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The role of the macrophage-to-
myofibroblast transition in
renal fibrosis

Jia Wei*, Zihao Xu and Xiang Yan*

Department of Urology, Children’s Hospital, Zhejiang University School of Medicine,
Hangzhou, China
Renal fibrosis causes structural and functional impairment of the kidney, which

is a dominant component of chronic kidney disease. Recently, a novel

mechanism, macrophage-to-myofibroblast transition (MMT), has been

identified as a crucial component in renal fibrosis as a response to chronic

inflammation. It is a process by which bone marrow-derived macrophages

differentiate into myofibroblasts during renal injury and promote renal fibrosis.

Here, we summarized recent evidence and mechanisms of MMT in renal

fibrosis. Understanding this phenomenon and its underlying signal pathway

would be beneficial to find therapeutic targets for renal fibrosis in chronic

kidney disease.
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Introduction

Chronic kidney disease (CKD) affects around 11.7%–18% of the global population

(1). While therapies can significantly delay the progression of CKD, the long-term

prognosis remains worrisome (1, 2). Renal fibrosis is a dominant component of CKD,

which is also the typical final stage of majority of the chronic and progressive

nephropathies. It will eventually result in kidney failure (3). The renal fibrosis process

consists of five steps, as follows (4): firstly, activation of renal tubular epithelia due to

inflammation and infiltration of plentiful monocytes/macrophages into the kidney;

secondly, excessive production of fibrogenic associated cytokines, growth factors, and

other profibrogenic factors; thirdly, imbalance in the synthesis and degradation of the

extracellular matrix (ECM) and the overdeposition and accumulation of ECM in the

renal interstitium, which is a major stage of renal injury in structure and function;

fourthly, mesenchymal changes in renal intrinsic cells and the decrease in the number of

renal intrinsic cells; and finally, renal microangiopathy leading to ischemia and anoxia of

the renal interstitium.
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In renal fibrosis, activated myofibroblasts are a critical

matrix-secreting cell type that plays a key role in ECM

accumulation (5–7). Myofibroblasts are a heterogeneous

population that may be derived from a variety of origins,

including epithelia through epithelial-to-mesenchymal

transition (EMT) (8, 9), endothelia through endothelial-to-

mesenchymal transition (EndoMT) (10), and local fibroblast

or pericyte proliferation (11). So far, literature indicates that

monocytes/macrophages play an important role in the process of

renal fibrosis, and the macrophage-to-myofibroblast transition

(MMT) is recently discovered as another extrarenal genesis for

myofibroblasts (12).

MMT is the transformation of macrophages into

myofibroblasts in response to an inflammatory stimulation.

The MMT cells are capable of producing collagen and are

distinguished by the co-expression of a macrophage marker

(CD68) and a myofibroblast marker [alpha smooth muscle actin

(a-SMA)] (12). A study found that approximately 35% of the

myofibroblasts in the unilateral ureteral obstruction (UUO)

model of renal fibrosis originated from bone marrow cells

(13). Another research discovered that 37% of myofibroblasts

in the renal allograft were derived from the bone marrow (14).

Thus, MMT acts a crucial role in the development of renal

fibrosis. This review provides an update on current

advancements in macrophages, with a particular emphasis on

MMT-related mechanisms in renal fibrosis.
Macrophages and macrophage-to-
myofibroblast transition in
renal fibrosis

Previously, it is believed that macrophages contribute to renal

fibrosis indirectly by secreting cytokines and chemokines that

attract and proliferate fibroblasts. It has been well-documented

that macrophages are phenotypic heterogeneous. According to

various microenvironments, macrophages can polarize into a

pro-inflammatory M1 phenotype or anti-inflammatory M2

phenotype. M2 macrophages could secrete interleukin (IL)-10

and transforming growth factor-b (TGF-b) to stimulate

myofibroblast proliferation. Furthermore, M2 macrophages could

also express procollagen I that contributes to fibrosis (15).

Infiltrating macrophages are the major source of TGF-b in

glomerulonephritis, and TGF-b plays a crucial role in the

development of renal fibrosis (16). Increased Ccl2 mRNA

expression in infiltrating macrophages is associated with

progressive renal fibrosis. The Ccl2 gene encodes monocyte

chemoattractant protein 1 (MCP-1), which is an emerging

biomarker in acute kidney injury and a crucial chemoattractant

regulator of macrophages in the renal inflammatory response. A

prospectivemulticenter cohort clinical study reported that a higher

level of MCP-1 was associated with significant estimated
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glomerular filtration rate decline and an increased incidence of

CKD and CKD progression (17).

So far, literature has revealed that bone marrow-derived

macrophages (BMDMs) can also directly contribute to renal

fibrosis through MMT. Both in vivo and in vitro, infiltrating

macrophages at the renal glomerular level could transition into

myofibroblasts through theMMTprocess in diabetic nephropathy,

which finally leads to renal fibrosis (18). Biopsy tissues from renal

fibrosis patients showed that only in acute and active renal fibrosis

does the number of CD68+a-SMA+ MMT cells correlate with the

total a-SMA+ myofibroblast population. In acute inflammatory

lesions, CD68+ macrophages were infiltrated, but few CD68+a-
SMA+ MMT cells were found. In kidneys with advanced sclerosis,

the number of a-SMA+ myofibroblasts was increased, but both

CD68+ macrophages and CD68+a-SMA+ MMT cells were

reduced. However, MMT cells were not found in normal human

kidneysor those affectedbyminimal changedisease (12).Depletion

ofmyeloid lineage cells prevented the appearance ofMMTcells and

substantially reduced myofibroblast accumulation and collagen

deposition (12).
The origins of macrophage-to-
myofibroblast transition in
renal fibrosis

Urinary obstruction is a common cause of kidney fibrosis.

Based on cell tracing in a murine UUO model, MMT cells were

derived from bone marrow and were located in fibrosing mouse

kidneys (19). The results found that more than 90% ofmonocytes/

macrophages in the injured kidney came from bonemarrow, while

a-SMA was expressed in 22% of BMDMs, accounting for almost

80%of alla-SMA+myofibroblasts in the injured kidney. Collagen I

can be produced by active myofibroblasts, and the UUO mouse

model revealed that about 70%of collagen I+ cells were transitioned

from bone marrow monocytes/macrophages. Consequently, the

infiltration ofmonocytes/macrophages into the injured kidney and

the formation of a myofibroblastic phenotype are the principal

contributions of cells to the development of renal fibrosis. In

contrast, MMT cells were not detected in the kidneys of the

sham-operated group. A study reported that BMDMs can

develop into collagen-producing myofibroblasts during renal

fibrosis in chimeric mice, supporting the idea that the

myofibroblasts may originate from sources other than the renal

system (13).

Renal chronic allograft rejection is also one of the major

causes of renal fibrosis. BMDMs are a source of myofibroblasts

in chronic allograft rejection and the development of renal

interstitial fibrosis through the MMT process. Approximately

half of the total myofibroblast population originated from

BMDMs in human active chronic renal allograft injury. In

patients with chronic renal allograft rejection, the number of
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CD68+ a-SMA+ MMT cells, not all myofibroblasts, was related

to allograft functions and interstitial fibrosis severity (14).

Lineage tracing in mice revealed that approximately 90% of

the MMT cells originated in recipient bone marrow and

contributed 37% of total myofibroblasts in the renal allograft.

The results indicated that collagen-producing MMT cells

accounted for an important component of the myofibroblast

population in renal allograft injury and contribute to the

development of fibrosis in renal allografts. It was established

that the myeloid lineage of MMT cells comprised a significant

proportion of the myofibroblast population and that the MMT

process is a prevalent mechanism of renal interstitial fibrosis.
Regulation of macrophage-to-
myofibroblast transition and
inflammatory signal pathways

The classical signaling pathways in renal fibrosis include

TGF-b1/Smad, nuclear factor-kB (NF-kB), Notch, Wnt,
Frontiers in Immunology 03
Hedgehog, phosphatidylinositol-3 kinase (PI3K/AKT), Janus

kinase/signal transducers and activators of transcription (JAK-

STAT), RHO/Rho coil kinase (ROCK), and tumor necrosis

factor a (TNF-a) (20, 21). Some of these signal pathways are

involved in renal fibrosis development by regulating the MMT

process (Figure 1).

The TGF-b1-Smad3 signal pathway has been confirmed as

the main mediator of the MMT process in BMDMs (14) (22). In

brief, TGFR1 was activated by the interaction of TGF-b1 to its

receptor TGF-b receptor 2 (TGFR2) (23). Activated TGFR1

induced the phosphorylation of Smad3 and Smad2, which then

form complexes with Smad4. These complexes then enter the

nucleus and activate the Src-centric gene network in BMDMs via

transcriptional regulation, thereby promoting the MMT process

in the fibrosing kidney. In this signaling pathway, Smad7

functions as a negative inhibitor, combining with activated

TGFR1 and reducing the phosphorylation of Smad3 and

Smad2. Smad7-deficient mice are more susceptible to renal

fibrosis (24). The rerouting of TGF-b signaling from b-
catenin/T-cell factor (TCF) to b-catenin/Forkhead Box O1

(Foxo1) may affect the destiny of BMDMs. TGF-b signaling
FIGURE 1

Cellular alteration and signaling pathway of macrophage-to-myofibroblast transition (MMT) in renal fibrosis. The macrophages derived from
bone marrow differentiate to myofibroblasts, which produce excessive extracellular matrix and progressively cause structural and functional
impairment of the kidney. Macrophage-to-myofibroblast transition plays a crucial role in renal fibrosis through multiple mechanisms, including
triggering the transforming growth factor-b1 (TGF-b1)/Smad3 signaling pathways and natural killer T cells (NKT)/IL-4 signaling pathways.
Activated NKT cells produce excessive IL-4, which subsequently combines with IL-4 receptor a and triggers the JAK3/STAT6 signaling to
enhance the transformation of myofibroblasts. TGF-b binds to the TGF-b receptor complex and then phosphorylates the Smad family complex
and finally activates the Src-centric gene network in bone marrow-derived macrophages to promote the MMT process. .
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can be profibrotic or antifibrotic and anti-inflammatory,

depending on which transfection factors are bound to b-
catenin, TCF, or Foxo1 (25). An inhibitor of TCF (ICG-001)

effectively suppressed the MMT process and reduced renal

fibrosis. In vitro studies also showed that macrophage colony-

stimulating factor (M-CSF) did not increase a-SMA and

collagen I levels in Smad3+/+F4/80+ BMDMs. However, the

expression of a-SMA and collagen Ia 1 could be detected in

Smad3+/+ bone marrow macrophages incubated with TGF-

b (26).

Smad3 is capable of directly binding specific Smad DNA-

binding domains and promoting transcription, whereas Smad2

and Smad4 are transcriptional regulators but do not bind genetic

elements. In the fibrotic kidney, the recruited Smad3−/−

macrophages failed to differentiate into myofibroblasts. This

had a functional effect, as mice transplanted with Smad3−/−

bone marrow showed a remarkable reduction of collagen I

deposition and a-SMA, indicating reduced renal fibrosis in the

UUO kidney (26). Smad3 was required for the effective

transition of recruited macrophages into collagen I+ a-SMA+

myofibroblasts in the injured kidney. Furthermore, the

antifibrotic effect shown in Smad3−/− chimeric mice suggests

that BMDMs contribute to the development of renal fibrosis via

MMT, while the process is mediated by TGF-b/Smad3 signaling.

Using Smad3 inhibitors, such as a combination of asiatic acid

and naringenin, could reduce the activation of TGF-b/Smad3

signaling and inhibit renal fibrosis (27).

The TGF-b1-Smad3 signal pathway plays an important role

in regulating the MMT process in renal fibrosis. Researchers

determined that POU Class 4 Homeobox 1 (Pou4f1), a direct

Smad3 target gene in the TGF-b1-induced MMT process in

BMDMs, was a potential therapeutic target to prevent renal

fibrosis. It was found that Smad3 could bind to the promoter of

Pou4f1 gene and enhance gene transcription. Then, Pou4f1

promotes MMT-mediated tissue fibrosis through a fibrogenic

gene network. Pou4f1 silencing effectively inhibited MMT-

induced tissue fibrosis in vitro and in vivo (28). Those

processes in Smad3 mediating renal fibrosis were via miR-29

and miR-200 downregulation and miR-21, miR-129, and miR-

210 upregulation (20).

Src is a tyrosine kinase that could be activated by numerous

cytokines and growth factors [e.g., TGF-b1 and epidermal

growth factor (EGF)], which has been identified to be

associated with fibrogenesis (29). Inhibition of Src

suppressed the activation TGF-b receptor and epidermal

growth factor receptor (EGFR) and protected against renal

fibrosis (30). Src is upstream of Smad3 signaling and acts as a

direct Smad3 target gene, which is specifically upregulated in

macrophages during MMT. Bioinformatic analysis indicated

that Src is a key gene in the network of differentially expressed

genes in TGF-b1-induced MMT (29). Smad3 can directly

activate the tyrosine kinase Src and trigger collagen
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production, which inhibits the degradation of ECM, renal

interstitial fibroblast activation, and renal fibrosis (30).

Furthermore, activated Src has been reported to promote

endocytosis and aggravate renal interstitial fibrosis (31).

However, the Src inhibitor lacks specificity, which severely

limits its application in the treatment of renal fibrosis.

JAK3/STAT6 signaling was involved in MMT. STAT6-

deficient mice or mice treated with a JAK3 inhibitor

(CP690,550) had fewer accumulations of bone marrow-derived

fibroblasts in the experimental obstructed kidney model and

developed less renal fibrosis. Treatment with a JAK3 inhibitor

significantly affected the transformation of myofibroblasts, the

production of matrix proteins, and the development offibrosis in

the obstructed kidneys (32). Recent studies have shown that

STAT6 could suppress M2 macrophage polarization and be

involved in the monocyte-to-fibroblast transition in folic acid

nephropathy (33). Furthermore, STAT6-specific inhibitor (AS

1517499) has been proven to prevent M2 macrophage

polarization and transformation of myofibroblasts, which lead

to a reduction of collagen deposition and ECM production in the

injured kidney (34). This evidence supports that JAK3/STAT6

signaling takes a crucial part in renal fibrosis via regulating

the MMT.

In human kidney fibrosis, the majority of CD68+a-SMA+

MMT cells expressed CD206, indicating a predominant M2

phenotype (26). MMT and the bone marrow-derived

fibroblasts are activated by natural killer T cells (NKT)/IL-4

signaling. As has been well-documented, IL-4 promotes

macrophages toward M2 polarization, which plays a crucial

role in bone marrow-derived fibroblast activation and renal

fibrosis (35). According to research, IL-4Ra disruption

d e c r e a s e d t h e n umb e r o f CD4 5 +a - SMA+ a n d

CD206+PDGFRb+ cells and renal fibrosis induced by renal

obstructive injury. In addition, activation of NKT cells

exacerbated the accumulation of MMT in the process of renal

fibrosis. Furthermore, administration of IL-4 to CD1d-deficient

mice increased bone marrow-derived myofibroblasts, promoted

the MMT process, and developed a fibrotic process in the injured

kidney (5).

Chemokines induced in cells of the injured kidney are

responsible for the recruitment of circulating monocytes/

macrophages. To suppress excessive BMDM-to-myofibroblast

transition, therapy options could target chemokines and their

receptors, such as chemokine ligand 2 (CCL2), CCL5, CCL21, C-

X-C motif chemokine ligand 6 (CXCL6), CXCL16, and

phosphatase and tensin homolog (PTEN) (36–39).
Discussion and perspectives

In this review, we present the latest literature to identify that

BMDMs promote renal fibrosis by both direct and indirect
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mechanisms. In a direct way, a part of BMDMs transition into

myofibroblasts, which coexpress CD68 and a-SMA through

MMT and produce collagen I to contribute to renal fibrosis.

MMT plays a crucial part in the progression of renal fibrosis.

The main signaling pathway of MMT is the TGF-b1-Smad3

signal pathway. Signaling-associated inhibitors had been proven

toprovideprotection inanimalmodels.Thedata suggest thatMMT

may be a therapeutic target for preventing renal fibrosis.
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