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Development and validation

of a cancer-associated
fibroblast-derived IncRNA
signature for predicting clinical
outcomes in colorectal cancer
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Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China, 2Department
of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, *Department of Hematology,
The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China

Cancer-associated fibroblasts (CAFs) are actively involved in cancer progression
through generating extracellular matrix and orchestrating the crosstalk within the
tumor microenvironment (TME). This study aimed to develop and validate a CAF-
derived IncRNA (long non-coding RNA) (CAFDL) signature for predicting clinical
outcomes in colorectal cancer (CRC). Clinical data and transcriptomic profiles of
2,320 patients with CRC from The Cancer Genome Atlas (TCGA)-COAD and
TCGA-READ datasets and 16 Gene Expression Omnibus datasets were included in
this study. CAFDLs were identified using weighted gene co-expression network
analysis. The CAFDL signature was constructed using the least absolute shrinkage
and selection operator analysis in the TCGA-CRC training set. Multiple CRC
cohorts and pan-cancer cohorts were used to validated the CAFDL signature.
Patients with high CAFDL scores had significantly worse overall survival and
disease-free survival than patients with low CAFDL scores in all CRC cohorts. In
addition, non-responders to fluorouracil, leucovorin, and oxaliplatin (FOLFOX)/
fluorouracil, leucovorin, and irinotecan (FOLFIRI) chemotherapy,
chemoradiotherapy, bevacizumab, and immune checkpoint inhibitors had
significantly higher CAFDL scores compared with responders. Pan-cancer
analysis showed that CAFDL had prognostic predictive power in multiple
cancers such as lung adenocarcinoma, breast invasive carcinoma, stomach
adenocarcinoma, and thyroid carcinoma. The CAFDL signature was positively
correlated with transforming growth factor-beta (TGF-B) signaling, epithelial—
mesenchymal transition, and angiogenesis pathways but negatively correlated
with the expression of immune checkpoints such as PDCD1, CD274, and CTLAA4.
The CAFDL signature reflects CAF properties from a IncRNA perspective and
effectively predicts clinical outcomes in CRC and across pan-cancer. The CAFDL
signature can serve as a useful tool for risk stratification and provide new insights
into the underlying mechanisms of CAFs in cancer immunity.
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Introduction

Colorectal cancer (CRC) is the third most common cancer and
the second leading cause of cancer-related death worldwide.
Standard treatments for CRC include surgery, adjuvant or
neoadjuvant chemotherapy and radiotherapy, and targeted
therapy (1). In recent years, immune checkpoint inhibitors (ICIs)
have revolutionized the treatment of patients with CRC, especially
those with microsatellite instability-high (MSI-H)/mismatch-
repair-deficient (AIMMR) status (2). Cancer-associated fibroblasts
(CAFs) are the most abundant of all stromal cells that populate the
tumor microenvironment (TME). CAFs modulate the biological
properties of cancer cells and other stromal cells through
orchestrating the crosstalk within TME and releasing a variety of
regulatory factors (3). The extracellular matrix remodeled by CAFs
acts as a physical barrier supporting tumor cell invasion and
inhibiting infiltration of antitumor leukocytes, leading to cancer
progression, immune evasion, and immunotherapy resistance (4).
In addition, CAFs may confer substantial therapeutic resistance by
impairing drug delivery and immune signaling pathways (5).
Previous studies have shown that high CAF infiltration indicates
poor survival. CAFs are identified by protein biomarkers such as
alpha—-smooth muscle actin or fibroblast activation protein (6).
Herrera et al. recently reported a CAF-derived gene signature for
predicting CRC prognosis involving 596 protein-coding genes (7).
Accumulating evidence suggests that long non-coding RNAs
(IncRNAs), a subset of non-coding RNAs with >200 nucleotides
inlength, are closely implicated in the biological behaviors of CAFs
(8, 9). However, comprehensive analysis of IncRNAs associated
with CAFs is still lacking. Therefore, studies revealing the roles of
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CAF in cancer immunology from a IncRNA perspective are
warranted. CAFs have a higher infiltration level in CRC
compared with other cancer types, suggesting that CAFs play a
more important role in CRC than in other cancers. CRC has a large
number of high-quality sequencing datasets containing IncRNA
expression profiles.

In this study, we developed and validated a CAF-derived
IncRNA (CAFDL) signature based on clinical data and
transcriptomic profiles of 2,320 patients with CRC from 18
datasets. The CAFDL signature could serve as a robust
predictor of overall survival (OS) and disease-free survival
(DES), as well as response to all mainstay treatments of CRC,
including chemotherapy, chemoradiotherapy, targeted therapy,
and immunotherapy. Moreover, pan-cancer analysis revealed
the predictive power of the CAFDL signature in multiple
cancers, and its molecular and immune correlates were
explored (Figure 1). Our study opens up new avenues for risk
stratification and provides new insights into the underlying
mechanisms of CAFs in CRC and across pan-cancer.

Materials and methods
Data acquisition and processing

Transcriptomic RNA sequencing and corresponding clinical
data of 10,148 patients across 33 cancer types including colon
adenocarcinoma (COAD) and rectal adenocarcinoma (READ)
were downloaded from the TCGA database (https://portal.gdc.
cancer.gov). The raw read count was converted to transcripts per
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kilobase million (TPM) format and log2(x+1)-transformed.
Expression profiles and clinical information obtained from the
Gene Expression Omnibus (GEO) for 16 CRC datasets (GSE17536,
GSE17537, GSE19860, GSE28702, GSE29621, GSE31595,
GSE33113, GSE37892, GSE38832, GSE39582, GSE45404,
GSE62080, GSE69657, GSE72970, GSE92921, and GSE143985)
using the Aﬂ:ymetrix® GPL570 platform. For immunotherapy
cohorts, transcriptome and clinical information of IMvigor210
(10) was downloaded from the online database (http://research-
pub.gene.com/IMvigor210CoreBiologies). Gene expression
profiles and clinical data of Gide’s (11), Nathanson’s (12), Kim’s
(13), Braun’s (14), and Liu’s (15) cohorts were obtained from their
articles. Expression profiling and clinical data of GSE91061 (16)
were downloaded from the GEO database. The “ComBat” tool from
the “sva” package of the R software was applied to correct for
systematic batch effects among the TCGA and GEO datasets. The
“ComBat” tool from the “sva” package of the R software was applied
to correct for systematic batch effects between the TCGA-COAD
and TCGA-READ datasets and among 16 GEO datasets,
respectively. Patients with a follow-up or survival duration of less
than 30 days were excluded from survival analysis to rule out the
bias due to loss to follow-up or perioperative death.

Tumor immune microenvironment analysis

CAF infiltrations were evaluated using three algorithms: EPIC
(17), xCELL (18), and MCPcounter (19). Tumor purity and the
presence of infiltrating stromal/immune cells in tumor tissues were
predicted using ESTIMATE algorithm (20). Immune cell
infiltrations in 33 cancer types were calculated using seven
algorithms: TIMER (21), EPIC, xCELL, CIBERSORT (22),
QUANTISEQ (23), MCPcounter, and TIDE (24).

Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis (WGCNA) is
a systematic bioinformatics algorithm capable of integrating
highly coordinated expressed genes into several gene modules
and investigating the relationship of modules to phenotypes of
interest. An appropriate soft power threshold () was chosen to
find the best balance to generate the largest number of modules
without loss of gene module membership (MM). WGCNA was
conducted using the “WGCNA” package in R.

Construction of the prognostic signature
The TCGA-CRC cohort was randomly divided into a training

set and an internal validation set in a 1:1 ratio. All CAFDLs
identified from WCGNA were included in the least absolute
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shrinkage and selection operator (LASSO) Cox regression model
to construct the powerful prognostic signature. LASSO analysis was
repeated for 1,000 iterations until the area under the curve (AUC) of
time-dependent receiver operating characteristic (ROC) analysis
reached a maximum value in both the training and internal test
cohorts. A multivariate Cox regression model was finally used to
determine the coefficient and construct a prognostic signature based
on the candidate IncRNAs generated from the LASSO analyses. A
risk score for each patient was calculated as the sum of each gene’s
score, which was obtained by multiplying the expression of each
gene and its coefficient. The sensitivity and specificity of the
prognostic signature were accessed by ROC curves and area
under the ROC curves (AUC values).

Single-sample gene set
enrichment analysis

The enrichment scores of cancer hallmark gene sets were
calculated by single-sample gene set enrichment analysis
(ssGSEA) method with the “ssGSEA” package in R. Cancer
hallmark gene sets were downloaded from Molecular
Signatures Database.

Quantitative real-time PCR

TRIzol reagent (Thermo Fisher Scientific, Carlsbad, CA,
USA) was used to extract the total RNA from CRC and
normal tissues according to the manufacturer’s protocol.
Reverse transcription was performed using a Prime Script RT
reagent kit (Takara Biotechnology, China). Applied Biosystems
7900 Real-time PCR System (Thermo Fisher Scientific) was used
to perform the quantitative real-time PCR (qRT-PCR) assay.
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used
to normalize IncRNA expression.

Results

Assessing CAF infiltrations
in CRC cohorts

First, we established two integrated cohorts, namely, TCGA-
CRC and meta-GEO. The TCGA-CRC cohort of 625 patients
consisted of TCGA-COAD (N = 458) and TCGA-READ (N =
167) datasets. On the other hand, the meta-GEO cohort of 1,116
patients was pooled from six GEO datasets with OS data:
GSE17536 (N = 177), GSE17537 (N = 55), GSE29621 (N =
65), GSE38832 (N = 122), GSE39582 (N = 573), and GSE72970
(N = 124). CAF infiltrations in each CRC sample were evaluated
using three algorithms: EPIC, MCPcounter, and xCELL
(Table S1).
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WGCNA identified CAFDLs

After gene symbol annotation, 12,644 IncRNAs in the
TCGA-CRC and 2,023 IncRNAs in the meta-GEO cohort were
obtained. A total of 1,993 IncRNAs were shared by both cohorts.
We performed WGCNA on the IncRNA expression profiles of
TCGA-CRC and meta-GEO cohorts, respectively. The optimal
soft threshold used to generate modules was 3 for both cohorts.
The numbers of modules identified by WGCNA for TCGA-CRC
and meta-GEO cohorts were 14 and 9, respectively (Figure 2A).
We analyzed the relationship between modules and CAF
infiltrations assessed by EPIC, MCPcounter, and xCell
algorithms. CAF infiltration was significantly associated with
turquoise module in TCGA-CRC (Rgpic = 0.67, Rycp = 0.74,
and Rycen = 0.54, respectively) (Figure 2A). The correlation
coefficient between the gene significance (GS) of CAF infiltration
and MM in the TCGA-CRC turquoise module reached 0.81
(Figure 2B). In meta-GEO, CAF infiltration was significantly
associated with green module (Rgpic = 0.64, Ryicp = 0.45, and
Rycen = 0.55, respectively) (Figure 2A). The correlation
coefficient between GS of CAF infiltration and MM in the
meta-GEO green module reached 0.84 (Figure 2C). The
turquoise module of TCGA-CRC contains 153 IncRNAs,
whereas the green module of meta-GEO contains 654
IncRNAs. We obtained 703 IncRNAs in these two modules,
which were defined as CAFDLs (Figure 2D).

Development of the CAFDL signature

The TCGA-CRC cohort was randomly divided into a
training set and an internal validation set. LASSO regression
analysis was used to select the optimal CAFDLs for building a
risk prediction model (Figure 2E). A multivariate Cox regression
model was finally used to determine the coefficient and construct
a prognostic signature based on the candidate IncRNAs
generated from the LASSO analyses (Figure 2F). The CAFDL
signature consists of 21 IncRNAs (HOTAIRMI, LINC01082,
MSC-AS1, LINC00460, USP30-AS1, AC096531.2, CASCI15,
DGCRY, CT75, JAKMIP2-AS1, LINC00574, LINC00839,
LINC01686, LINCO01711, LINC02044, LINC02593,
MIR181A2HG, PAX8-AS1, SLC25A21-AS1, WEE2-AS1, and
ZEB1-AS1), and its corresponding risk score (CAFDL Score) is
the sum of the products of all IncRNA expression values and
coefficients. We examined the expression of these 21 IncRNAs in
CRC and normal tissues. Among the 21 IncRNAs, 14 IncRNAs
(HOTAIRMI1, LINCO01082, LINC00460, USP30-AS1,
AC096531.2, CASC15, CT75, LINC00574, LINC01711,
LINC02593, MIR181A2HG, SLC25A21-AS1, WEE2-ASI, and
ZEB1-AS1) were significantly differentially expressed between
CRC and adjacent normal tissues. LINC00460, CASCI5,
LINCO01711, MIR181A2HG, and ZEB1.AS1 were significantly
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upregulated in CRC tissues, whereas the remaining IncRNAs
were significantly downregulated in CRC compared with normal
tissues (Figure 2G). Next, we analyzed the OS and DFS of
patients with CRC with high or low expression of the 21
IncRNAs, as suggested by the reviewers. CT75, DGCRY,
HOTAIRMI1, LINCO00460, LINC01082, LINCO1711,
LINC02044, USP30-AS1, and ZEB1.AS1 were significantly
associated with OS (Figure S1A), and AC096531.2, CT75,
DGCRY9, HOTAIRM1, LINC00839, LINC01082, LINC02044,
LINCO02593, MIR181A2HG, SLC25A21-AS1, WEE2-AS1, and
ZEB1.AS1 were significantly associated with DFS (Figure S1B).

Each cohort was divided into high and low CAFDL groups
according to the optimal cutoff value calculated by the
“survminer” package in R. Kaplan-Meier survival analysis
showed that patients with high CAFDL scores in the TCGA-
CRC cohort had significantly worse OS than patients with low
CAFDL scores [P < 0.001, hazard ratio (HR) = 2.41, 95%
confidence interval (CI) 1.64-3.55] (Figure 3A). We collected
20 pairs of CRC and adjacent normal tissue samples for qRT-
PCR analysis. The expression of 11 of 21 IncRNAs
(HOTAIRM1, LINC01082, LINC00460, USP30-AS1, CASC15,
JAKMIP2-AS1, LINC00574, LINCO01711, LINC02593,
SLC25A21-AS1, and ZEB1-AS1) was significantly different
between CRC and adjacent normal tissues. Among them,
LINC00460, CASC15, JAKMIP2-AS1, LINC01711, and ZEB1-
AS1 were significantly upregulated in CRC tissues, whereas
HOTAIRMI1, LINC01082, USP30-AS1, LINC00574,
LINC02593, and SLC25A21-AS1 were significantly
downregulated in CRC tissues (Figure S2A).

Validation of the predictive value of
CAFDL signature for OS in CRC cohorts

We apply the CAFDL signature to eight CRC cohorts to
validate its predictive value for OS. In the TCGA-COAD (HR =
2.54, P < 0.001), TCGA-READ (HR = 2.67, P = 0.026),
GSE17536 (HR = 2.30, P < 0.001), GSE17537 (HR =291, P =
0.023), GSE29621 (HR = 3.55, P = 0.004), GSE39582 (HR =2.37,
P < 0.001), GSE72970 (HR = 1.90, P = 0.008), and total CRC
cohorts (HR = 2.18, P < 0.001), patients with high CAFDL scores
had significant worse OS compared with those with low CAFDL
scores (Figure 3A, Figure S3), except for GSE38832 (P = 0.172,
HR = 1.79), whose OS difference did not reach
statistical significance.

Validation of the predictive value of
CAFDL signature for DFS in CRC cohorts

Next, we validate predictive value of CAFDL signature for
DFS in 12 cohort with DFS data. In the TCGA-COAD (HR =
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FIGURE 2

WGCNA identified CAFDL and LASSO analysis. (A) WGCNA identified modules associated with CAF infiltration calculated by EPIC, MCPcounter,
and xCell in TCGA-CRC and meta-GEO cohorts. (B) Correlation between gene significance for CAF infiltration and module membership in
turquoise module in TCGA-CRC cohort. (C) Correlation between gene significance for CAF infiltration and module membership in green
module in meta-GEO cohort. (D) A Venn diagram showing the number of IncRNAs in the turquoise module in the TCGA-CRC cohort and the
green module in the meta-GEO cohort. (E) LASSO analysis identifies 21 CAF-derived IncRNAs. (F) Multivariate Cox analysis calculated the
coefficient for each IncRNA in the CAFDL signature. (G) Expression of 21 CAF-derived IncRNAs in CRC and normal tissues. **P < 0.01, ***P <

0.001, NS non-significant.

2.06 P <0.001), TCGA-READ (HR = 2.05, P = 0.045), GSE17536
(HR = 3.03, P = 0.015), GSE17537 (HR = 2.44, P < 0.029),
GSE29621 (HR = 5.29, P = 0.02), GSE31959 (HR = infinity, P =
0.004), GSE33113 (HR = 4.53, P < 0.001), GSE37982 (HR = 2.82,
P < 0.001), GSE38832 (HR = 7.26, P = 0.025), GSE39582 (HR =
1.79 P < 0.001), GSE92921 (HR = 8.47 P < 0.019), and
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GSE143982 (HR = 3.31, P = 0.016) cohorts, all patients with
high CAFDL scores had significantly worse DFS compared with
those with low CAFDL scores (Figure 3B). We performed ROC
analysis of the CAFDL signature in each of the TCGA and GEO
datasets for the predictive ability of DFS and OS at 1, 3, and 5
years and calculated its AUC values (Figure S2B).
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FIGURE 3

CAFDL signature can effectively predict the prognosis of patients with CRC. (A) Patients with high CAFDL scores have significantly worse overall

survival than those with low CAFDL scores in TCGA-CRC, TCGA-COAD,

TCGA-READ, GSE17536, GSE17537, GSE29621, GSE38832, GSE39582,

GSE72970, and total CRC cohorts. (B) Patients with high CAFDL scores have significantly worse disease-free survival than those with low CAFDL
scores in TCGA-COAD, TCGA-READ, GSE17536, GSE17537, GSE29621, GSE31595, GSE33113, GSE37892, GSE38832, GSE39582, GSE92921, and

GSE143985 cohorts.

CAFDL signature is an independent
prognostic factor for OS and DFS

Univariate (Figures S2C, E) and multivariate Cox analyses
(Figures S2D, F) were performed for multiple clinicopathological
factors (age, gender, histological differentiation, and American
Joint Committee on Cancer (AJCC) TNM stage) together with
the CAFDL signature in the TCGA-CRC cohort. The results
showed that CAFDL signature, age, and TNM stage were
independent prognostic factors for OS, whereas CAFDL
signature and TNM stage were independent prognostic factors
for DES.

CAFDL signature predicts response to
chemotherapy, radiotherapy, and
targeted therapy

Chemotherapy, radiotherapy, and targeted therapy are the
mainstay treatments for CRC. Non-responders to FOLFOX
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(GSE28702 and GSE69657; Figures 4A, B) and FOLFIRI
(GSE62080; Figure 4C) chemotherapy had significantly higher
CAFDL scores compared with responders. The AUC values of
CAFDL signature for predicting response to chemotherapy in
GSE28702 (Figure 4A), GSE69657 (Figure 4B), and GSE62080
(Figure 4C) were 0.639, 0.715, and 0.750, respectively. In
addition, CAFDL signature can also effectively predict the
response to chemoradiotherapy in patients with rectal cancer
(GSE45404, AUC = 0.72); non-responders had significantly
higher CAFDL score than responders (Figure 4D). Notably,
CAFDL signature had excellent predictive power for response
to bevacizumab (GSE19860, AUC = 1); all responders belonged
to the low CAFDL score group (Figure 4E).

CAFDL signature predicts
immunotherapy outcomes

We applied the CAFDL signature to multiple
immunotherapy cohorts and found that non-responders to
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FIGURE 4

CAFDL signature can effectively predict the response to mainstay treatments of CRC. (A—E) Non-responders to FOLFOX (A, B) and FOLFIRI

(C) chemotherapy, chemoradiotherapy (D), and bevacizumab targeted therapy (E) had significantly higher CAFDL scores compared with
responders (left panels). ROC curves demonstrate the predictive power of the CAFDL signature for response to these treatments (right panels).
(F—H) Non-responders to ipilimumab/nivolumab (F), pembrolizumab (G), and nivolumab (H) had significantly higher CAFDL scores compared
with responders (left panels). ROC curves demonstrate the predictive power of the CAFDL signature for response to these treatments (right

panels). *P < 0.05, **P < 0.01, and ****P < 0.0001

ICIs had significantly higher CAFDL scores compared with
responders in Gide’s cohort (melanoma treated with anti-
programmed cell death 1 (PD-1)/cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) antibody; Figure 4F), Kim’s
cohort (gastric cancer treated with anti-PD-1 antibodys;
Figure 4G), and GSE91061 (melanoma treated with anti-PD-1
antibody; Figure 4H). The AUC values of CAFDL signature for
predicting response to immunotherapy in Gide’s cohort
(Figure 4F), Kim’s cohort (Figure 4G), and GSE91061
(Figure 4H) were 0.753, 0.649, and 0.705, respectively.
Moreover, patients with high CAFDL scores had a significantly
worse prognosis than those with low CAFDL scores in Braun’s
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cohort (clear cell renal cell carcinoma treated with anti-PD-1
antibody), Gide’s cohort, IMvigor210 (bladder urothelial
carcinoma treated with anti-programmed death ligand 1 (PD-
L1) antibody), Liu’s cohort (melanoma treated with anti-PD-1
antibody), and Nathanson’s cohort (melanoma treated with anti-
CTLA-4 antibody) (all P < 0.05; Figure 5A). In the IMvigor210
cohort, patients in the low CAFDL score group had significantly
higher PD-L1 protein expression levels in immune cells
(Figure 5B) and tumor cells (Figure 5C). The high CAFDL score
group had higher proportion of immune desert phenotype, lower
proportion of immune-inflamed phenotype (Figure 5D), and
lower CD8" T effector infiltration (Figure 5E).
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FIGURE 5

CAFDL signature predicts clinical outcomes in immunotherapy cohorts and pan-cancer cohorts. (A) Patients with high CAFDL scores have
significantly worse overall survival than those with low CAFDL scores in Braun's, Gide's, IMvigor210, Liu’s, and Nathanson's cohorts. (B, C) In the
IMvigor210 cohort, patients in the low CAFDL score group had significantly higher PD-L1 protein expression levels in immune cells (B) and
tumor cells (C). (D)The high CAFDL score group had higher proportion of immune desert phenotype and lower proportion of immune-inflamed
phenotype. (E) The high CAFDL score group had significantly lower CD8" T effector infiltration. (F) In addition to COAD and READ, patients with
high CAFDL scores have significantly worse overall survival than those with low CAFDL scores in 12 TCGA datasets: LUAD, BRCA, STAD, THCA,
KICH, KIRC, ACC, SARC, BLCA, CESC, THYM, and UCEC. **P < 0.01, ***P < 0.001, and ****P < 0.0001.

CAFDL signature predicts prognosis
across multiple cancers

In addition to COAD and READ, we also attempted to
explore the predictive power of the CAFDL signature for clinical
outcomes in other cancers. The CAFDL signature is effective in
prognostic stratification in the most common cancers, including
lung adenocarcinoma (LUAD), breast invasive carcinoma
(BRCA), stomach adenocarcinoma (STAD), thyroid carcinoma
(THCA), bladder urothelial carcinoma (BLCA), kidney renal
clear cell carcinoma (KIRC), adrenocortical carcinoma (ACC),
cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), kidney chromophobe (KICH),
sarcoma (SARC), thymoma (THYM), and uterine corpus
endometrial carcinoma (UCEC) (all P < 0.05; Figure 5F),
implying that CAFDL has broad applicability across pan-cancer.
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Immune correlates of CAFDL signature
across pan-cancer

To fully demonstrate the pan-cancer TME landscape, immune
cell infiltrations across pan-cancer were evaluated using seven
algorithms: TIMER, EPIC, xCell, CIBERSORT, QUANTISEQ,
MCPcounter, and TIDE (Figure 6A). As expected, the CAFDL
signature was closely associated with the CAF infiltration
(Figure 6A). Epithelial cells, another important member of the
stromal component, also had a strong correlation with the CAFDL
signature. In addition, the CAFDL signature was also significantly
associated with macrophage M2 in COAD and READ. CAFDL
signature showed no or negative correlation with major immune
cells such as CD8"/CD4" T cells, B cells, and M1 macrophages.

Next, we used the ESTIMATE algorithm to evaluate the pan-
cancer stromal score and immune score. The CAFDL signature
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FIGURE 6

Pan-cancer immune correlates of CAFDL signature. (A) Correlation of CAFDL signature with immune cell infiltration evaluated using seven
algorithms: TIMER, EPIC, xCELL, CIBERSORT, QUANTISEQ, MCPcounter, and TIDE across pan-cancer. (B—D) Correlation of CAFDL signature
with stromal score (B), immune score (C), and ESTIMATE score (D) across pan-cancer.

showed a positive correlation with the stromal score, with an
overall correlation of 0.14 for the entire pan-cancer cohort and a
median correlation of 0.16 across 33 cancers, ranging from —0.25
to 0.71 (Figure 6B). However, CAFDL exhibited negative
correlations with the immune score (R = -0.14; Figure 6C)
and the ESTIMATE score (the integration of the stromal score
and the immune score, R = —0.02; Figure 6D), respectively.
Notably, CAFDL signature showed moderate correlation with
stromal score in COAD (R = 0.51) and READ (R = 0.56) and
weak correlation with immune score in COAD (R = 0.36) and
READ (R = 0.39), respectively. These results indicated that
CAFDL could specifically reflect the properties of stromal
components in TME but had a weak correlation with immune
cell infiltration.
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Molecular features of CAFDL signature

We calculated the enrichment scores for cancer hallmark
gene sets across 33 cancer types using the ssGSEA method. The
CAFDL signature was significantly positively correlated with
epithelial-mesenchymal transition (EMT), WNT/B-Catenin
signaling, angiogenesis, and TGF-B signaling pathways across
pan-cancer, which are important mechanisms that occur in the
tumor stroma to promote tumor development and metastasis
(Figure 7A). Moreover, we analyzed the correlation of CAFDL
signature with expression of immune regulators. TGF-f is well
known to be one of the most important regulators of CAF
activation (25). The CAFDL signature was significantly
positively associated with TGFB1, CD276, CD40, VEGFA,
VEGFB, etc., but showed significantly negative correlation
with immune checkpoints (such as CD274, PDCDI1, CTLA4,

frontiersin.org


https://doi.org/10.3389/fimmu.2022.934221
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Pan et al.

10.3389/fimmu.2022.934221

EPITHELIAL MESENCHYMAL TRANSITION m FB
BETA CATENIN_SIGNALING H SX3cLt
ANGTOGENESIS ADORAZA
TGF BETA SIGNALNG VTeN1
i oo i
MYOGENESIS 04 ENTPD1 04
NOTCH_SIGNALING TNERSESs
UV_RESPONSE_DN 0.2 D40 02
] ] HYPOXIA [ IL12A
] APICAL_SURFACE o TINFSF4 o
| ] COAGULATION EDNEB.
| ] KRAS_SIGNALING_DN “02 53
PANCREAS_BETA CELLS T | 7 -02
NN RAS_SIGNALING_UP 0a ARG1
| UV_RESPONSE | - 04
APOPTOSIS =
TNFA_SIGNALING_VIA_NFKB -06 TESFO
ESTROGEN_RESPONSE_EARLY i <H:*—— C1dorfs4
I 1L2_STATS SIGNALING T 12
11 GLYCOLYSTS I T 1ENA2
T P53_PATHWAY HH I
ESTROGEN_RESPONSE_LATE Lg%
T MITOTIC_SPINDLE i 1A
ANDROGEN | RESPONSE ] TNFRSF9
INFLAMMATORY_RESPOI TLR4
CHOLESTEROL TOMEOSTASIS e s
16 IAK STATS TSIGNALING 1 1GA1
N MPI N T BTN3A1
UNFOLDED PROTEIN_RESPONSE KIRZDL1
PROTEIN_ SECRETION cD28
ADIPOGENES| AT
SPERMATOGENESIS HH 7N
ALLOGRAFT_REJECTION T CTLA4
HEME_METAB 17GB2
XENOBIOTIC | METABOLISM W D80
] G2M_CHECKPO e
MYC_TARGETS \ i T e
MTORC1_SIGNALING BTN3A2
INTERFERON_GAMMA_RESPONSE HAVCR2
E2F_TARGETS €DAoL
PI3K_AKT_MTOR_SIGNALING S0
REACTIVE_( OXYGEN SPECIES_PATHWAY Be
MYC_TARGET: SLAMF7
INTERFERON ALFHA RESPONSE RF1
PEROXISOME GZMA
DNA_REPAIR RS
BILE_ACID_METABOLISM S0
FATTY_ACID_METABOLISM ¢para
OXIDATIVE_PHOSPHORYLATION TNFRSF14

Exclusion Score

CAFDLScore

FIGURE 7

Dysfuncion Score - CAFDL signature
Overall comelation coeffenct R = 0.04

"cAFDL Score

TIDE Score

TIDE Score - CAFDL signature

14| Overall correlation coeffenct R = 0.07

‘cAFDL Score

Molecular features of CAFDL signature. (A) Correlation of CAFDL signature with cancer hallmark gene sets across pan-cancer. (B) Correlation of
CAFDL signature with common immune regulators across pan-cancer. (C—E) Correlation of CAFDL signature with immune exclusion score

(C), immune dysfunction score (D), and TIDE score (E) across pan-cancer.

TIGHT, and HAVCR2) and anti-cancer immune regulators
(IFNG, IDO1, and GZMA) (Figure 7B).

CAFDL signature is associated with
immune exclusion

The TIDE online tool was used to assess the potential of
immune escape across pan-cancer. The TIDE score consists of
two components: immune dysfunction and immune exclusion.
CAFDL signature was positively correlated with exclusion score,
with an overall correlation of 0.14 for the entire pan-cancer
cohort and a median correlation of 0.24 across 33 cancers,
ranging from -0.16 to 0.49 (Figure 7C). However, CAFDL
signature had little correlation with dysfunction score (R =
0.04; Figure 7D) and TIDE score (R = 0.07; Figure 7E),
suggesting that CAF prevents immune cells from killing tumor
cells more by generating extracellular matrix (immune
exclusion) than by directly causing immune dysfunction.
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CAFDL signature is independent of
tumor mutation burden and
microsatellite instability

Microsatellite instability (MSI) and tumor mutation burden
(TMB) are well-established predictors of response to
immunotherapy, but they are both intrinsic features of cancer cells
and are theoretically unrelated to CAFs. In the GSE39582, GSE92921,
and GSE143985 cohorts, there were no significant differences in
CAFDL scores between mutant and wild-type tumors of v-raf
murine sarcoma viral oncogene homolog B1 (BRAF) (Figures
S4A-C), kirsten rat sarcoma viral oncogene (KRAS) (Figures S4D-
F), and tumor protein P53 (TP53) (Figures S4G-I). Moreover, we
found little correlation between CAFDL signature and TMB across
33 cancers (Figure S5A), including COAD (R=0.13) and READ (R =
0.02). Likewise, CAFDL scores of MSI-H/dMMR tumors were not
significantly different from those of MSS/pMMR tumors in TCGA-
COAD, TCGA-READ, GSE39582, GSE92921, and GSE143985
cohorts (Figures S5B-F).
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Discussion

CAFs are major components of the TME and interact with
cancer cells by secreting extracellular matrix proteins as well as
cytokines and growth factors. CAFs block immune cell
infiltration and drug delivery, leading to immune escape and
resistance to various treatments including chemotherapy,
radiotherapy, targeted therapy, and immunotherapy. In recent
years, several studies have shown that CAF is closely related to
the poor prognosis of patients with cancer (26-28), and the
underlying mechanisms have begun to be revealed. Chen et al.
reported that CAFs impact the survival outcomes and treatment
response in CRC by regulating immune system (27). Li et al.
discovered a subgroup of CAFs correlated with poor survival
outcomes in patients with gastric cancer using single-cell RNA
sequencing (29). Sun et al. demonstrated that prognostic
signature based on CAF-secreted cytokines were associated
with genetic alterations and clinical outcomes (30). Zheng
et al. revealed that CAFs play an important role in TME, and
their secreted extracellular protein can serve as a prognostic
marker for triple-negative breast cancer (31). However, these
studies on CAFs are based on protein-encoding genes, and
studies on IncRNAs are still lacking. Herrera et al. (7) reported
a CAF-derived gene signature for predicting CRC prognosis
involving 596 protein-coding genes rather than IncRNAs, which
is different from our study. Zhang et al. (8) found that DNM3OS,
a CAF-promoted IncRNA, confers radio-resistance by regulating
DNA damage response in esophageal squamous cell carcinoma.
This study focused on the biological function of a specific CAF-
related IncRNA, whereas our study was a comprehensive
analysis of CAF-related IncRNAs. Liu et al. (9) developed an
immune-derived IncRNA signature for improving outcomes in
CRC using machine learning methods. This study involved
immune-derived IncRNAs rather than specifically focusing on
CAFDLs. LncRNA signatures have been widely reported in
CRC, and these signatures are closely related to specific
biological behaviors, including tumor immunity (9), epigenetic
modification (32, 33), and cell death (34). To the best of our
knowledge, this is the first comprehensive study on CAFDLs in
CRC, to establish a CAFDL signature in CRC, which
is innovative.

WGCNA has been successfully applied to identify gene
modules with various biological functions or cellular
characteristics (35, 36). In our study, we used WGCNA to
establish a co-expression network of IncRNAs and obtained
multiple modules through co-expression relationships. We
analyzed the correlation between the expression level of each
module and CAF score in CRC tissues, identified CAF-related
IncRNA modules, and finally identified CAFDLs.

Many studies have established IncRNA-based prognostic
prediction models (37-40). Liu et al. developed a novel
immune-related IncRNA signature in endometrial carcinoma
(37), patients were randomly divided into training cohort and
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test cohort, univariate Cox analysis was used to screen IncRNAs
associated with prognosis, LASSO regression was used to screen
IncRNAs most associated with DFS, and finally multivariate Cox
was used to establish a scoring system. In another study
developing an EMT-related IncRNA signature (38), patients
were also randomly divided into training group and test
group, risk prediction model was built, and the weight of each
IncRNA was calculated using LASSO regression. Yuan et al.
identified m5C-related IncRNAs in pancreatic ductal
adenocarcinoma (39), a preliminary screening was performed
by univariate Cox, a prediction model was established by LASSO
regression, and a risk score was calculated. A recent study
constructed a mutation-derived genome instability-related
IncRNAs signature in endometrial cancer (40), patients were
randomized 1:1 into training or test sets, and risk prediction
models were built using univariate and multivariate Cox
regression. In our study, we used TCGA-CRC to build a risk
prediction model and used the meta-GEO cohort as external
validation. The TCGA-CRC cohort is randomly split into a
training set and an internal validation set in a 1:1 ratio. The
LASSO analysis was repeated for 1,000 iterations until the AUC
reached a maximum value in both the training set and the
internal test set. Multivariate Cox regression models were finally
used to determine coefficients and construct prognostic
signatures based on candidate IncRNAs generated by LASSO
analysis. In contrast to the previously mentioned literatures, we
did not perform a univariate analysis of the initial screening.
This is because IncRNAs that constitute prognostic risk models
may not reach statistical significance when prognostic analysis is
performed on individual genes. Potential prognostic information
may be lost if certain important IncRNAs are deleted. Then,
because the results of LASSO regression analysis may vary each
time, we used multivariate Cox analysis to finally determine the
weight coefficient of each IncRNA after LASSO regression
established the prognostic model, instead of directly using
LASSO regression to calculate the coefficient, which was
similar to the analysis method of Liu’s study (37).

Our study included 18 datasets of 2,320 patients with CRC,
including COAD and READ datasets from the TCGA database,
and 16 CRC datasets from the GEO database. We established the
CAFDL signature in TCGA-CRC training set and verified its
predictive value in all CRC datasets. The CAFDL signature can
effectively predict the prognosis of patients with CRC, including
OS and DFS. In addition, CAFDL has also demonstrated robust
predictive power for response to chemotherapy, radiotherapy,
and targeted therapy, which are the mainstays of treatment for
CRC. Seven additional immunotherapy datasets were
incorporated into our study, and we found that CAFDL can be
used as a predictor of response to ICIs. Through comprehensive
analysis based on large-scale clinical samples and transcriptomic
data, we demonstrate that CAFDL can serve as a robust tool for
predicting survival outcomes and treatment response in patients
with CRC.
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Furthermore, pan-cancer analysis showed that, in addition
to COAD and READ, CAFDL had prognostic predictive power
in multiple cancers (such LUAD, BRCA, STAD, and THCA).
The expression level of CAFDL in pan-cancer is not clear, and
the CAFDL signature may not be applicable in all tumors. The
purpose of pan-cancer analysis in our study is to try to expand
the applicability of CAFDL signature to other cancers. This
provides evidence for researchers to conduct further studies in
other cancer types in the future.

We further explored the molecular and immune
mechanisms and found that CAFDL signature was positively
correlated with TGF-B signaling, EMT, and angiogenesis
pathways but negatively correlated with the expression of
immune checkpoints such as PDCD1, CD274, and CTLA4.
Moreover, the CAFDL signature was independent of MSI and
TMB, both of which are intrinsic features of cancer cells rather
than stromal cells.

Conclusion

In summary, we developed the robust CAFDL signature that
can effectively predict the survival outcomes and response to
multiple treatments in patients with CRC. Our study provides a
roadmap for patient stratification and may help improve
strategies for personalized follow-up and individualized
decision making for CRC.
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SUPPLEMENTARY FIGURE 1
Survival analysis for the 21 IncRNAs constituting the CAFDL signature. (A)
Overall survival. (B) Disease-free survival.

SUPPLEMENTARY FIGURE 2

Validation of the CAFDL signature. (A) gRT-PCR detected the expression
levels of 21 IncRNAs constituting the CAFDL signature in paired CRC and
adjacent normal tissues. (B) ROC analysis of the predictive ability of
CAFDL signature on DFS and OS at 1, 3, and 5 years in CRC datasets. (C,
D) Univariate and multivariate Cox analysis identify independent predictive
factors for OS in TCGA-CRC cohort. (E, F) Univariate and multivariate Cox
analysis identify independent predictive factors for DFS in TCGA-
CRC cohort.

SUPPLEMENTARY FIGURE 3
Landmark analysis of GSE17537.

SUPPLEMENTARY FIGURE 4

CAFDL score in patients with wild-type or mutant BRAF, Kras and TP53.
(A-C) CAFDL score in patients with wild-type or mutant BRAF in
GSE39582, GSE92921 and GSE143985 cohorts. (D-F) CAFDL score in
patients with wild-type or mutant Kras in GSE39582, GSE92921 and
GSE143985 cohorts. (G-1) CAFDL score in patients with wild-type or
mutant TP53 in GSE39582, GSE92921 and GSE143985 cohorts. ns,
non-significant.

SUPPLEMENTARY FIGURE 5

Correlation between CAFDL signature and TMB and MSI/MMR status. (A)
Correlation of CAFDL signature with TMB across pan-cancer. (B, C)
CAFDL scores of patients with MSI-H, MSI-L and MSS status in COAD
(B) and READ (C), respectively. (D) CAFDL scores of patients with dMMR
and pMMR status in GSE39582. (E, F) CAFDL scores of patients with MSI-H
and MSS status in GSE92921 (E) and GSE143985 (F), respectively. ns,
non-significant.
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