part of
TABLE 1 Potential pharmacological targets and drugs to modulate MDSCs to dampen inflammation.

Target Potential pharmacological drug Effect of potential drug on
MDSCs

Murine model(s) Reference

b2-AR b2-AR agonists (Terbutalin) Increased number GVHD (52)

Calcineurin Calcineurin inhibitors (Cyclosporin A, Tacrolimus) Increased number
Increased activity

Skin allograft (53, 54)

CXCR1,2 CXCR1, CXCR2, CXCL17 agonists Increased number
Increased activity

Pulmonary hypertension (4, 36–40)

EP2/4 PGE2 (EP2/4 agonists) Increased number
Increased activity

Asthma (31, 55–57)

ERK1/2 Glucosamine Increased number
Increased activity

– (58)

ESR2 Quercetin Increased number
Increased activity

Prostate carcinoma (59, 60)

ETAR ETAR antagonists (BQ123) Increased number Autoimmune hepatitis
Colitis
Pneumonia

(61, 62)

Glucocorticoid
receptor

Glucocorticoids (Dexamethasone, Methylprednisolone) Increased number Cardiac/skin allograft
Multiple sclerosis

(63–65)

LILRB Glatirameracetat Increased number
Increased activity

Inflammatory bowel
disease

(66, 67)

LRP2 Lactoferrin Increased number Autoimmune hepatitis
Lung inflammation
Necrotizing enterocolitis

(68)

mTOR mTOR inhibitors (Rapamycin) Increased number
Increased activity

Cardiac/corneal/skin
allograft
GVHD
Heart failure
Hepatic/renal injury
Wound healing

(40, 48, 69–
77)

RIPK3 RIPK3 inhibitors (GSK872) Increased number Autoimmune hepatitis
Multiple sclerosis

(78–80)

STAT1, STAT5 Tofacitinib, IFN-g Increased number
Increased activity

Arthritis
Interstitial lung disease

(81, 82)

TLR2, TLR4 TLR2 ligands, TLR4 ligands (CFA-M.tuberculosis, MV-
P.pentosaceus)

Increased number
Increased activity

Fibrosis
Peritonitis
Type-1-diabetes

(83–87)

Unclear Cannabidiol Increased number Autoimmune hepatitis
Multiple sclerosis

(88, 89)

Unclear Claritromycin Increased number Post-influenza
pneumonia
Sepsis

(90)

Unclear Taurodeoxycholate Increased number
Increased activity

Sepsis (91)
fro
b2-AR, b2-adrenergic receptor; CFA, Complete Freund’s adjuvant; CXCR, C-X-C chemokine receptor; EP, Prostaglandin E2 receptor; ERK, Extracellular signal-regulated kinase; ESR,
Estrogen signaling receptor; ETAR, Endothelin A receptor; GVHD, Graft-versus-host disease; LILRB, Leukocyte immunoglobulin-like receptor B; LPS, Lipopolysaccharide; LRP,
Lactoferrin receptor; mTOR, Mammalian target of rapamycin; MV, Membrane vesicles; RIPK3, Receptor-interacting protein kinase 3; STAT, Signal transducer and activator of
transcription; TLR, Toll-like receptor.
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its immunosuppressive activity is likely mediated by their effect

on MDSCs.

2.1.3 Lactoferrin
Adoptive transfer of in vitro generated murine bone

marrow-derived MDSCs treated with lactoferrin (LF)

prolonged survival and ameliorated inflammation in

necrotizing enterocolitis in newborn mice as well as

concanavalin-induced hepatitis and ovalbumin-induced lung

inflammation (68). Both in vitro and in vivo LF treatment

increased MDSC numbers, likely via NF-kB activation, but

only in infant mice due to decreased LF receptor (LRP) 2

expression in adults (68). However, in vivo administration of

LF was shown to be much less effective in recruiting and

activating MDSCs compared to the adoptive transfer of in

vitro generated MDSCs using LF. This study demonstrates the

potential of targeting NF-kB and LRP2 to recruit MDSCs (68).
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2.1.4 PGE2
PGE2, in combination with GM-CSF and either IL-4 or IL-6,

was found to efficiently induce MDSCs ex vivo (55, 100). From

the four EP subreceptors (EP1-4) of PGE2, EP2 and EP4, and not

EP1 and EP3, were found to induce MDSC development, hinting

at an important role of the adenylate cyclase/cAMP/PKA/CREB

signaling pathway (55, 100). Furthermore, the adoptive transfer

of MDSCs generated in the presence of a selective EP4 receptor

agonist dampened airway inflammatory features in a murine

model of asthma (100).

2.1.5 Phorbol 12-myristate 13-acetate
The combination of M-CSF and PMA was recently shown to

induce MDSCs in vitro (106). The adoptive transfer of PMA-

induced MDSCs induced immune tolerance in a mouse skin

transplantation model, by inhibiting the T cell response,

promotion of cytokine secretion and inducing Tregs (106).
FIGURE 1

Mechanisms of possible pharmacological targets for the induction of MDSCs. Proliferation and activation of MDSCs is regulated by transcription
factors such as signal transducer and activator of transcription (STAT) 3, STAT1, STAT5, STAT6 and nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB). In vitro generation of MDSCs is induced by a large variety of cytokines and cytokine combinations and lactoferrin.
MDSC generation may be followed by adoptive transfer cell therapy to induce the beneficial effects of MDSCs. Various compounds [e.g.
rapamycin, glucocorticoids, terbutaline, tofacitinib, glatirameracetat, cannabidiol, clarithromycin, taurodeoxycholate, CXCR1 or CXCR2 ligands,
complete Freund’s adjuvant (CFA), membrane vesicles (MV), Toll-like receptor (TLR) 2/4 agonistic antibodies, prostaglandin E2, cyclosporine A
and receptor interacting protein kinase (RIPK) 3 inhibitor (GSK 872)] may be used for accumulation of MDSCs in vivo. G-CSF granulocyte
colony-stimulating factor, M-CSF macrophage CSF, GM-CSF granulocyte-macrophage CSF, IL Interleukin, TNF tumor necrosis factor, TGF
transforming growth factor, VEGF vascular endothelial growth factor, IFN interferon, mTOR mammalian target of rapamycin, JAK Janus kinase,
LRP lactoferrin receptor, iNOS inducible nitric oxide synthase, Arg arginase, IDO indoleamine 2,3-dioxygenase, NADPH nicotiamide adenine
dinucleotide phosphate, NFAT nuclear factor of activated t cells, p phosphorylated, CXCR CXC chemokine receptors, COX cyclooxygenase.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.933847
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


van Geffen et al. 10.3389/fimmu.2022.933847
PMA significantly upregulated Arg-1 expression in MDSCs, and

an Arg-1 inhibitor (nor-NOHA) diminished MDSC activity

(106). This study confirms that in vitro induced-MDSCs may

be promising targets for adoptive transfer to modulate

immunosuppression, such as in organ transplantation.

2.1.6 Rapamycin
The mTOR inhibitor rapamycin is frequently used in

immunosuppressive therapy following allograft transplantation

in order to prevent allograft rejection. Rapamycin is also applied

on drug-eluting stents to decrease stent stenosis, via its anti-

proliferative properties. Nakamura et al. performed adoptive

transfer of in vitro generated MDSCs, treated with rapamycin,

directly into the coronary artery of heart allografts in mice (48).

Administration of rapamycin-induced MDSCs prolonged skin

allograft survival and demonstrated the possibility of local

MDSC therapy. Adoptive transfer of rapamycin-treated

MDSCs resulted in improved outcomes concerning acute

kidney injury, with increased Tregs number and decreased

pro-inflammatory cytokines compared to adoptive transfer of

MDSCs not treated with rapamycin (40).

To this end, the in vitro/ex vivo generation and subsequent

adoptive transfer of MDSCs has been established in animal

models and most studies observe a beneficial effect in the

treatment of inflammatory diseases, yet human studies are

needed to further confirm the therapeutic concepts. However,

at the time of writing this review, no clinical trials investigating

MDSC adoptive transfer as a cell therapy have been performed

nor were registered in the clinical trial databases of the National

Institute of Health1 or the EU clinical trial register2.

Nevertheless, the generation/expansion of endogenous MDSC,

by administration of the right cytokine combination or potential

medications, would be the more elegant way to generate, activate

and recruit the MDSCs and dampen inflammatory diseases. We

discuss the possibilities in the following chapter of this review.
2.2 In vivo generation, recruitment, and
activation of MDSCs

2.2.1 Acetaminophen
Hsu et al. showed that the increase of intrahepatic MDSCs

by a sublethal dose of acetaminophen was able to protect mice

against subsequent lethal doses of acetaminophen,

lipopolysaccharide (LPS)/D-galactosamine or concanavalin A

(107). This finding was confirmed by a loss of protection after

MDSC depletion (107). The observed protective effect was likely

mediated by increased iNOS expression, as iNOS-expressing
1 ClinicalTrials.gov

2 Clinicaltrialsregister.eu
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MDSCs were found to induce the apoptosis of activated

neutrophils and decreased the intrahepatic infiltration of

elastase-expressing neutrophils (107). Furthermore, the group

of Hsu et al. were able to generate human PMBC-derived

MDSCs with a similar phenotype (107).

2.2.2 Rapamycin and other mammalian target
of rapamycin inhibitors

Besides the immune regulating features of rapamycin and its

ability to generate MDSCs in vitro for cell therapy, rapamycin

has also been linked to MDSC recruitment and activation in

vivo. Nakamura et al. reported prolonged heart allograft survival

in mice under Rapamycin administration, which was found to be

related to increased number of MDSCs, particularly M-MDSCs,

and iNOS expression (48). Zhang et al. showed that rapamycin

treatment ameliorated acute kidney injury through the

recruitment and activation of mainly PMN-MDSCs (40). A

recent study by Scheurer et al. demonstrated that rapamycin

administered after bone marrow transplantation promoted

immunosuppressive properties of MDSCs and thus prevented

GVHD (70). Furthermore, rapamycin treatment ameliorated

heart failure in mice, likely through the induction of MDSCs,

as MDSC depletion diminished this beneficial effect (69). Wei

et al. treated cornea transplanted mice with eye drops containing

rapamycin nano-micelles (71). An increased recruitment of

MDSCs and expression of Arg-1 and iNOS was observed and

was in line with a prolonged allograft survival. Also, in

immunological hepatic injury, rapamycin treatment was found

to promote MDSC recruitment, generation, and activity, and

ameliorated the disease (72). Recently, our group demonstrated

the allograft survival prolonging properties of rapamycin in

obese mice through increased M-MDSCs number and activity

(73). Taken together, rapamycin seems to be an efficient

inductor of MDSC generation and activation, with the

advantage of already being approved for clinical use for certain

diseases. Furthermore, a novel mTOR inhibitor, INK128, was

shown to promote wound healing in streptozotocin-induced

diabetic mice (74). mTOR deficiency in M-MDSCs was shown to

induce tolerance of mouse cardiac allografts (75), while adoptive

transfer of PMN-MDSCs lacking mTOR expression was shown

to dampen acute GVHD (76), confirming the beneficial role of

mTOR inhibition in promoting MDSC immune suppression.

However, the linking mechanism between mTOR and

MDSCs is not fully understood. Nakamura et al. stated that

mTOR inhibition could lead to increased activation of the Raf/

MEK/ERK pathway, which caused MDSC recruitment and

activation (48). Another possible mechanism responsible for

MDSC activation is the downregulation of runt-related

transcription factor 1 (runx1) gene expression (40). A third

possible mechanism was recently described by Jia et al. who

reported that AKT1, a known downstream target of mTOR,

regulates MDSC immunosuppressive activities by suppressing

hypoxia-inducible factor 1a-dependent glycolysis (77).
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Therefore, further research is necessary to further clarify the

underlying mechanism.

2.2.3 Glucocorticoids
Evidence emerged showing that glucocorticoids may also

carry out their immunosuppressive effect through the induction

as well as the recruitment of MDSCs. Mechanistically, the

g lucocor t i co id r e cep to r (GR) i s c r i t i c a l f o r the

immunosuppressive activity of MDSCs as GR activation leads

to a release of CXCR2, which is one of the main chemokines

involved in the recruitment of MDSCs to areas of inflammation

(64). Liao et al. demonstrated the same effects and mechanisms

of dexamethasone administration in vivo in a mouse model of

skin allograft transplantation (64). Another frequently used

glucocorticoid is methylprednisolone. Direct correlations

between methylprednisolone administration and increases in

the number of MDSCs, particularly PMN-MDSCs, have recently

been demonstrated in a murine model of multiple sclerosis (MS)

and human MS patients by Wang et al. (65). Interestingly, a

difference in MDSC immunosuppressive activity was observed

in mice compared to human MS patients, whereas MDSCs show

higher immunosuppressive activity in the latter upon treatment

with methylprednisolone. This was revealed by measuring

MDSC activity in experimental autoimmune encephalomyelitis

(EAE) mi c e and MS pa t i en t s , b e f o r e and a f t e r

methylprednisolone treatment (65). In mice, increased number

of MDSCs were observed at the onset of EAE, but not after

methylprednisolone pulse therapy. In contrast, in MS patients

increasing MDSC numbers were observed in PBMCs after

methylprednisolone application, and disease remission after

treatment was correlated to the increased number of MDSCs

(65). This highlights the complexity and importance of analyzing

MSDC behavior, not only in mice, but also in humans.

Furthermore, the mechanism of MDSC induction by

glucocorticoids is linked to inhibition and downregulation of

GR-b , which, if activated, antagonizes the effect of

glucocorticoids (65). Mice only express one type of GR which

might explain the higher MDSC activity observed in humans

(63). Methylprednisolone is considered the main drug for

chronic inflammatory conditions and is frequently used, not

only in MS patients, but also in many other autoimmune or

chronic inflammatory diseases like chronic obstructive

pulmonary disease (COPD) and rheumatic diseases (108).

Hence, methylprednisolone and the GR, with its different

subtypes, may provide promising targets for further research.

2.2.4 Chemokines
CXCR1 and CXCR2, among others, are highly expressed on

MDSCs and responsible for their recruitment. Blockage of

CXCR1 and CXCR2 with selective antagonists was shown to

severely decrease the number of MDSC infiltration in

pulmonary hypertension and carcinomas (4, 37). Furthermore,
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intratracheal administration of recombinant mouse protein

CXCL17 has been shown to result in the recruitment of

MDSCs into the lungs of mice (36). Selective CXCR1, CXCR2

and CXCL17 agonists seem to be promising pharmacological

drugs for increasing MDSC migration. However, these agonists

need to be further studied in the context of MDSC recruitment.

Recently, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) – an

environmental pollutant and aryl hydrocarbon receptor (AhR)

agonist – was shown to indirectly recruit MDSCs through strong

induction of CXCR2 expression by down-regulating specific

miRNAs (39). Upregulation of transcription factors

responsible for CXCR2 ligands (CXCL1 and CXCL2)

expression, like Snail, which acts through NF-kB pathway, also

provides other possible targets related to chemokines (38). In

addition, mTOR inhibition with rapamycin was found to result

in increased CXCR2, CXCL1 and CXCL2 expression, which was

directly linked to MDSC recruitment to the site of acute kidney

injury (40). Overall, targeting chemokines and their receptors for

MDSC recruitment seems promising, but the involved risks, as

previously reported in cancer patients, should be taken into

careful consideration (3–5). However, MDSCs primarily are

involved in promoting pre-metastatic niche formation and not

directly in tumor growth itself (109). Thus, the question can be

raised whether it could be beneficial to use locally administered

CXCR1 and CXCR2 ligands or CXCL17 only for tumor-free

patients in sites of chronic inflammation. As administration of

those ligands could increase the risk of pre-metastatic niche

formation if tumor cells are present, but not if the patient is

tumor-free. Alternatively, coating of allografts with chemokines

and cytokines, e.g. GM-CSF and CXCL17, could be used to

recruit MDCS to the allograft and locally reduce the

immune response.

2.2.5 Endothelin (ET)A receptor antagonist
ET signaling mediates strong vasoconstrictor properties, and

the ETA receptor antagonist, BQ123, is an effective therapy for

hypertension and obese cardiomyopathy (61). Recently, BQ123

was shown to induce PMN-MDSC-mediated immune

suppression in dextran sulfate sodium-induced colitis, papain-

induced pneumonia, and concanavalin A-induced hepatitis in

mice (62). Both the treatment of BQ123, as well as the transfer of

BQ123-induced PMN-MDSCs were effective in dampening

inflammation (62). Further analysis showed that BQ123

mediates it effects through the IL13/STAT6/Arg1 signaling

pathway (62).

2.2.6 b2-agonists
Recently, one promising approach in endogenous MDSC

generation was achieved with the help of b2-AR agonists in a

murine model of GVHD (52). Treatment with bambuterol – a

prodrug of the selective b2-agonist terbutaline – significantly

increased the number of MDSCs and Tregs while effector T cells
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were reduced and GVHD was ameliorated (52). All other

mechanisms of action were excluded, and the central role of

b2-AR was confirmed (52). Accordingly, in vitro cultivation of

MDSCs is also increased by terbutaline (52). Terbutaline and

other b2-agonists are used to treat asthma or COPD due to their

bronchodilator effect. However, part of their beneficial role also

might originate from MDSC generation.

2.2.7 TLR ligands
TLR4 signaling has been shown to play a crucial role in

inducing MDSCs (83). In a study on acute type 1 diabetes using

non-obese diabetic (NOD) mice, an agonistic TLR4 monoclonal

antibody was found to have a protective effect through the

induction of MDSCs (84). Furthermore, the adoptive transfer

of ex vivo bone marrow cells, stimulated with TLR4 antibody,

into NOD mice suppressed acute type 1 diabetes induction as

well (84). TLR4 antibody was shown to alter TLR4 signaling,

including NFkB signaling, resulting in the downregulation of

inflammatory genes and proteins (84). Furthermore, TLR2

ac t i v a t ion by Pam2CSK4 was found to enhance

immunosuppressive activity of M-MDSCs by upregulating

iNOS and NO production, partly through STAT3 activation

(85). Successful in vivo generation of MDSCs was also achieved

with administration of complete freund’s adjuvant (CFA)

containing heat-killed Mycobacterium (M.) tuberculosis in

mice (86). Interestingly, a single dose of CFA increased the

number of MDSCs but did not increase MDSC activity.

However, a second dose of CFA was shown to increase MDSC

activity as well. Here, M-MDSC accumulation and activation

was found to be favored. M. tuberculosis was shown to play a

pivotal role in the induction of MDSC accumulation by CFA,

most likely through activation of TLR pathways such as TLR2

and TLR4 (86). Efficient MDSC boosting is also achieved using

isolated membrane vesicles (MVs) of the common human gut

bacterium P. pentosaceus via the TLR2 pathway (87). Alpdundar

Bulut et al. observed upregulation of MDSC numbers, Arg-1 and

IL-10 levels and M2-like macrophage differentiation in vitro as

well as in several murine models modelling different

inflammatory conditions (87). Isolated MV administration was

shown to result in improved disease outcome (87). As the role of

TLRs in MDSC induction is well documented, it appears to be a

logical pharmacological target with potentially promising effects

of TLR2/4 antibodies and/or agonists in promoting MDSCs and

dampening inflammation (83).

2.2.8 PGE2/RIPK3 inhibitors
Increased PGE2 levels resulted in elevated activity and

production of Arg-1, IL-6, VEGF, S100A9 and NO, while it also

further inhibited RIPK3, creating a positive feedback loop for

MDSC activation (31). Decreased receptor-interacting protein

kinase 3 (RIPK3) expression was found to be correlated with

increased MDSC number and activity in colorectal and
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hepatocellular carcinoma, likely mediated by the NF-kB/COX-2/
PGE2 axis (31, 78). Inhibition of RIPK3 with GSK872 was shown

to prevent immune-mediated hepatitis (79). The authors showed

that RIPK3 inhibition led to an increase inMDSCs number, which

likely mediated the observed protective effect, as it was lost after

MDSC depletion (79). RIPK3 knockdown resulted in increased

MDSC recruitment in a mouse model of hepatocellular

carcinoma, which could be inhibited by a CXCR2 antagonist

(78). All in all, these findings indicate that RIPK3 inhibition may

be another promising pharmacological target to promote MDSC

recruitment, likely via the NF-kB/COX-2/PGE2 and CXCR2

chemokine axis. Another possible MDSC activation mechanism

linked to the NF-kB/COX-2/PGE2 axis may be the target of the

PGE2 receptors EP2 and EP4. Both EP2 and EP4 receptors may be

promising targets for research by inducing them via their

transcription factors or activating them with agonists. The study

of Jontvedt Jorgensen et al. highlighted the potential of using this

axis as a therapeutical target, as they demonstrated reduced

MDSC numbers in murine models of tuberculosis after COX-2

inhibitor administration (56). Recently, we showed that a selective

EP4 agonist could generate and activate MDSCs and dampen

airway inflammation in a murine model of asthma (57).

2.2.9 Tofacitinib
Tofacitinib is a JAK inhibitor approved for treatment of

rheumatoid arthritis (RA), among others. Sendo et al. showed

that tofacitinib promoted MDSC expansion and ameliorated

chronic inflammation in a murine model of RA-associated

interstitial lung disease (ILD) (81). Previously, the same group

showed the increase of the number of MDSCs and the following

improvement of RA upon tofacitinib administration (82).

Tofacitinib treatment was found to inhibit phosphorylation of

STAT1 and STAT5, while STAT3 levels remained constant

which underlined the role of STAT3 in MDSC activation. The

beneficial effect of tofacitinib in ILD may reveal the potential

effect of JAK inhibitors on MDSC recruitment.

2.2.10 Quercetin
Quercetin, a natural substance found inmany fruits and seeds,

has already been shown to have anti-inflammatory properties in

the context of autoimmune diseases such as rheumatoid arthritis

and inflammatory bowel disease (110–112). Furthermore,

Quercetin has been used as an anti-tumor therapy, due to its

potential to induce tumor apoptosis and necrosis (59). Recently,

Ma et al. showed a controversial correlation between MDSC

regulation through quercetin and its anticancer properties (60).

Quercetin treatment promoted PMN-MDSC expansion as well as

its immunosuppressive activity in a murine model of prostate

cancer (60). Mechanistically, quercetin binds to estrogen signaling

receptors (ESR), especially ESR2, and exerts downstream

phosphorylation of STAT3 in PMN-MDSCs and increased the

expression of iNOS, NADPH oxidase and IDO. However, the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.933847
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


van Geffen et al. 10.3389/fimmu.2022.933847
same study showed that quercetin induces apoptosis inM-MDSCs

through the estrogen signaling pathway (60). Nevertheless,

quercetin may be a promising compound for the selective

induction and activation of PMN-MDSCs through ESR/STAT3

signaling pathway, further supplementing the anti-inflammatory

properties associated with quercetin.

2.2.11 Cannabidiol
Recently, Elliott et al. showed that administration of

cannabidiol – a non-psychoactive cannabinoid – ameliorated

autoimmune encephalomyelitis in mice through the induction of

MDSCs (88). Adoptive transfer of in vitro generated MDSCs,

treated with CBD, was similarly found to improve

encephalomyelitis, while MDSC depletion had the opposite

effect. The same group demonstrated similar effects of CBD

treatment in autoimmune hepatitis induced mice (89).

2.2.12 Clarithromycin
One study also revealed clarithromycin as a potential target

for MDSC induction in vivo (90). Intraperitoneal and oral

treatment with clarithromycin was shown to increase the

number of MDSCs and prolong their survival in a murine

model of LPS endotoxin shock and post-influenza

pneumococcal pneumonia. In healthy humans, clarithromycin

intake seems to enhance immunosuppressive activity of

MDSCs (90).

2.2.13 Taurodeoxycholate
Chang, S. et al. indicated that TDCA – a taurine-conjugated

bile acid – can be used to induce MDSCs (91). Here,

administration of TDCA was found to improve survival in a

mouse model of sepsis, likely through the generation and

activation of MDSCs. Still, further research is needed to better

understand the underlying mechanisms.

2.2.14 Cyclosporin A
Calcineurin inhibitors such as cyclosporin A or tacrolimus/

FK506 are commonly used to treat autoimmune diseases and are

administered to allograft recipients to prevent graft rejection.

Calcineurin is released from its auto inhibitory loop upon T cell

activation by antigen presentation and then dephosphorylates

nuclear factor of activated T cells (NFAT) (53). NFAT migrates

to the nucleus where it is responsible for the transcription of many

pro-inflammatory genes, e.g. IL-2 (53). Besides NFAT, calcineurin

inhibitors also target the mitogen-activated protein kinase

(MAPK) pathway, and both these pathways play an important

role in the myeloid cell lineage (53). The immunosuppressive

properties of CsA could be linked to MDSC recruitment in vitro

and in vivo (53). Daily treatment with CsA was found to increase

MDSCs number, IDO and CXCR2 expression in a murine skin

allograft transplantation model (53). Wang et al. suggested that

the MDSC regulating effect of CsA is achieved by downregulation
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of NFATc1 (53). In addition, in skin grafted mice, the combined

administration of GM-CSF and CsA was shown to increase

MDSCs number and activity, by means of promoting iNOS

expression (54). Therefore, calcineurin and NFAT appear to be

interesting targets for MDSC regulation and induction.
2.2.15 Glucosamine
Glucosamine is an essential substrate for the glycosylation of

proteins and lipids. Recently, glucosamine was shown to

promote the generation of MDSCs from murine bone marrow

cells in vitro as well as in mice treated for 14 days with

intraperitoneal injections of glucosamine (58). Furthermore,

glucosamine also increased MDSC activity confirmed by T cell

suppression assays and increased levels of Arg-1 and iNOS

expression (58). Further analysis showed this effect was likely

mediated via the STAT3 and ERK1/2 pathways (58).
2.2.16 Glatirameracetat
GA has been found capable of promoting Tregs and Th2

lineage, while suppressing CD8+ T cell activity, and is therefore

frequently used in relapsing-remitting MS (113). Recently,

treatment with GA was demonstrated to increase the number

and activity of MDSCs in a murine model of inflammatory bowel

disease with improving health condition (66). The underlying

mechanism was shown to involve binding of GA to the paired

immunoglobulin (Ig) -like receptor B (PIR-B) in mice, or to the

human ortholog leukocyte immunoglobulin-like receptor-B

(LILRB) in humans (66). This interaction inhibited the STAT1

pathway and resulted in an increased IL-10 and TGF-b secretion

(66). The results of inhibiting LILRBs in mice tumor models

support this finding, since a decrease in MDSC number and

STAT6 phosphorylation, a shift of the macrophage balance

towards M2-like macrophages as well as increased STAT1/JAK

activity had been observed, which all oppose MDSC promotion

(67). As the regulation of the myeloid lineage is a highly complex

net of signals in which the role of LILRBs is not fully explained yet,

further research is needed.
2.3 Potential pharmacological targets on
MDSCs in cancer

MDSCs accumulate in cancer and promote invasion,

angiogenesis, metastasis formation and reduce the effectiveness

of anti-tumor immunity (1, 3). Considering the negative role of

MDSCs in the tumor microenvironment, one of the main goals

of cancer research has been to suppress both MDSCs number

and activity (1, 3). Many pharmacological targets have already

been identified, which were shown to be involved in modulating

the number and activity of MDSCs in different types of cancer,

and were able to be targeted with different compounds (Table 2).

As this review focusses on promoting MDSCs number and
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activity instead of inhibiting, in order to promote the anti-

inflammatory immunity, the suggested MDSC-suppressing

drugs are of course not of interest. However, the same targets

that are used to suppress MDSCs in the context of the tumor

microenvironment, might also be targeted in the complete

opposite direction, in order to promote MDSCs in the context

of potentially beneficial anti-inflammatory immunity. Several

pharmacological targets that were manipulated to reduce the

number and/or activity of MDSCs in the context of cancer, such

as TLR4, b2-AR, EP4 and CXCR2, have already been described

as potential targets for promoting the number and/or activity of

MDSCs, as discussed above. For example, a b2-AR blocker,

propranolol, was shown to reduce MDSC number and activity

(20), while a b2-AR agonist, terbutaline, was shown to have the

opposite effect (52). Similarly, the EP4 receptor antagonists,

E7046 and YY001, were shown to reduce MDSC number and

activity in the context of cancer (181, 182), while a EP4 receptor

agonist, L-902,688, was shown to have the opposite effect in a

murine model of asthma (57). However, there remain

pharmacological targets of MDSC inhibition, which were

identified in cancer research, that have so far not been studied

in the context of MDSC promotion yet may provide efficient

targets in novel anti-inflammatory therapies through generation

and activation of these immune suppressive cells.
3 Discussion

Findings on themodulation of the generation, recruitment, and

activation of MDSCs open the door to novel pharmacological

approaches that can be used to dampen inflammation in a variety

of diseases or conditions characterized by excessive and detrimental

immune responses (such as autoimmune diseases, chronic

inflammatory diseases, transplantation and GVHD). Taking all

the mentioned mechanisms and the potential pharmacological

targets into consideration, the in vitro generation of MDSCs

combined with adoptive transfer (MDSC cell therapy) as well as

the in vivo recruitment and activation of endogenous MDSCs seem

to both be promising approaches. Nonetheless, cell therapies always

bear additional risks, e.g. reaction of the immune system against

transferred cells, and adverse side effects, and, as a result, need to be

studied carefully before applying it to the clinical setting.

Alternatively, the promotion of endogenous MDSCs could create

safer, easier, and potentially equally or more efficient MDSC-

targeted therapies in the future.

On the one hand, in vitro generation of MDSCs with the help

of cytokines – like GM-CSF and IL-6 – or pharmacological

compounds – such as PGE2 –, followed by adoptive transfer is an

effective and increasingly established treatment in murine

models of chronic inflammatory diseases, autoimmune

diseases, and allograft transplantation. Here, it is possible to

circumvent the potential systemic side effects of unspecific

pharmacological compounds and transfer a purified subset of
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immunosuppressive cells to dampen inflammation. On the other

hand, efficient endogenous MDSC generation and activation was

achieved with a double CFA injection containingM. tuberculosis

or MVs through the TLR pathway, mTOR inhibitor rapamycin,

dexamethasone, GA, EP4 receptor agonist as well as with other

medications (48, 56, 57, 63, 64, 66, 67, 79, 81, 82, 84, 86, 87).

Furthermore, many chemokines, and their receptors, have been

identified to be involved in MDSC recruitment, with the most

noteworthy chemokine being CXCR2, with its most important

ligands CXCL1 and CXCL2. CXCR2 ligands can be used to

regulate the migration of generated MDSCs to the site of interest,

e.g. the intestines in Crohn’s disease, or the lungs of asthmatic

patients. In this context, allografts could be coated with

chemokine agonists to promote local MDSC accumulation -

similar to vascular stents coated with anticoagulants and anti-

proliferative drugs, like rapamycin. However, the in vivo

generation of endogenous MDSCs may be a more

straightforward therapy compared to MDSC cell therapy,

which would ideally be accomplished with a selective drug and

pharmacological targets, in order to reduce possible side effects

as much as possible.

The safety of adoptively transferred MDSCs is not very well

known and remains one of the primary challenges in bringing

MDSC therapy to a clinical setting (355). Similarly, the safety of

inducing endogenous MDSCs remains largely unknown. One

concern may be the immature characteristic of MDSCs, which

makes them susceptible to the induction of differentiation into

other immune cells, such as macrophages, neutrophils or DCs,

depending on specific microenvironmental cues. The negative

role of MDSCs in the context of cancer also raises the following

questions: Can MDSC inducing therapy only be applied in

patients who are “certainly tumor-free”? And if so, how is it

possible to identify this patient group? Or is the expected

beneficial effect so great that the increased risk of metastasis

can be accepted? Is there a way to inhibit MDSCs in undesired

parts of the body? As the vast majority of studies on MDSCs are

cancer-related and the systemic MDSC induction has been

linked to tumor progression, metastasis and impaired survival,

a method of local induction of MDSCs would be necessary to

reduce the risk of MDSC-induced cancer progression as well as

potential other side effects of systemic immunosuppression, e.g.

opportunistic infections.

The increasing number of potential pharmacological targets

that have been shown to be involved in modulating the number

and activity of MDSCs provide significant number of

opportunities for novel pharmacological approaches. Especially

considering the potential targets, which were previously mainly

studied in the context of cancer (Table 2), to inhibit the MDSC

response, where this effect may be reversed (e.g. changing from

an agonist to antagonist or the other way around), in order to

promote the MDSC response. The interest in the modulation of

MDSC outside the context of cancer is also increasing, as the

importance of MDSCs in many different immune-related
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TABLE 2 Potential pharmacological targets on MDSCs in cancer.

Target Potential pharmacological drug for cancer treatment Effect of
potential
drug on
MDSCs

Cancer type Reference

A20 A20-siRNA Reduced number Lymphoma
Melanoma

(114)

AMPKa AMPKa inhibitor (dorsomorphin-compound), metformin Reduced number
Reduced activity

Colon carcinoma
Esophageal
carcinoma
Lung carcinoma
Ovarian carcinoma

(115–118)

Arginase-1, L-
Arginine

L-Arginine, Arginase inhibitor (Nor-NOHA, CB-1158), ODC inhibitor (DFMO) Reduced number
Reduced activity

Colon carcinoma
Melanoma
Mammary
carcinoma
Ovarian carcinoma

(119–123)

Aurora A Aurora A inhibitor (alisertib) Reduced number Mammary
carcinoma

(124)

Bcl-xL Bcl-xL inhibitor (ABT-737) Reduced number Colon carcinoma
Mammary
carcinoma

(125)

b2-AR/b3-AR b-AR-blocker (propranolol), b3-AR-blocker (SR59230A) Reduced number
Reduced activity

Colon carcinoma
Fibrosarcoma
Mammary
carcinoma
Melanoma

(20, 126–
128)

Caspases Ganoderic acid A, caspase 8 inhibitor (Z-IETD-FMK) Reduced number Lung carcinoma
Lymphoma

(129, 130)

CCL2/CCR2 CCR2 inhibitor (RS-102895, RS-504393), CCL2 inhibitor (BHC, propagermanium) Reduced number Basal cell carcinoma
Bladder carcinoma
Lung carcinoma
Mammary
carcinoma
Rhabdomyosarcoma

(131–134)

CCL5/CCR5 CCL5 Ab, CCR5 inhibitor (Met-RANTES, Maraviroc) Reduced number Lymphoma
Malignant
melanoma
Mammary
carcinoma

(135–138)

CCRK CCRK inhibitor Reduced number HCC (139)

CD33 CD33 Ab (BI 836858), CD33/CD3-bispecific T-cell engager (AMG 330, AMV564) Reduced number Leukemia
Melanoma

(140–142)

CD40 CD40 Ab Reduced number
Reduced activity

Colon carcinoma
Gastric carcinoma
Renal carcinoma

(143–146)

c-Rel (member of
NF-kB family)

c-Rel inhibitor (R96A) Reduced number Lymphoma
Melanoma

(147)

CSF-1/CSF-1
receptor

CSF-1 receptor inhibitor (GW2580, pexidartinib, PLX647, PLX5622, BLZ945) Reduced number Melanoma
Neuroblastoma
Prostate carcinoma

(148–151)

CXCR1/2/CXCL1/
2/5

CXCR1/CXCR2 inhibitor (SX-682), CXCR2 inhibitor (SB-265610, benzocyclic sulfone
derivatives) CXCR2 Ab

Reduced number Colon carcinoma
Mammary
carcinoma
Rhabdomyosarcoma

(4, 41, 152–
158)

CXCR4 CXCR4 inhibitor (TFF2, plerixafor), poly polymerase inhibitor (olaparib), NAMPT
inhibitor (FK866, MV87)

Reduced number Colorectal
carcinoma
Fibrosarcoma
Leukemia
Mammary

(159–164)

(Continued)
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TABLE 2 Continued

Target Potential pharmacological drug for cancer treatment Effect of
potential
drug on
MDSCs

Cancer type Reference

carcinoma
Pancreatic
carcinoma

D1(-like) receptor Dopamine, D1-like receptor agonist (SKF38393) Reduced activity HNSCC
Lung carcinoma
Melanoma
Prostate carcinoma

(165)

D2 receptor D2 receptor agonist (cabergoline) Reduced number Lung carcinoma (166)

Dectin-1 Dectin-1 agonist (WGP) Reduced number
Reduced activity

Lymphoma (167)

Dkk1/b-catenin Dkk1 Ab, galactosaminyltransferase Reduced number Lung carcinoma
Melanoma

(168, 169)

DNA synthesis Cytostatic drugs (gemcitabine, cisplatin, capecitabine, 5FU, lurbinectedin, 6-thioguanine,
decitabine)

Reduced number Bladder carcinoma
Lymphoma
Mammary
carcinoma
Myeloma
Pancreatic
carcinoma
Thymoma

(170–179)

ENTPD2 ENTPD2 inhibitor Reduced number HCC (180)

EP4 receptor EP4 receptor antagonist (E7046, YY001) Reduced number
Reduced activity

Adenocarcinoma
Colon carcinoma
Mammary
carcinoma
Prostate carcinoma

(181, 182)

FAO FAO inhibitor Reduced activity Colon carcinoma
Lung carcinoma

(183)

Fcg receptor Fc portion of monoclonal Ab (Cetuximab) Reduced activity HNSCC (184)

FGL2 FGL2 Ab Reduced number Glioma (185)

G-CSF G-CSF Ab, polyacetylenic glycoside (BP-E-F1) Reduced number Colorectal
carcinoma
Mammary
carcinoma
Sarcoma

(18, 186,
187)

Glutaminase/
Glutathione/
glutathione
synthase

ATRA, glutaminase antagonist (JHU083) Reduced number Colorectal
carcinoma
Lung carcinoma
Melanoma
Mammary
carcinoma
Sarcoma

(188–195)

GM-CSF GM-CSF Ab Reduced number HCC
Mammary
carcinoma
Pancreatic
carcinoma

(152, 196–
198)

HDAC HDAC inhibitor (entinostat, valproic acid) Reduced number Lung carcinoma
Mammary
carcinoma
Melanoma
Renal cell
carcinoma

(199–201)

Histamine Histamine antagonist (ranitidine), HDC Reduced number
Reduced activity

Colorectal
carcinoma

(202, 203)

(Continued)
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TABLE 2 Continued

Target Potential pharmacological drug for cancer treatment Effect of
potential
drug on
MDSCs

Cancer type Reference

Lymphoma
Mammary
carcinoma

HMGB1 HMGB1 inhibitor (ethyl pyruvate, glycyrrhizin) Reduced number Colon carcinoma
Mammary
carcinoma
Melanoma

(204)

HOXA1 HOTAIRM1 Reduced activity Lung carcinoma (205)

IDO IDO inhibitor (1-MT, INCB023843, EOS200271), IDO-vaccine,
gemcitabine, superoxide dismutase mimetic

Reduced number
Reduced activity

Colorectal
carcinoma
Lung carcinoma
Mammary
carcinoma
Melanoma
Pancreatic
carcinoma

(46, 206–
212)

IFN-g IFN-g Ab Reduced number Colon carcinoma
Leukemia
Lymphoma
Melanoma

(213)

IL-1b IL-1 receptor antagonist, anti-IL-1b Ab Reduced number Gastric carcinoma
Melanoma
Prostate carcinoma

(27, 214,
215)

IL-4 IL-4 receptor-a blockade with RNA aptamer Reduced activity Fibrosarcoma
Mammary
carcinoma

(216, 217)

IL-6 IL-6-neutralizing Ab/IL-6-silencing vector Reduced number HCC
Lung carcinoma
Malignant
melanoma
Prostate carcinoma

(218–223)

IL-8 IL-8 Ab (HuMax-IL8) Reduced number Mammary
carcinoma

(224, 225)

IL-10 IL-10 Ab, IL-10 receptor Ab Reduced number
Reduced activity

Mammary
carcinoma
Ovarian carcinoma

(226, 227)

IL-12 IL-12 Reduced number
Reduced activity

Colon carcinoma
Mammary
carcinoma

(228, 229)

IL-13Ra2 IL-13-PE (immunotoxin of IL-13 fused to the Pseudomonas exotoxin A) Reduced number HNSCC (230)

IL-18 IL-18 Ab (SK113AE4) Reduced number Melanoma
Multiple myeloma
Osteosarcoma

(231–233)

IL-33 IL-33 Ab Reduced number
Reduced activity

Melanoma (234)

iNOS iNOS inhibitor (L-NIL, L-NAME) Reduced number Colon carcinoma
Lung carcinoma
Lymphoma
Malignant
melanoma
Melanoma
Thymoma

(51, 235,
236)

IRF-4 IL4 Reduced number
Reduced activity

Mammary
carcinoma
Melanoma

(237–239)
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TABLE 2 Continued

Target Potential pharmacological drug for cancer treatment Effect of
potential
drug on
MDSCs

Cancer type Reference

Jagged1/2 Anti-Jagged1/2-blocking Ab (CTX014) Reduced number
Reduced activity

Colon carcinoma
Lung carcinoma
Melanoma
Thymoma

(240)

Kinases Multikinase inhibitor (Sorafenib, Cabozantinib, BEZ235, Lenvatinib) Reduced number
Reduced activity

HCC
Malignant
melanoma
Renal cell
carcinoma
Urothelial
carcinoma

(197, 241)

Lactate Anti-LDH Ab, ketogenic diet for glucose depletion Reduced number Pancreatic
carcinoma

(242)

LILRB LILRB antagonist Reduced number Lung carcinoma 30352428

LXR LXR agonist (RGX-104, GW3965) Reduced number Colorectal
carcinoma
Lung carcinoma
Melanoma
Renal carcinoma
Sarcoma
Uterine carcinoma

(243, 244)

MEK/BRAF MEK inhibitor (trametinib, cobimetinib, GDC-0623), BRAF inhibitor (Vemurafenib) Reduced number Colon carcinoma
Lung carcinoma
Mammary
carcinoma
Melanoma

(245–247)

MIF MIF inhibitor (Sulforaphane) Reduced number Colon carcinoma
Mammary
carcinoma

(248)

mTOR mTOR inhibitor (rapamycin, AZD2014, OSU-53) Reduced number
Reduced activity

Lung carcinoma
Mammary
carcinoma
Melanoma
Ovarian carcinoma

(249–252)

Myd88 Myd88 inhibitor (IMG2005, TJ-M2010-5) Reduced number
Reduced activity

Colorectal
carcinoma

(253, 254)

NK1 receptor Substance P Reduced number Mammary
carcinoma

(255)

NOX2 NOX2 inhibitor Reduced activity Colon carcinoma
Lung carcinoma
Mammary
carcinoma
Sarcoma
Thymoma

(44)

Osteactivin (DC-
HIL)

Anti-DC-HIL Ab Reduced activity Colorectal
carcinoma

(256)

P38 kinase P38 inhibitor (LY2228820) Reduced number Lung carcinoma
Mammary
carcinoma
Melanoma

(257, 258)

PD-L1 Anti-PD-L1 Ab Reduced number Colon carcinoma
HNSCC
Lung carcinoma
Mammary
carcinoma

(259–262)

(Continued)
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TABLE 2 Continued

Target Potential pharmacological drug for cancer treatment Effect of
potential
drug on
MDSCs

Cancer type Reference

Melanoma
Ovarian carcinoma

PI3K PI3K inhibitor (IPI-145, Alpelisib, quinic acid), Artemisinin Reduced number Colon carcinoma
HNSCC
Mammary
carcinoma
Melanoma

(263–266)

PPARg PPARy agonists Reduced number
Reduced activity

Lung carcinoma (267, 268)

PNT PNT inhibitor (CDDO-Me), PNT scavenger (MnTBAP) Reduced number
Reduced activity

Lung carcinoma
Melanoma
Thymoma

(51, 269)

Phosphatidylserine Anti-phosphatidylserine Ab (Bavituximab) Reduced number Mammary
carcinoma
Prostate carcinoma

(270, 271)

PDE-5 PDE-5 inhibitor (Sildenafil, Tadalafil), Paclitaxel Reduced number
Reduced activity

Colon carcinoma
Lymphoma
Melanoma

(235, 272–
277)

PGE2 Celecoxib, SC58125, SC58236 (cyclooxygenase 2 inhibitors), Indomethancin (IND), EP2/4
antagonist

Reduced number
Reduced activity

Colon carcinoma
Lung carcinoma
Mammary
carcinoma
Melanoma
Ovarian carcinoma
Pancreatic
carcinoma

(41, 55,
278–283)

Rac Rac inhibitor (EHT-1864) Reduced number Colitis-associated
carcinoma

(284)

RLH RLH ligand (polyinosinic-polycytidylic acid (poly(I:C)) Reduced activity Pancreatic
carcinoma

31694706

RORC1/RORg RORC1 inhibitor Reduced number Sarcoma (285)

ROS CDDO-Me (Triterpenoid), Doxorubicin Reduced activity Colon carcinoma
Lung carcinoma
Mammary
carcinoma
Renal cell
carcinoma
Sarcoma
Thymoma

(286, 287)

RTKs/BTK RTK inhibitor (Sunitinib, nilotinib, dasatinib, sorafenib, UNC4241), BTK inhibitor
(ibrutinib)

Reduced number
Reduced activity

Cervical carcinoma
Colon carcinoma
HNSCC
Mammary
carcinoma
Melanoma
Pancreatic
carcinoma
Renal cell
carcinoma

(288–301)

S100A8/9/RAGE anti-S100A8/9 Ab, S100A9 inhibitor (Tasquinimod), Anti-RAGE Ab Reduced number
Reduced activity

Colon carcinoma
Gastric carcinoma
Lung carcinoma
Lymphoma
Mammary
carcinoma
Sarcoma

(189, 302–
309)

(Continued)
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TABLE 2 Continued

Target Potential pharmacological drug for cancer treatment Effect of
potential
drug on
MDSCs

Cancer type Reference

S1P LCL521 Reduced activity HNSCC
Sarcoma

(310, 311)

SCARB1 Synthethic high-density lipoprotein-like nanoparticles Reduced activity Melanoma (312)

Semaphorin 4D Semaphorin 4D Ab Reduced number
Reduced activity

HNSCC (313, 314)

SIRT1 via HIF-1a SIRT1 activator (SRT1720), HIF-1a inhibitor (2-ME) Reduced number Lymphoma
Melanoma

(315)

STAT3 STAT3 inhibitor (JSI-124, Stattic, AG490, Nifuroxazide, S3I, FLLL32, BBI608,
napabucasin, quercetin), Sunitinib (TKI), Curcumin, Notch signaling blocker (selective
CK2 inhibitor (TBCA), (g-secretase inhibitor (GSI-IX, DAPT))

Reduced number
Reduced activity

Colon carcinoma
Gastric carcinoma
HCC
HNSCC
Lung carcinoma
Lymphoma
Mammary
carcinoma
Melanoma
Ovarian carcinoma
Pancreatic
carcinoma
Renal cell
carcinoma
Sarcoma

(23, 32, 46,
60, 316–331)

STING STING agonist Reduced number Colorectal
carcinoma
Nasopharyngeal
carcinoma

(211, 332)

TGF-b1 Anti-TGF-b1 Ab, TGF-b inhibitor (Pirfenidone) Reduced number
Reduced activity

HCC
Lung carcinoma
Lymphoma
Melanoma
Renal cell
carcinoma

(309, 333)

TLR1/2 TLR1/TLR2 agonist (synthethic bacterial lipoprotein), HSP70 ligand/blocker (A8 peptide) Reduced number Lung carcinoma
Lymphoma
Melanoma

(334, 335)

TLR4 TLR4-inducer (Asparagus polysaccharide, cinnamaldehyde) Reduced number
Reduced activity

Colon carcinoma
Colorectal
carcinoma

(336, 337)

TLR7/8 TLR7 agonist (imiqimod), TLR8 agonist (motolimod), TLR7/8 agonist (resiquimod) Reduced number
Reduced activity

HNSCC
Melanoma

(338–342)

TLR9 TLR9 agonist (CpG), TLR9-targeted STAT3siRNA Reduced number
Reduced activity

Colon carcinoma
Gastric carcinoma
Prostatic carcinoma

(343, 344)

TNF/TNFR2 TNF Ab/inhibitor (XPro1595, etanercept, infliximab), TNFR2 inhibitor (TNFR2 antisense
oligodeoxynucleotides, TNFR2-Fc fusion protein)

Reduced number Colon carcinoma
Lung carcinoma
Sarcoma

(345, 346)

TRAIL receptors TRAIL receptor 2 agonist (DS-8273a) Reduced number Advanced stage
solid tumors
Lung carcinoma

(347, 348)

Nrf2 Nrf2 inducer (CDDO-Im) Reduced activity Lung carcinoma (349)

VEGF/VEGF
receptor

VEGF receptor inhibitor (SAR131675, pazopanib), VEGF Ab (bevacizumab) Reduced number Lung carcinoma
Mammary
carcinoma
Prostate carcinoma

(350–354)
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pathological conditions is being unraveled (356). Furthermore,

transplantation research has also increased its attention towards

MDSC immunomodulation as a promising candidate to increase

tolerance and improve transplant outcome (357). Thus, the

pharmacological approaches which can be applied in MDSC

modulation, as discussed in this review, may provide novel

opportunities in the future of tolerance-inducing agents in the

context of transplantation.

Taken together, there are many different promising

pharmacological targets to generate and activate MDSCs, and

their beneficial potential in certain pathological conditions has

been established in animal studies. Therefore, MDSC therapies

may prove to be e ff e c t i v e a l t e rna t i v e s to o the r

immunosuppressive therapies. The selective harnessing of

regulatory immune cells, here expanding suppressive activity

of MDSCs on T cells, may bring an advanced possibility to

protect, limit or ameliorate the initiation or progression of

autoimmunity, inflammation, transplant rejection or GVHD,

promote inflammation resolution and transplantation tolerance

and pave the way toward precise medical therapy in

inflammation/autoimmunity/transplant medicine.
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