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Regulatory CAR-T cells in
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Department I for Internal Medicine, Center of Molecular Medicine Cologne (CMMC), University
Hospital of Colgne, Cologne, Germany
CAR (Chimeric Antigen Receptor) T-cell therapy has revolutionized the field of

oncology in recent years. This innovative shift in cancer treatment also provides

the opportunity to improve therapies for many patients suffering from various

autoimmune diseases. Recent studies have confirmed the therapeutic

suppressive potential of regulatory T cells (Tregs) to modulate immune

response in autoimmune diseases. However, the polyclonal character of

regulatory T cells and their unknown TCR specificity impaired their

therapeutic potency in clinical implementation. Genetical engineering of

these immune modulating cells to express antigen-specific receptors and

using them therapeutically is a logical step on the way to overcome present

limitations of the Treg strategy for the treatment of autoimmune diseases.

Encouraging preclinical studies successfully demonstrated immune

modulating properties of CAR Tregs in various mouse models. Still, there are

many concerns about targeted Treg therapies relating to CAR target selectivity,

suppressive functions, phenotype stability and safety aspects. Here, we

summarize recent developments in CAR design, Treg biology and future

strategies and perspectives in CAR Treg immunotherapy aiming at

clinical translation.

KEYWORDS
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Introduction

Regulatory T cells (Treg) are a critical CD4 T cell subset involved in the control of

immune-tolerance. Tregs regulate immune-homeostasis and limit immune activation

mediated by proinflammatory activities of CD4+ and CD8+ T cells, natural killer (NK)

cells, and antigen-presenting cells (APC). Furthermore, Treg cells harbor powerful

suppressive potential to promote tissue repair (1, 2) and modulate metabolic regulation

(3). Thus, defects in Tregs that induce an imbalance of immune regulation often lead to

autoimmune disorders (4). On the other hand, the involvement of immunosuppressive
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regulatory T cells plays a central role in tumor progression in both

human and mice (5, 6). Accordingly, numerous groups have

demonstrated an increased persistence of regulatory T cells in

tumor tissue and surrounding tumor microenvironment (TME)

(7). A continuous high expression of the transcription factor

forkhead box protein P3 (FOXP3) in Treg cells is considered to

be essential for their suppressive activity (8). Two main groups of

FOXP3 Treg cells exist: natural Treg (nTreg) cells that develop in

the thymus and represent a professional, stable T-cell lineage and

peripherally induced Treg cells (pTreg) that differentiate from

naïve CD4+ T cells in the periphery after antigen receptor

stimulation in the presence of transforming growth factor beta

(TGF-beta) (9). Lyon and colleagues demonstrated the importance

of FOXP3 for Treg cell functions by their finding that mutation in

the FoxP3 locus in mice leads to Treg dysfunction and severe

autoimmunity (10). Bennett, as well as Wildin and colleagues,

confirmed that IPEX syndrome is the human equivalent of the

scurfy mouse phenotype by identifying mutations in the FOXP3

gene, the human homolog of the mouse gene FoxP3 (11, 12).

Furthermore, Barnes and colleagues demonstrated that CTLA-4

crosslinking on the surface of regulatory T cells in the presence of

TCR signal enhanced the generation of FOXP3+ T cells (13).

Moreover, CTLA-4 engagement changed the effect of CD28

crosslinking from inhibiting to promoting FOXP3 expression

(13). As demonstrated by Read and colleagues (14), inhibition of

CTLA-4 receptor in mouse abrogates Treg cell-mediated

protection and, similarly, blocking of CTLA-4 in cancer patients

improves anti-tumor immune response but also boosts

autoimmunity (15). Furthermore, human Treg cells affect

surrounding immune cells by releasing immunosuppressive
Frontiers in Immunology 02
cytokines including TGF-beta, IL-10, and IL-35 (16). Because of

their proven immunomodulatory properties, Treg cells became an

attractive therapeutic tool for treating autoimmune diseases and

modulating or preventing transplant rejection and graft vs. host

disease (GvHD). In recent years, several phase I clinical trials

aiming to investigate safety and feasibility of a Treg-based therapy

were conducted, thereby revealing chances and challenges of this

immunotherapeutic strategy (see Table 1). For example,

autologous ex-vivo expanded polyclonal Tregs have been

transferred in 2009 to respective recipients who suffered from

either acute or chronic GvHD (21). Since then, the therapeutic

potent ia l of Treg ce l l s was gradual ly widened to

autoimmunological diseases such as Type 1 diabetes (22),

cutaneous lupus (23), autoimmune hepatitis (24) or Crohn’s

disease (25), and to prevent rejection in solid organ

transplantation (26), but the treatment modalities changed only

slightly. Novel technologies to alter the genome of the Treg cells

might enhance functional activity, stability, persistence and antigen

specificity, and could broaden the therapeutic capacity of this

promising immunotherapeutic strategy. Numerous preclinical

studies have revealed that antigen-specific or redirected Treg

cells are superior as compared to classical polyclonal Treg cells

in diverse mouse models (27–30). Redirected Treg cells

predominantly localize at the site of target antigen expression,

thereby reducing the risk of systemic immunosuppression. Thus,

CAR or TCR redirected Treg cells seem to be more effective and

safer than polyclonal Tregs cells. In addition, advances in the field

of Treg biology open up new possibilities to generate Tregs from

naïve T CD4+ T cells through targeted modifications, such as

induction of FOXP3 expression (30, 31).
TABLE 1 Clinical trials that use or affect regulatory T cells.

A) ongoing/recruiting/planned clinical trials

all diseases GvHD transplantation autoimmune diseases other*

all interventions 109 14 23 55 17

polyspecific Tregs 29 7 10 10 2

redirected Tregs 3 – 2** (17, 18) – 1

converted Tregs 1 – – 1 –

in vivo Treg stimulation 76 7 11 44 14

B) completed clinical trials

all diseases GvHD transplantation autoimmune diseases other*

all interventions 160 12 19 102 27

polyspecific Tregs 16 5 7 (19) 2 (20) 2

redirected Tregs – – – – –

converted Tregs – – – – –

in vivo Treg stimulation 144 7 12 100 25
frontie
*other: allergy, infections, cancer, pregnancy, other rare diseases etc.
** HLA-A2 specific CAR Tregs
(source: clinicaltrials.gov, search term “regulatory t cells”, record date 2022-06-28)
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Treg cells: Phenotype and function

Thymically derived FOXP3+ regulatory T cells (nTreg,

formerly tTregs) constitute a unique T cell lineage that is

essential for maintaining immune tolerance to self as well as

innocuous environmental antigens and intra-tissue immune

homeostasis. These cells develop from antigen-unexperienced

naïve Tregs with expression of CD4+, CD25+, CD127dim/–,

CD45RA+ (32) to natural Tregs (nTreg) which account for 1-4%

of all white blood cells and express CD4+, CD25hi, CD127dim/–

Helios+. However, FOXP3 can also be turned on in conventional

T cells with effector functions (Teff) as consequence of antigen

exposure in the periphery, under both non-inflammatory and

inflammatory conditions. These so-called peripheral Treg cells

(pTreg, formerly induced Tregs/iTregs) that involve both CD4+

and CD8+ pTreg cells are characterized by CD4+/CD8+,

CD25hi, CD127dim/– expression and participate in the

control of immunity at sites of inflammation. Although

phenotypically and functionally similar, nTregs can be clearly

discriminated from pTregs by their stable epigenetic

modification of the Treg-specific demethylated region (TSDR)

of the FOXP3 gene (33). Peripherally induced Tregs are also

considered to be negative for Helios expression, in contrast to

nTreg, but this is still controversially debated in the field (34–

41). The both, nTreg and pTreg can control inflammation/

immunity by multiple mechanisms, such as i) competition

w i th Te ff f o r IL -2 , i i ) t h rough cAMP-med i a t ed

immunosuppression, iii) adenosine production via the

ectoenzymes CD39 and CD79, iv) secretion of inhibitory

cytokines (e.g. IL-10, TGF-beta, IL-33, IL-34), and v) cytolysis

of Teff via granzyme/perforin-dependent mechanisms (42, 43).

Despite some other common specific cell surface markers

like GITR and CTLA-4 (44), many additional molecules describe

various subpopulations of Treg cells like CD39 (45, 46) and

CD49d (47, 48). Although a stable and high FOXP3 expression

seems to be crucial for Treg cell function, recent data point to a

limited effect on functional characteristics of FOXP3-ablated

Tregs (49). There is increasing evidence that intra-tissue

antigen-driven activation and inflammation promotes FOXP3

instability even in Treg that expressed high amounts of FOXP3

before. Key factors of instability seem to be lack of IL-2,

inflammatory cytokines (Stat3, NFkappaB pathways) and

activation of certain costimulatory molecules, so called switch-

points (50, 51). Diminished number and/or function of Treg, e.g.

by malformation in IPEX syndrome, plus a misbalanced Teff/

Treg ratio at the site of inflammation result in unwanted

inflammation/immunity associated with autoimmunity,

autoinflammation, and disturbed regeneration from trauma

and ischemia/reperfusion (52). Consequently, agonistic

targeting of Treg is a promising therapeutic option to combat

undesired inflammation/immunity in a broad range of medical

indications. Although in vivo Treg induction/expansion
Frontiers in Immunology 03
approaches such as blocking costimulatory signals during

antigen exposure, tolerogenic dendritic cells, tolerogenic

peptide vaccination, and low-dose IL-2 show some efficacy in

preclinical models and first in human trials, their efficacy is

limited and some adverse effects can be observed (53, 54). In

many preclinical models, the adoptive transfer of Treg seems to

be more effective but recent technological advances to isolate and

expand human Treg under GMP compliant conditions now

allow adoptive Treg therapy to be more and more introduced to

the clinic, thereby opening up new opportunities.

Based on the analysis of very recent preclinical and clinical

studies on 1st-generation Treg products, the main objectives to

develop next-generation Treg approaches with enhanced

efficacy are:

- To improve the antigen specificity of Treg products by

generating i) Chimeric Antigen Receptor-expressing Treg

(CAR-Treg) (27, 55–59) or ii) specific T cell receptor-

expressing Treg (TCR-Treg) (60–65).

- To stabilize the in vivo suppressive function of Treg by i)

epigenetic FOXP3 gene modification (66–69), ii) CRISPR/Cas9

mediated knocking-out of switch-point-receptors whose

activation leads to loss of Treg function or even to the switch

to effector cells (70, 71), or iii) mitochondrial modification (72–

74) iv) exploring CD8+ Treg as an alternative and/or

complementary to CD4+ Treg (75–81), v) inducing resistance

to immunosuppressive drugs using CRISPR/Cas9 mediated

knocking-out of their target molecules (82, 83), vi) insertion of

an additional FOXP3 gene cassette, which also works as a safety

mechanism to prevent Treg to Teff conversion (56, 84, 85), vii)

development of Treg supporting IL-2 muteins or orthogonal IL-

2 pairings (86–89).
CAR-History

Although, to many of us, it seems that CAR T cells have only

recently entered the world stage, their origin dates back forty years.

In 1982, almost unnoticed by the research community, Zelig Eshhar

demonstrated for the first time a CAR prototype, so called “T-

body”, that conceptually has a lot in common with today’s CAR

constructs (90). The first CAR constructs designed by Eshhar and

colleagues contained a TNP-specific scFv binding domain linked to

either the CD3zeta or the FcRgamma signaling domain for T cell

activation (90). These first-generation CARs (Figure 1) did not

provide an additional costimulatory domain that is essential for full

T-cell activation. CAR constructs designed this way were still

functional because T cells could be able to replace the missing

coactivating signal (also known as signal 2) via the endogenous

CD28-B7.1/B7.2 interaction between T cell and target cell (91).

Subsequently, the logical conclusion by the early CAR pioneers was

the integration of a coactivating domain into the signaling moiety of

CAR constructs (Figure 1), which became a common feature of
frontiersin.org

https://doi.org/10.3389/fimmu.2022.934343
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Riet and Chmielewski 10.3389/fimmu.2022.934343
second generation CARs (92, 93). This resulted in two basic CAR

designs that are still relevant for cancer treatment, one using CD28

and a second using 4-1BB as a coactivating domain. In preclinical

studies effector T cells expressing CARs harboring a CD28

costimulatory domain have repeatedly shown higher proliferation

rates and released higher quantities of the cytokines IL-2, IFN-

gamma, and TNF-alpha, than T cells expressing 4-1BB-

costimulated CARs (94–96). Interestingly, preclinical data

showed, that the CD28zeta format has also a positive effect on

regulatory T cells in the tumor microenvironment because of its

high capacity to induce IL-2 secretion (97). Hence, this format

might be the favored one in the field to create highly active CAR

Tregs. Subsequently, the question arose whether the integration of

an additional costimulatory domain could have a positive impact on

CAR T-cell efficacy, especially since the problem of tumor

microenvironment-mediated T-cell exhaustion in cancer

treatment became more and more evident. However, third-

generation CARs containing an scFv, a CD3zeta domain and two

costimulatory domains in tandem (Figure 1) have been tested in

clinical trials involving small cohorts of patients but, thus far, they

have not been associated with enhanced anti-tumor activity to that

of second-generation CARs (98). Despite a promising development

of CAR T cell-based immunotherapy, B cell malignancies such as

ALL or DLBCL, most attempts to induce long-lasting anti-tumor

effects with second-generation CAR constructs in solid tumors were

less successful (99, 100). In order to enhance the efficacy of

redirected T cells in solid tumors CAR T cells were genetically

modified to release a transgenic cytokine upon CAR signaling in the

targeted tumor tissue (101). The TRUCK strategy (“T cells

Redirected for Antigen-Unrestricted Cytokine-initiated Killing”),

also called “4th Generation” (Figure 1) unites the direct anti-tumor

attack of the CAR T cell with the tumor microenvironment-

modulating capabilities of a proinflammatory cytokine. Binding

to the CAR cognate antigen on the tumor cell induces NFAT

phosphorylation, migration to the nucleus and induction of the

NFAT-responsive/IL-2 minimal promoter that drives transgene
Frontiers in Immunology 04
expression (101). TRUCKs could also potentially be of interest in

autoimmune diseases, since the proinflammatory payload could be

replaced by an anti-inflammatory cytokine such as IL-10 or TGF-

beta. Interestingly, contrary to CD4 expressing helper T cells,

activated NFAT1 in Treg cells forms a ternary complex with

FOXP3 at the IL2 promoter that replaces AP-1 (Jun/Fos) in the

NFAT : AP-1 complex present in effector T cells (102, 103). FOXP3

thus transforms a transcriptionally activating NFAT : AP-1

complex in effector T cells into a repressive NFAT : FOXP3

complex in regulatory T cells (103). The fifth generation of CARs

(Figure 1), is also based on the second generation of CARs, with the

addition of intracellular domains of cytokine receptors. In this

context, Kagoya and colleagues presented a CD19-specific CAR

construct containing a truncated cytoplasmic domain from the

interleukin IL-2R beta-chain (IL-2Rbeta) and a STAT3-binding

tyrosine-X-X-glutamine (YXXQ) motif that was incorporated into

CD28-CD3zeta activation moiety (104).
Antigen-specific regulatory T cells

As demonstrated by various groups, antigen-specific Treg

cells showed higher potency in immunosuppression than

polyclonal T cells in diverse preclinical mouse models (105–

107). However, the low Treg cell frequency often limits the

expansion of endogenous antigen-specific Treg cells and hence

prevent their therapeutic use. For this reason, in recent years

technical solutions have been sought to generate antigen-specific

Treg cells in sufficient quantities and qualities. Promising

current methods include redirecting regulatory T cells using

synthetic receptors on the one hand and converting antigen-

specific effector T cells into regulatory T cells using FOXP3

overexpression on the other hand. Although both CAR and T

cell receptor (TCR) based constructs are available for Treg

redirection, CAR constructs are mainly used. Unlike MHC-

restricted TCR targets, potential antigens recognized by CARs
FIGURE 1

The evolution of CARs.
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also include non-protein targets such as carbohydrates and

glycolipid molecules (108, 109). However, we must also note

that CAR constructs only recognize and target cell surface

antigens, while TCR constructs can target both MHC-

restricted cell surface and intracellular antigens. Moreover,

CAR redirected T cells reveal promising results in the

treatment of hematological malignancies (110) but

demonstrate little effects on solid tumors (111), while T cells

engineered to express TCR constructs display encouraging

curative outcomes in the therapy of solid tumors (112). Some

preclinical studies suggest that the antigen density recognized by

the CAR must be high on the target cell to initiate T cell

activation (113, 114). Additionally, cross-presentation of the

antigen in nearby/draining lymph nodes might be an

important factor for TCR redirected cells to build up a

reservoir and maintain activation (115). Therefore, the use of

TCR redirected T cells could be appropriate for antigens

expressed in low densities whereas T cells modified to display

CAR constructs better target overexpressed antigens. A safety

problem of the TCR Treg cell strategy is also caused by potential

TCR mispairing with the endogenous TCR resulting in T cells

with unpredicted specificity. To avoid this, replacement of the

endogenous TCR by using gene editing technology as recently

reported by Stadtmauer might be necessary (116). Finally,

although no cytotoxicity was demonstrated in the initial

preclinical CAR-Treg cell studies, first Macdonald and then

Boroughs and colleagues reported that CAR-stimulated Tregs

might also exhibit cytotoxic activity (57, 117). Thus, the

cytotoxic activity of CAR Treg cells needs to be studied in

more detail to avoid unexpected adverse effects in the future.

The very first preclinical study with antigen-specific CAR

redirected Tregs was already performed in 2008 by the

Eshhar’s group. As demonstrated by the authors, CAR

redirected Treg cells accumulated at colonic inflammatory

lesions and suppressed effector T cells in a specific, non-MHC-

restricted manner, resulting in significant amelioration of colitis

(55). Interestingly, the authors were already using a second-

generation CAR containing a CD28-gamma signaling domain.

The CAR design has changed only slightly until today, whereby

the gamma-signaling unit was replaced by the CD3zeta signaling

domain. In this context, Dawson and colleagues reported a

comprehensive comparison of coreceptor signaling domain

CAR variants in human Treg cells and revealed that inclusion

of the CD28 costimulatory domain was essential for potent

function (28). Moreover, CARs encoding domains from TNFR

family members, such as 4-1BB, were unable to confer a

protective effect in comparison to irrelevant Ag-specific

control Treg cells (28). As shown by Lamarthée and

colleagues, ligand-independent CAR tonic signaling

significantly affects the biology of CAR-Tregs and thereby

compromises their suppressive function (118). The authors

demonstrated in their study that the negative effects of 4-1BB

tonic signaling in Treg cells could be mitigated by transient
Frontiers in Immunology 05
mTOR inhibition (118). Currently, the range of applications

using redirected Treg cells has been expanded to other diseases

such as Graft versus hosed disease (GVHD), type 1 diabetes,

multiple sclerosis, vitiligo, asthma or haemophilia (27, 56, 119–

122) (see also Table 1). Based on preclinical but also clinical

results, we can already notice today that CAR Treg cells are

slowly emerging as a promising strategy for the treatment of

autoimmune diseases and as adjunctive therapy in

transplantation. Many clinical studies were already performed

using polyclonal Treg cells (19, 20, 22, 26, 123, 124) with

important lessons learned from, e.g. production procedures,

Treg stability, cell doses, circulation in patients, tolerability

and combination with immunosuppressive drugs. Some

clinical efficacy could be seen by successful weaning of

immunosuppressives or, for diabetes, prolonged c-peptide

production. However, the suppressive activity at the site of

inflammation could not be detected and there was no

improvement in metabolic function or rejection rate,

respectively. Preclinical data indicate that engineered Treg cells

(CAR or TCR) might be more efficacious to treat autoimmune

diseases and transplantation rejection, but the clinical use of

redirected (CAR) Treg cells is only just beginning (Table 1). The

purpose of the first in human study with redirected CAR Treg

cells is to evaluate the safety and tolerability of HLA-A2-specific

CAR Treg cells (TX200-TR101) and its effects on the donated

kidney in living donor kidney transplant recipients (17). There is

another HLA-A2-specific CAR Treg study (LIBERATE, Phase I/

II) starting in 2022, which, most interestingly, will also address

c l inical outcome and immunosuppression in l iver

transplantation (QEL-001) (18). In this context, HLA-A2-

specific CAR redirected (CD4 or CD8) Treg cells have been

already used in different pre-clinical studies of skin

transplantation demonstrating superior suppression of human

skin graft rejection and reduced GvHD in humanized mouse

models (58, 125, 126).
Discussion

Although the immunomodulatory properties of Treg cells in

the field of autoimmune diseases and transplantation medicine

has been repeatedly demonstrated in many preclinical studies

and clinical trials, some limitations have prevented the

widespread use of this form of immunotherapy. This includes,

on the one hand, the selection of the suitable Treg cell

population to enhance efficacy. On the other hand, the

targeted immunosuppressive effect on the local immune

response is not supposed to cause global immunosuppression.

Recently, technical progress such as redirection of T cells by

CAR constructs, conversion of T cell into Treg cell using FOXP3

transfer or targeted gene editing using CRISPR/Cas9 allow to

design Treg cells with a defined specificity and functionality in a

rapid and efficient manner. New applications of Treg cells
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outside autoimmune diseases and transplantations demonstrate

multiple uses of Treg-mediated immune modulation. As

demonstrated by numerous groups, in many injured tissues,

so-called ‘repair’ Treg cells are recruited to the damaged site to

facilitate inflammation resolution and to regulate immunity after

injury (127–129). Furthermore, Baek and colleagues

demonstrated that Treg cel l adminis trat ion has a

neuroprotective effect on pathology and cognitive function in a

mouse model of Alzheimer’s disease. In detail, Treg cells had an

impact on cognitive function, decreasing amyloid-beta

deposition and inflammatory cytokine levels (130). In the

future, the use of redirected CAR-Treg cells can potentially

increase the efficacy and prevent global immunosuppression of

Treg-based immunotherapies and thus make an important

contribution to clinical implementation (17, 18), giving new

hope for a cure to millions of suffering patients.
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