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Context: Pulmonary arterial hypertension (PAH) is a frequent extracutaneous
manifestation of systemic sclerosis (SSc). PAH is characterized by increased vasomotor
tone, progressive remodeling of pulmonary arteries and arterioles, consequentially
increased pulmonary vascular resistance, right heart hypertrophy, and eventually right
ventricular failure. Autoimmunity against G-protein coupled receptors (GPCRs) has been
implicated in the development of SSc-associated PAH. Sphingosine-1-phosphate (S1P)
receptors (S1PR) present a potential, yet so far untested antigen for PAH autoimmunity,
given the documented role of S1P/S1PR signaling in PAH pathogenesis.

Objective: We hypothesized that S1P receptors (S1PR) may constitute autoantigens in
human patients, and that the prevalence of autoantibodies (aAb) to S1PR1, S1PR2 and
S1PR3 is elevated in SSc patients and associated with PAH.

Methods: For this exploratory study, serum samples from 158 SSc patients, 58 of whom
with PAH, along with 333 healthy control subjects were screened for S1PR-aAb. S1PR1-
3 were expressed as fusion proteins with luciferase in human embryonic kidney cells and
used to establish novel in-vitro assays for detecting and quantifying S1PR-aAb. The fusion
proteins were incubated with serum samples, the aAb-S1PR complexes formed were
precipitated by protein-A, washed and tested for luciferase activity. Commercial anti-
S1PR-antibodies were used to verify specificity of the assays.

Results: All three assays showed dose-dependent signal intensities when tested with
S1PR-subtype specific commercial antibodies. Natural aAb to each S1PR were detected
in healthy controls with a prevalence of <10% each, i.e., 2.7% for S1PR1-aAb, 3.6% for
S1PR2-aAb, and 8.3% for S1PR3. The respective prevalence was higher in the cohort of
SSc patients without PAH, with 17.1% for S1PR1-aAb, 19.0% for S1PR2-aAb, and
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21.5% for S1PR3. In the subgroup of SSc patients with PAH, prevalence of aAb to S1PR2
and S1PR3 was further elevated to 25.9% for S1PR2-aAb, and 27.6% for S1PR3.
Notably, the majority of patients with positive S1PR2-aAb (60.7%) or S1PR3-aAb (71.9%)
displayed interstitial lung disease.

Conclusion: S1PR1–3 can constitute autoantigens in humans, particularly in SSC
patients with PAH. The potential pathophysiological significance for the etiology of the
disease is currently unknown, but the elevated prevalence of S1PR2-aAb and S1PR3-aAb
in SSC patients with PAH merits further mechanistic investigations.
Keywords: autoantibodies, G-protein coupled receptor, autoimmune disease, immunoglobulin, rheumatology,
immunology, sphingolipid, sphingosine-1-phosphate
INTRODUCTION

Pulmonary hypertension (PH) is characterized by a mean
pulmonary arterial pressure (mPAP) of ≥ 20 mmHg at rest. Its
clinical features may gradually progress from an initial
asymptomatic course to dyspnea and orthopnea, and
eventually to right heart hypertrophy, failure and death. The
pathophysiology of PH is characterized by vascular remodeling,
endothelial dysfunction and increased vascular tone,
predominantly in small to medium-sized pulmonary arterioles
(1). Precapillary pulmonary arterial hypertension (PAH)
constitutes the first group in the 2018 consensus on the clinical
classification of PH into five groups (2). ‘PAH’ is diagnosed when
mPAP at rest is measured ≥ 20 mmHg, yet pulmonary artery
wedge pressure is ≤ 15 mmHg and other causes of pre-capillary
PH (e.g. lung disease or chronic thromboembolic pulmonary
hypertension) are excluded (3). The subcategory PAH can be
specified further by etiology into idiopathic, hereditary, drug-
and toxin-induced forms of PAH, or PAH associated with
connective tissue disease, HIV or congenital heart disease (4).
While essential pathophysiological elements have been
elucidated over the past decades, the etiology of PAH remains
incompletely understood (5). Besides an epigenetic
dysregulation, alterations in bone morphogenetic protein
signaling, abnormalities in mitochondrial metabolism, and
dynamic inflammatory, autoimmune processes contribute to
the pathogenesis of PAH (6). Specifically, cell-based and
autoantibody (aAb) related immune dysregulation have been
implicated in the development of PAH, predominantly with
respect to idiopathic and connective tissue disease-associated
PAH (7). Antinuclear Ab (ANA) serve as diagnostic hallmark of
connective tissue disease, and specific ANA are associated with
an increased risk for PAH. In addition, aAb to certain G-protein
coupled receptors (GPCR) such as angiotensin 1-receptor or
endothelin receptor-1 have recently been associated with PAH,
and may promote pathological vasoconstriction and vascular
remodeling by acting as agonists of the respective GPCR (8).
Another line of research has recently identified signaling via the
small bioactive lipid mediator sphingosine-1-phosphate (S1P)
and its receptors (S1PR), which regulate vasoconstriction,
fibrosis, and lymphocyte trafficking (9–11) as potential
pathomechanism in PAH.
org 2
S1P can be generated at the inner layer of the cell membrane
from its sphingolipid precursor sphingosine by sphingosine-
kinase (SPHK)-1 or -2 via the specific S1P-transporters major
facilitator superfamily domain-containing protein 2B (MFSD2B,
in erythrocytes and platelets) (12), or spinster-homologue-2
(SPNS2, in blood and lymphatic endothelial cells) S1P can
then be released into the extracellular space and the circulation
(13, 14). Extracellular S1P can bind and activate five different
human S1P-receptors (S1PR), namely S1PR1 to S1PR5, all of
which belong to the superfamily of GPCR (15, 16). Besides the
crucial role of S1PR1, S1PR2 and S1PR3 in the maturation,
activation and chemotaxis of immune cells (11, 17), these
ubiquitously expressed S1PR are also the major receptor
subtypes in the cardiovascular system with high expression in
pulmonary artery smooth muscle cells (PASMC) (18). Of note,
S1PR1- and S1PR3-signaling plays an important role in
preserving vascular functions and blood pressure homeostasis
by controlling endothelial nitric oxide synthase (eNOS)-derived
nitric oxide (NO) production, which underlies the anti-
hypertensive effect of S1P (19). However, elevated levels of
SPHK1 in PASMC result in an autocrine “inside-out” S1PR-
signaling that can stimulate PASMC proliferation via S1PR2,
which has been proposed appears upregulated in PASMC of
idiopathic PAH patients (9, 15). In parallel, activation of S1PR2
(and potentially also S1PR4) in PASMC causes pulmonary
vasoconstriction (20–22). In combination, the effects of S1P on
pulmonary arterial endothelial and smooth muscle cells
emphasize the importance of a tightly controlled S1P/S1PR-
signaling in vascular homeostasis that when impaired can drive
vasoconstriction, vascular remodeling, and endothelial
dysfunction, which increase pulmonary vascular resistance and
mPAP ultimately resulting in the development of PAH.
Experimental proof-of-principle for this concept was
demonstrated by the fact that genetic deficiency or
pharmacological inhibition of either SPHK1 or S1PR2
effectively attenuated the development of PH in rodent models
of chronic hypoxic PH (9). Further, a specific role of S1PR2 and
S1PR3 has been described in fibrosis, in particular in relation to
inflammation and tissue injury, leading to cell death, matrix
deposition and finally end organ dysfunction (23). Due to the
crucial role of S1P-signaling in homeostasis of the immune
system and the endothelium, specific S1PR-modulators are
July 2022 | Volume 13 | Article 935787

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gluschke et al. S1PR Autoimmunity in SSC & PAH
already used in autoimmune disease such as multiple sclerosis
and inflammatory bowel disease and constitute a promising
therapeutic option for rheumatoid arthritis, systemic lupus
erythematosus or systemic sclerosis (SSc) (24–26).

Systemic sclerosis, as one of the rheumatic diseases with the
highest mortality, is also characterized by autoimmune
dysregulation, endothelial dysfunction and chronic
inflammation (27, 28). In more than 90% of patients, ANA are
detected, constituting an important cornerstone of the diagnosis
and supporting the classification of SSc as an autoimmune
disease (29). Additional aAb to other members of the GPCR
superfamily have recently been described in SSc by us and others
(28, 30). The complication of PAH on a background of SSc (SSc-
PAH) affects up to 12% of patients with SSc, constituting the
major cause of death in SSc. Still, diagnostic and prognostic
markers for PAH are few, therapeutic measures remain poorly
effective and treatment options are limited, causing physicians to
pursue symptomatic approaches rather than curative strategies
(31, 32). Besides established immunosuppressive therapies, S1P
modulators such as cenerimod already showed promising results
in a mouse model of bleomycin-induced fibroses (33).

In view of the ubiquitous function of S1P/S1PR1/eNOS
signaling in the vasculature, the established role of S1P/S1PR2
signaling in PASMC proliferation, contraction, and the
development of PH, and the specific contribution of S1PR2
and S1PR3 to disease-related extracellular matrix deposition
and tissue fibrosis, we speculated that any alterations to the
function of one of these three S1PR may be associated with SSc,
in particular with respect to PAH development. To this end, we
established as a first step novel in vitro assays for detection and
quantification of aAb binding to S1PR1, S1PR2 or S1PR3, and
compared the prevalence of these GPCR-specific aAb in serum
samples from healthy controls and SSc patients with or without
PAH. Our results indicate an elevated prevalence of S1PR-
specific aAb in SSc, in particular for S1PR2-aAb and S1PR3-
aAb in patients with SSc-PAH.
MATERIALS AND METHODS

Human Samples From Healthy Controls
and SSc Patients
An explorative study was conducted on the prevalence of S1PR-
aAb. To this end, a set of commercially available serum samples
Frontiers in Immunology | www.frontiersin.org 3
(n=303) from subjects with a self-assessed status as ‘healthy’ (HC;
healthy controls) served as reference (in.vent Diagnostica GmbH,
Hennigsdorf, Germany). An additional set of 30 serum samples
from healthy subjects were collected at the Rheumatology
Department in Lübeck, Germany. Patients suffering from SSc
with or without PAH were identified and enrolled into the study
at the Rheumatology Department at the Charité – University
Medicine Berlin, Berlin, Germany, or at the University Hospital
Lübeck, Schleswig Holstein, Germany, in the time period from
Nov. 2004 to Dec. 2019. The final cohort consisted of n=158 serum
samples from SSc patients, n=58 of which had an additional
diagnosis of PAH. Samples were stored at -80°C until transfer to
the analytical laboratory in Berlin, and provided to the scientists
conducting the laboratory analyses in a blinded fashion. All
patients provided their written informed consent for enrollment
into the study after detailed explanation of purpose, procedures
(blood sampling and analysis) and right to withdraw from
participation at any time point. The study was conducted in
accordance with the Declaration of Helsinki. Ethical counselling
was provided by the Charité Medical School Berlin (10/30/2017,
EA1/178/17) and the Board of Ethics of the University of Cologne
(#04-037). Baseline characteristics of patients and healthy controls
are displayed in Table 1.

Construction of the Receptor–
Luciferase Fusion Proteins for
Autoantibody Detection
The construction of these novel assays followed an established
path, whereby the full open reading frames of the human
coding sequences of the three S1PR were individually fused in
frame to a luciferase (Luc) reading frame. The resulting
receptor-luciferase fusion proteins served as autoantigen baits
for autoantibody detection. Briefly, the open reading frames of
the human S1PR1, S1PR2 and S1PR3 were synthesized by a
commercial supplier (BioTeZ, Berlin-Buch GmbH, Berlin,
Germany), each containing suitable restriction sites for
directed insertion into a eukaryotic expression plasmid. The
strategy is similar to the recently generated assays for the
insulin-like growth factor receptor 1, the thyroid hormone
transporters MCT8 and MCT10, the GPCR for gonadotropin-
releasing hormone, luteinizing hormone or follicle-stimulating
hormone or the iodide transporters sodium-iodide symporter
and pendrin (34–38). The stop codons were each replaced by a
sense codon in order to enable read-through. The expression
TABLE 1 | Baseline characteristics of the study cohorts.

Rheumatology Departments Univ. of Lübeck & Charité Berlin In.vent Diagnostica

Diagnosis Systemic sclerosis n=158 Healthy controls n=30 Healthy controls n=303

Sex
Female, n (%) 116 (73.9%) 19 (63.3%) 171 (56.4%)
Male, n (%) 41 (26.1%) 11 (36.7%) 132 (43.6%)
Age, median (range) [y] 63 (26–84) 52 (22–59) 32 (19–63)
BMI, median (range) [kg/m2] 24 (16–48) – –

Disease duration, median (range) [months] 84 (0–588) – –
July 2022 | Vo
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plasmid backbone pSP-Luc+NF was obtained from Promega
(Promega GmbH, Walldorf, Germany). DNA-sequencing for
verification of the correct expression cassettes was conducted
by LGC Genomics (LGC Genomics GmbH, Berlin, Germany).

Stable Expression of Fusion Proteins in
Human Embryonic Kidney Cells
In order to achieve stable and reproducible expression of the
fusion proteins, human embryonic kidney cells (HEK 293) were
transfected with the expression vectors and cultured in DMEM/
F12 supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin. Two days after transfection, 0.8 mg/mL
G418 (geneticin, Sigma-Aldrich GmbH, Steinheim, Germany)
was added to the medium, and stable clones were selected by the
criteria of robust cell growth characteristics and high luciferase
activity. Selected clones were expanded and seeded on 165 cm²
cell culture dishes for recombinant protein production in
medium supplemented with 0.2 mg/dL G418.

Preparation of Cell–Extracts for
Autoantibody Tests
After reaching confluency of 80% or more, stable HEK293 cells
expressing the fusion protein of choice were harvested with a cell
scraper and collected by centrifugation (10 min, 1000 g, 4°C).
Cell pellets were washed twice with pre-cooled PBS and collected
again by centrifugation. The resulting pellet was resolved in
collection buffer (50 mM Tris-HCl, 100 mM NaCl, 10% glycerol,
0.01% NaN3 in dH20) and subsequently lysed by adding 1%
Triton X-100 (Sigma-Aldrich). After gentle shaking and final
centrifugation (15 min, 4000 g, 4°C), the supernatants were
tested for luciferase activity. The resulting cell extracts were
diluted in collection buffer to achieve signal intensities of >
1*106 relative light units (RLU) per measurement and stored in
aliquots at -80°C until use.

Quantitative Analysis of Antibodies
Binding to Human S1P Receptors
For the quantitative analysis of antibodies reactive with S1P
receptors, the cell extracts containing S1PR-Luc fusion proteins
were diluted in reaction buffer (50 mM Tris-HCl, 100 mM NaCl,
10% glycerol, 5% milk powder, 5% glucose, 1% Triton X-100,
0.005% NaN3 in dH2O) to a concentration equivalent to
providing 2-4*105 RLU per reaction (Automat Plus LB953,
Berthold Technologies, Bad Wildbad, Germany). Each
measurement was conducted by incubating 40 μL of diluted
cell extract overnight at 4°C with 10 μL of serum sample diluted
1:1 (v/v) with serum buffer (50% glycerol, 100 mM NaCl, 50 mM
Tris-HCL, 0.01% NaN3 in dH2O). After 24 h, an aliquot of 40 μL
of protein-A sepharose (ASKA Biosciences GmbH, Berlin,
Germany) diluted in reaction buffer (20% v/v) was added to
capture the fusion-protein-aAb-complexes that had formed
overnight. The samples were centrifuged (1000 g, 2 min, 4°C)
and pellets were washed five times using 200 μL Tris-based buffer
(50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 10% glycerol, 0.5%
Triton X-100 in dH2O). After resuspension, luciferase activity
was determined by injection of luciferase substrate, signal
Frontiers in Immunology | www.frontiersin.org 4
intensities were measured as RLU with a luminometer
(Automat Plus LB953 or Mithras LB943), and used to calculate
specific binding indices (BI) as factor above background noise.

Statistical Analysis
Under the assumption of less than 50% of positive samples in
the analysis, average background noise of negative samples was
determined for each experimental run in 96-well plates by
calculating the mean RLU from the lower half of the obtained
signals. This signal was defined as binding index one (BI = 1.0).
For analytical comparison, all signals [RLU] were divided by
this background signal [RLU] and expressed as BI, denoting the
signal strength as times background signal. In order to
determine the cut-off for S1PR-aAb-positve samples, a
mathematical outlier criterion was used. To this end, a
threshold was calculated representing the BI of the 75th

percentile of all signals plus 1.5-times the inter quartile range
(P75 + 1.5 x IQR). In this manner, a separation of aAb-positive
from aAb-negative samples was achieved. All statistical
analyses were performed using GraphPad Prism v8.4.0
(GraphPad Software Inc., San Diego, CA, USA). Intra-assay
coefficients of variation were determined from repeated
measurements of the same positive samples. Tests for normal
distribution (D’Agostino-Pearson test, Shapiro-Wilk test,
Kolmogorov-Smirnov test) showed a non-parametric
distribution of S1PR-aAb-positivity and of the clinical
parameters. Group comparisons of continuous clinical
characteristics were analyzed for significant differences with
two-sided Mann-Whitney test. Binary variables were compared
with one-sided (expected direction of difference) or two-sided
(explorative hypothesis) Chi Square test for statistical
significance, as indicated. Significance was assumed when the
p-value was below 0.05; however, the p-values may not be
interpreted as confirmative as all analyses were considered
exploratory and not adjusted for multiple testing.
RESULTS

Establishment of Quantitative Tests
for Measuring Autoantibodies to the
S1P Receptors
Stable HEK293 cell clones were established expressing human
S1PR1-, S1PR2- and S1PR3-luciferase (S1PR1-Luc, S1PR2-Luc,
S1PR3-Luc) fusion proteins, respectively. Recombinant
expression of the fusion proteins to be used as bait in the aAb
analyses yielded comparable luciferase activities per preparation.
To verify specificity, commercial antibodies recognizing human
S1PR1, S1PR2 or S1PR3 were obtained and used as positive
standards. Each of the commercial antibodies produced strong
signals in the respective assay. Intra-assay coefficients of
variation were 14.3% for the S1PR1-, 6.6% for the S1PR2- and
5.3% for the S1PR3-assay. Stepwise dilution experiments using
commercial antibodies revealed concentration-dependent signals
for all three aAb assays (Figure 1).
July 2022 | Volume 13 | Article 935787
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Stability of S1PR–aAb in Serum Samples
Upon Freezing and Thawing
To ensure that freezing and thawing does not interfere with the
analysis of S1PR-aAb in human serum, selected samples that had
been screened positive for S1PR–aAb were tested after one to
four consecutive freeze and thaw cycles. Freezing was achieved
on dry ice at –80°C and thawing by standing without agitation at
room temperature until completely thawed. The signal
intensities remained relatively unaffected by the repeated
freezing and thawing, and final signal strength after four
rounds of freezing and thawing was within 20% of the initial
values determined after the first thawing in all three analytical
assays (Figure 2). The results support the suitability of frozen
human serum samples for assessing aAb to the S1PR by the
newly generated analytical tests.

Prevalence of S1PR–aAb in SSc Patients
Versus Healthy Controls
A cohort of serum samples from patients with SSc (n=158) and a
collection of serum samples from healthy controls (n=333) was
analyzed for natural aAb to S1PR by the three receptor-specific
tests. The signals (RLU) were converted into relative binding
indices (BI), with BI=1.0 representing background noise.
Frontiers in Immunology | www.frontiersin.org 5
Thresholds for positive aAb signals were determined by
applying the mathematical outlier criterion of P75+1.5-times
IQR as indicated by a dotted line (Figure 3). According to these
criteria, several samples with positive aAb were identified in all
three tests in both control and patient group. Prevalence of
natural S1PR1–aAb was 17.1% in SSc versus 2.7% in controls
(Figure 3A). Similarly, prevalence of S1PR2–aAb was elevated
with 19.0% in SSc patients versus 3.6% in controls (Figure 3B).
In comparison of all three assays, S1PR3-aAb displayed the
highest prevalence, with 8.3% in controls and 21.5% in
patients, with one sample showing exceptionally high signal
intensity with a BI of 13 (Figure 3C). A direct comparison of
the prevalence for each of the three S1PR-aAb is provided in
(Figure 3D) and highlights the statistically significant differences
in S1PR-aAb prevalence in SSc versus controls.

Prevalence of S1PR–aAb in Patients
as a Function of Pulmonary
Arterial Hypertension
Pursuing the hypothesis that S1PR-aAb may be involved in the
pathogenesis of PAH and therefore more prevalent in PAH, we
subsequently divided the group of SSc patients into patients
without PAH (SSc w/o PAH, n=100) and a smaller group of
A B C

FIGURE 2 | Signal stability upon multiple freeze-thaw-cycles. S1PR–aAb signal stability of aAb-positive serum was assessed with selected samples in the newly
generated assays for (A) S1PR1–aAb, (B) S1PR2–aAb, and (C) S1PR3–aAb assay. Samples were subjected consecutively to four freeze and thaw cycles, and all
measurements with one exception displayed signal intensities within a 20% range from the initial signal strength determined upon first thawing.
A B C

FIGURE 1 | Proof of concept for the novel tests to quantify commercial antibodies to the S1P-receptors. Signal development was tested with commercial antibodies
to (A) S1PR1, (B) S1PR2 and (C) S1PR3, respectively. In all three newly developed detection assays, a concentration-dependent decline of signal intensity
(expressed as relative light units; RLU) was observed in dilution experiments of commercial receptor-specific antibodies. No cross-reactivity to other receptors was
observed. Control measurements were conducted using either monoclonal (to S1PR1 and S1PR2) or polyclonal (to S1PR3) antibody preparations.
July 2022 | Volume 13 | Article 935787
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PAH-positive SSc patients (SSc-PAH, n=58). S1PR1-aAb
appeared unrelated to PAH, and prevalence in the SSc w/o
PAH group (18/100, 18.0%) was similar to the prevalence in
the SSc-PAH group (9/58, 15.5%) (Figure 4A). In contrast, a
quarter of samples in the SSc-PAH group displayed positivity for
S1PR2-aAb (15/58, 25.9%), whereas a smaller percentage of SSc
patients without PAH was positive for S1PR2-aAb (15/100,
15.0%), with the difference reaching statistical significance
(P=0.0467) (Figure 4B). With regards to the prevalence of
S1PR3-aAb, a higher fraction of samples from the SSc-PAH
was identified as positive (16/58, 27.6%) in comparison to the SSc
w/o PAH group (18/100, 18.0%), albeit without reaching
statistical significance (P=0.1133) (Figure 4C). An overview of
these three sets of measurements highlights the differential
Frontiers in Immunology | www.frontiersin.org 6
picture, with a particularly elevated prevalence of S1PR2-aAb
in patients with SSc-PAH.

Serum Samples With Positive
Autoantibodies to More Than One S1PR
The samples showing positive autoimmunity were further
analyzed with respect to recognizing more than one receptor,
i.e., being positive in two or even in all three S1PR-aAb assays. In
total, six positive samples were identified with aAb exceeding the
threshold in all three S1PR-aAb assays, suggesting either a cross-
reactivity of a single aAb to the different receptors or a polyclonal
nature of the aAb within a given serum, with aAb co-existing and
recognizing either S1PR1, or S1PR2 or S1PR3. All of the
respective patients were female, five derived from the SSc
A B C

FIGURE 4 | Prevalence of S1PR–aAb in SSc patients as a function of a diagnosis of PAH. SSc patients were subdivided into those with or without a diagnosis of
PAH. (A) Prevalence of S1PR1-aAb was similar in both groups of patients, whereas (B) the prevalence of S1PR2-aAb was higher in SSc patients with PAH than in
patients without PAH (P<0.05). (C) The difference in prevalence of S1PR3-aAb between both groups did not reach statistical significance (P>0.05). The binding
indices (BI) along with the percentages of positive samples are provided. Prevalence was compared by one-sided Chi square test.
A B

DC

FIGURE 3 | Comparison of S1PR–aAb in healthy controls versus patients with systemic sclerosis. The presence of aAb to the three human S1PR (1–3) was
determined in the group of healthy controls (HC) and patients with systemic sclerosis (SSc), and the relative prevalence was compared between both groups.
Thresholds are indicated by dotted lines, and values are displayed as scattered dot plots. Black lines represent the median. Whiskers of the box plots denote P25
and P75. Results from HC are denoted in green and of SSc in pink. The prevalence for (A) S1PR1–aAb, (B) S1PR2–aAb, and (C) S1PR3–aAb was elevated in the
patient cohort as compared to healthy controls. (D) A statistical comparison of SSc and HC for S1PR-aAb was conducted by two-sided Chi square test and
revealed significant group differences.
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cohort whereas only one healthy control was triple positive.
Three of the triple positive subjects were suffering from SSc-
PAH. Four samples were tested positive for both S1PR1-aAb and
S1PR3-aAb. In addition, two SSc patient samples were
simultaneously positive in the tests for S1PR1-aAb and S1PR2-
aAb. A total number of 19 other samples were positive for
S1PR2-aAb and S1PR3-aAb. The commercial antibodies
yielded high signals only when tested for one receptor subtype,
and not in the related assays.

Comparison of Clinical Characteristics
With Respect to S1PR–aAb
The full cohort of SSc patients was analyzed for clinical
characteristics in relation to the results from the S1PR-aAb
tests. In general, patients with S1PR3-aAb were younger than
average (median age; 51 vs. 63). With respect to cutaneous
manifestation of SSc, 85.2% of patients positive for S1PR1-aAb
had a limited cutaneous form, whereas the diffuse manifestations
were dominating in patients that were positive for S1PR2-aAb or
S1PR3-aAb. Besides the elevated prevalence of S1PR2-aAb and
S1PR3-aAb in the group of SSc patients with PAH, there was also
a higher share of patients suffering from lung fibrosis in these
groups (S1PR2-aAb; 60.7% vs. 45.3%, S1PR3–aAb; 71.9% vs.
41.9%). None of the groups showed remarkable differences in the
prevalence of specific anti-nuclear Ab (Table 2).
DISCUSSION

In this manuscript, we describe the establishment of novel
analytical in vitro assays for assessing the prevalence of natural
Frontiers in Immunology | www.frontiersin.org 7
autoantibodies recognizing human S1PR1, S1PR2 or S1PR3. A
first analysis on the specificity of the assays was positively
passed by using commercial receptor-specific antibodies,
recognizing only the respective receptor type and not cross-
reacting to a related S1PR. Dependence of signals to antibody
levels was observed in dilution experiments with commercial
antibodies. As another important prerequisite for the present
analysis, signal stability was shown by repeated freezing and
thawing of aAb-positive human samples. In agreement with
our hypothesis, prevalence of natural S1PR-aAb was
significantly elevated in SSc patients as compared to healthy
controls, with some further increase in the subgroup of
patients who developed PAH. S1PR2-aAb and S1PR3-aAb
showed a particular association with both PAH and lung
fibrosis, in line with their established local biochemical
function (39).

The balance between vasoconstriction and vasodilation in
the (pulmonary) arterial system is fine-tuned by the
expression of S1PR1, S1PR2 and S1PR3 on vascular
endothelial cells and smooth muscle cells. While S1PR1
agonism in endothelial cells stimulates NO formation and
causes vasodilation, S1PR2 and S1PR3 signaling in smooth
muscle cells mediate vasoconstriction. Analyses in primary
pulmonary artery smooth muscle cells, isolated perfused lungs
and in vivo models of PH specifically identified signaling via
S1PR2 to trigger pulmonary vasoconstriction and vascular
remodeling (21, 22), while pharmacological inhibition of
S1PR2 effectively prevented the development of chronic
hypoxic PH in mice (9). Agonism of S1PR3, on the other
hand, has been implicated in the development of radiation-
and bleomycin-induced pulmonary fibrosis in mice (40, 41).
TABLE 2 | Characterization of the cohort of patients with systemic sclerosis regarding S1PR–aAb.

S1PR1–aAb S1PR2–aAb S1PR3–aAb

SSc
n=158

positive* n=27
(17.1%)

negative n=131
(82.9%)

positive* n=30
(19%)

negative n=128
(81%)

positive* n=34
(21.5%)

negative n=124
(78.5%)

Cutanous manifestation
Limited, n (%) 91 (58%) 23 (85.2%) 68 (52.3%) 14 (48.3%) 77 (60.2%) 13 (39.4%) 78 (62.9%)
Diffuse, n (%) 59 (38%) 4 (14.8%) 55 (42.3%) 14 (48.3%) 45 (35.2%) 19 (57.6%) 40 (32.3%)
Sine scleroderma, n (%) 7 (4%) 0 (0%) 7 (5.4%) 1 (3.4%) 6 (4.7%) 1 (3.0%) 6 (4.8%)
mRSS,
median (range)

6 (0–39) 4 (0–24) 6 (0–39) 5 (0–27) 6 (0–39) 5 (0–27) 6 (0–39)

Pulmonary & cardiac involvement
NTproBNP [ng/L], median
(range)

206 (5–
19066)

296 (46–4884) 196 (5–19066) 135 (5–19066) 235 (29–14414) 135 (5–4884) 242 (29–19066)

PAH, n (%) 58 (37%) 9 (33.3%) 49 (37.4%) 15 (50%) 43 (33.6%) 16 (47.1%) 42 (33.9%)
ILD, n (%) 75 (48%) 11 (40.7%) 64 (49.6%) 17 (60.7%) 58 (45.3%) 23 (71.9%) 52 (41.9%)
Autoantibodies**
anti-topoisomerase-1 (Scl70)
Ab, n (%)

50 (33%) 4 (15.4%) 46 (36.2%) 11 (39.3%) 39 (31.2%) 16 (48.5%) 34 (28.3%)

anti-RNA-Pol-III Ab (ARA), n
(%)

13 (8%) 2 (7.4%) 11 (8.7%) 2 (7.4%) 11 (8.7%) 4 (12.5%) 9 (7.4%)

anti-centromere-CENP-B Ab,
n (%)

63 (41.4%) 21 (75%) 42 (33.6%) 11 (40.7%) 52 (41.6%) 9 (29.0%) 54 (44.6%)

anti-citrullinated-peptide Ab, n
(%)***

30 (54.5%) 6 (66.7%) 24 (52.2%) 10 (71.4%) 20 (48.8%) 8 (53.3%) 22 (55%)
July 2022 | Volume
Missing values were excluded from the calculation; mRSS, modified Rodnan-Skin-Score; ILD, interstitial lung disease; *P75+1.5xIQR, **all were antinuclear Ab (ANA) positive, ***positive:
≥7 U/ml.
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The increased prevalence of S1PR2- and S1PR3- but not S1PR1-
specific aAb in SSc-PAH patients may thus point towards an
autoimmune-supported pathomechanism that could contribute
to elevated pulmonary vascular resistance and the development of
lung fibrosis in SSc-associated PAH. In line with this notion, PAH
patients show elevated expression of S1PR2 on PASMC (9). Given
that pharmacologic S1PR2 inhibition could prevent the
development of hypoxic PH in rodents, an agonistic aAb
against S1PR2/3 may conceivably promote PASMC
proliferation and medial thickening (9). Yet, the biochemical
nature of the S1PR-aAb and their functional effects on receptor
signaling are presently unclear, as our newly developed assays
only detect binding characteristics, while data probing whether
the identified aAb act as antagonists to inhibit the receptors, as
agonists to stimulate receptor signaling, or rather elicit allosteric
effects are lacking and remain to be elucidated in future
studies (40).

Our findings support earlier reports describing a set of
GPCR-specific aAb in patients with autoimmune disease such
as systemic sclerosis (28, 41). While aAb against a variety of
GPCR including the endothelin type A receptor and
angiotensin II receptor type 2 have been identified in a wide
range of cardiovascular diseases where they have been proposed
to contribute critically to disease initiation and/or progression,
aAb against S1PR have so far only been reported in a single case
report. In this lymphopenic patient with recurrent infections,
aAb to human S1PR1 were identified (42). Adoptive transfer of
the purified human aAb into mice caused immunosuppression,
decreased T-cell chemotaxis and reduced lymph node egress via
direct interaction with a subset of T-cells (42), thus highlighting
the functional relevance of these aAb. The epitope recognized
by the S1PR1-aAb was within the amino-terminal domain of
S1PR1. Yet as therapeutic antibodies against certain S1PR
demonstrated, binding is often not restricted to just one
receptor (43). As such, it will be important to characterize the
major antigenic epitopes for the specific receptor subtypes
identified in the present study. Here, we describe for the first
time the prevalence of S1PR-aAb including the first
identification of S1PR2- and S1PR3-aAb in a large cohort of
patients and healthy individuals, and report their potential use
as both biomarkers and potential therapeutic targets in SSc,
PAH, and/or lung fibrosis.

Among the particular strengths of our study are the rigorous
assay designs, using full-length human receptor molecules as bait
and human cells as system for the recombinant expression,
thereby enabling regular posttranslational modifications, full
coverage of potential epitopes and correct trafficking (44, 45).
Moreover, the identification of commercial receptor-specific
antibodies to each of the three receptor subtypes verified
specificity of the assays, and enables other research groups to
conduct similar analyses using the same type of positive controls,
thereby increasing transparency and comparability between
analytical techniques. The cohort size of the controls and of
the patients provided considerable numbers of samples, allowing
for a solid case-control comparison and a focused analysis of
patients with versus without PAH. Finally, assay sensitivity was
Frontiers in Immunology | www.frontiersin.org 8
high and only small amounts of serum were required to obtain
the aAb result, enabling fast, cost-effective and high throughput
analyses in future studies on larger cohorts of samples with
related cardiovascular phenotypes.

No study is without limitation, and the lack of biological
characterization of the identified aAb as potential agonists,
antagonists or modulators of receptor function constitutes an
important knowledge gap. Unfortunately, sample volumes were
limited and not sufficient to isolate immunoglobulins for further
biochemical analyses. The nature of the study design as case-
control study precludes any causal interpretations, and detailed
structural and functional analyses of the identified aAb along
with analyses with longitudinal patient samples and clinical data
are required to elucidate a potential etiologic role of the aAb in
SSc, and in particular in PAH. In addition, information on
anthropometric and clinical characteristics of the participants
contributing to the cohort of healthy subjects is sparse, as the
samples were obtained from a commercial supplier, and subject-
specific information was not provided for reasons of data safety.
Finally, genetic background and place of residency of the patients
was relatively uniform, precluding extrapolations to patients
from other populations or different genetic background. That
notwithstanding, this is the first systematic analysis of aAb to
human S1PR in healthy and diseased subjects, providing some
positive results in relation to PAH which warrant further analysis
in larger clinical studies.
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