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Objective: Platelet (PLT) engages in immune and inflammatory responses, all of

which are related to the prognosis of critically ill patients. Although

thrombocytopenia at ICU admission contributes to in-hospital mortality,

PLT is repeatedly measured during ICU hospitalization and the role of

longitudinal PLT trajectory remains unclear. We aimed to identify dynamic

PLT trajectory patterns and evaluate their relationships with mortality risk

and thrombocytopenia.

Methods: We adopted a three-phase, multi-cohort study strategy. Firstly,

longitudinal PLT trajectory patterns within the first four ICU days and their

associations with 28-day survival were tested in the eICU Collaborative Research

Database (eICU-CRD) and independently validated in theMedical InformationMart

for Intensive Care IV (MIMIC-IV) database. Secondly, the relationships among PLT

trajectory patterns, thrombocytopenia, and 28-day mortality were explored and

validated. Finally, a Mortality GRade system for ICU dynamically monitoring

patients (Mortality-GRID) was developed to quantify the mortality risk based on

longitudinal PLT, which was further validated in the Molecular Epidemiology of

Acute Respiratory Distress Syndrome (MEARDS) cohort.

Results: A total of 35,332 ICU patients were included from three cohorts.

Trajectory analysis clustered patients into ascending (AS), stable (ST), or

descending (DS) PLT patterns. DS patients with high baseline PLT decline

quickly, resulting in poor prognosis. AS patients have low baseline PLT but

recover quickly, favoring a better prognosis. ST patients maintain low PLT,

having a moderate prognosis in between (HRST vs AS = 1.26, 95% CI: 1.14–1.38,

P = 6.15 × 10−6; HRDS vs AS = 1.58, 95% CI: 1.40–1.79, P = 1.41 × 10−13). The

associations remained significant in patients without thrombocytopenia during

the entire ICU hospitalization and were robust in sensitivity analyses and

stratification analyses. Further, the trajectory pattern was a warning sign of
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thrombocytopenia, which mediated 27.2% of the effects of the PLT trajectory on

28-day mortality (HRindirect = 1.11, 95% CI: 1.06–1.17, P = 9.80 × 10−6). Mortality-

GRID well predicts mortality risk, which is in high consistency with that directly

estimated in MEARDS (r = 0.98, P = 1.30 × 10−23).

Conclusion: Longitudinal PLT trajectory is a complementary predictor to

baseline PLT for patient survival, even in patients without risk of

thrombocytopenia. Mortality-GRID could identify patients at highmortality risk.
KEYWORDS

platelet count, inflammation, immunity, critical care, longitudinal trajectory, multi-
cohort, prognosis
Introduction

The intensive care unit (ICU) patients are exposed to

pneumonia, sepsis, and other inflammation (1, 2), which

hampers the treatment and leads to high mortality rates

ranging from 11% to 18% (3, 4). Survivors may suffer from

chronic and life-changing physical, psychosocial, and cognitive

sequelae (5, 6). Such conditions deteriorate rapidly under the

ongoing novel coronavirus disease 2019 (COVID-19) pandemic

(7) and cause a considerable burden on public health (8, 9).

Platelets engage in coagulation, inflammation, and the

immune response, all of which have close connections with

the prognosis of critically ill patients (10, 11). Platelets play a

central role in regulating immune responses and interactions

with various cells of the innate and adaptive immune systems

(12, 13). Functional or quantitative platelet abnormalities may

lead to immune dysregulation, prolonged ICU stay, and death

(14). Indeed, thrombocytopenia (low platelet count) at ICU

admission is associated with poor clinical outcomes and

prognosis (15, 16). Accumulating pieces of evidence show that

platelet counts vary over ICU hospitalization, with levels

dropping after ICU admission and reaching a nadir on the

fourth day (17, 18). In addition to the baseline platelet count at

admission, such platelet dynamics might affect ICU patient

prognosis (19). However, the role of the longitudinal platelet

count trajectory has not been elucidated.

Taking advantage of large-scale databases including the

eICU Collaborative Research Database (eICU-CRD) and the

Medical Information Mart for Intensive Care IV (MIMIC-IV)
ch Database; MIMIC-

tabase; ICU, intensive

e Respiratory Distress

ality Grade system for

interval; HR, hazard
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database, we applied an unsupervised machine learning

approach to identify longitudinal platelet count trajectory

patterns among ICU patients and evaluate their associations

with clinical outcomes. Further, we developed a Mortality Grade

system for ICU dynamically monitoring patients (Mortality-

GRID) and validated it in the Molecular Epidemiology of Acute

Respiratory Distress Syndrome (MEARDS) cohort.
Methods

Study population

Study samples were collected from eICU-CRD v2.0 (2014–

2015) (20) and MIMIC-IV v1.0 (2008–2019) (21) at PhysioNet

(22) (certification number: 33755029), as well as the MEARDS

cohort (1998–2014) (16, 23). In accordance with previous

studies, we excluded ICU admissions if they met any of the

following criteria: (i) repeated ICU admissions; (ii) age <18

years; (iii) missing baseline platelet count; (iv) length of ICU

stay <48 h (24, 25); (v) daily platelet count measurements <4

times (because of the requirement for trajectory analysis).

Detailed cohort descriptions are summarized in the

Supplementary Methods. Finally, 19,361, 14,239, and 1,732

ICU patients who met the recruitment criteria were

collected from the eICU-CRD, MIMIC-IV, and MEARDS

cohorts, respectively.
Clinical outcome and measurements

The primary outcome was 28-day in-hospital survival,

defined as a time-to-event outcome from ICU admission to

death or loss to follow-up at the end of the study, whichever

occurred first. The primary independent variable was daily

platelet count measurements in the first four consecutive days
frontiersin.org
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after ICU admission. The lowest platelet count was used if the

patient had multiple platelet count measures in a single day.

Additionally, demographic information, clinical characteristics,

laboratory tests, vital signs, and comorbidities were extracted for

covariate adjustment and stratified analyses, summarized in

Supplementary Tables 1–5. Only variables with a missing

proportion of less than 10% were included in further analyses

(Supplementary Figures 1, 2).
Platelet count dynamic trajectory
identification

Trajectory analysis was performed to identify dynamic

trends based on longitudinal repeatedly measured platelet

count in the first four ICU days using the R package traj, as

proposed by Leffondré etal. (26). We followed three steps to

identify trajectory patterns. Firstly, we extracted 24 features to

depict platelet count dynamic trajectories for each individual

(Supplementary Table 6). Secondly, correlations between these

24 features were tested, and factor analysis was conducted to

select a subset of features that best described the dynamic

changes of the trajectories. Finally, based on the selected

features, cluster analysis was used to classify patients with

similar dynamic changes into the same group. The optimal

number of clusters was determined based on the lowest

−2*log-likelihood value, the Akaike information criterion, and

Bayesian information criteria of the corresponding models.
Causal mediation analysis for dynamic
trajectory, thrombocytopenia, and
28-day survival

Thrombocytopenia is an important prognostic predictor of

in-hospital mortality in ICU patients. To test whether the

dynamic platelet count trajectory could provide warning signs

for thrombocytopenia and further affect patient survival, the

Vander Weele causal mediation analysis was performed to

evaluate the indirect effect of the dynamic trajectory on 28-day

survival (27).
Risk quantization and Mortality-GRID

To quantify the mortality risk of dynamic platelet count

changes, we computed the average daily change in platelet count

after ICU admission. Considering that patients with different

baseline platelet counts at admission may have different

mortality risks, we classified patients according to the normal

range of platelet counts in the ICU (100–300 × 109/L) (28).

Patients with no change in platelet count were set as the

reference group, and the effects of platelet count changes on
Frontiers in Immunology 03
28-day mortality were evaluated using hazard ratios (HRs)

derived from restricted cubic spline using the R package rms.

Mortality-GRID was developed based on the risk quantization to

provide warnings and prophylactic therapy for vulnerable

ICU patients.
Study design and statistical analysis

We conducted a three-phase, multi-cohort study. Firstly,

longitudinal platelet count trajectory patterns within the first

four ICU days and their associations with 28-day survival were

tested in eICU-CRD and further independently validated in

MIMIC-IV. Furthermore, a series of stratified and sensitivity

analyses were performed to evaluate the robustness of

the associations.

Secondly, based on eICU-CRD and MIMIC-IV databases,

we explored and validated whether the longitudinal trajectory

patterns could provide a warning sign of thrombocytopenia and,

through which, mediate the effect of trajectory patterns on

patient survival. Additionally, although thrombocytopenia is

common in the ICU, considerable patients without

thrombocytopenia remain hospitalized during their entire ICU

hospitalization. We further clarified the role of dynamic

trajectory patterns in such a population.

Finally, we quantified the mortality risk based on the average

platelet count change per day and developed Mortality-GRID by

combining the eICU-CRD and MIMIC-IV databases to achieve

robust parameter estimates. Moreover, the proposed Mortality-

GRID was applied in an independent MEARDS cohort. Patients

with MEARDS were classified into low-, middle-, and high-risk

subgroups by the death hazard tertiles predicted by Mortality-

GRID. Then, the survival differences between the subgroups

were compared.

The survival differences between trajectory patterns were

assessed using multivariable Cox proportional hazards models

and illustrated by Kaplan–Meier survival curves. Statistical

analyses were performed using the R version 3.6.3. The

significance level was defined as two-sided 0.05. The source

code was deposited on GitHub: https://github.com/

JiajinChen/trajPLT.
Results

Platelet count trajectories and patient
characteristics

Trajectory analysis identified three distinct longitudinal

platelet count trajectory patterns in eICU-CRD (Supplementary

Table 7): (i) ascending (AS), in which the platelet count was

elevated after ICU admission; (ii) stable (ST), in which the platelet

count remained relatively unchanged; and (iii) descending (DS),
frontiersin.org
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in which the platelet count declined quickly after ICU admission

(Figure 1A). Similar patterns were observed upon validation in the

MIMIC-IV dataset using the model trained in eICU-

CRD (Figure 1B).

A broad list of demographics, clinical characteristics,

laboratory measurements, and vital signs collected at ICU

admission were compared across the three trajectory patterns

in eICU-CRD (Supplementary Tables 8–11) and MIMIC-IV

databases (Supplementary Tables 12–15). Significantly different

characteristics across these three patterns were considered

potential covariates and adjusted in subsequent models.
Platelet count trajectory patterns and
28-day survival

A univariate Cox proportional hazards model indicated that

patients with ST or DS patterns had significantly worse 28-day

survival than those with an AS pattern in eICU-CRD (Figure 1C)

and MIMIC-IV datasets (Figure 1D). Further, we verified the

robustness of the results by developing six models adjusted for a

list of sequentially adding-on covariates (Model1–5 and ModelPS in
Frontiers in Immunology 04
Table 1). The model was adjusted first for demographics and

baseline platelet count (Model1), followed by step-forward add-on

adjustments for predispositions and supports (Model2), vital signs

(Model3), unevenly distributed laboratory measurements (Model4),

and comorbidities (Model5). All models retained consistently

significant associations (Table 1). Further, the propensity score

model incorporating all these covariates retained consistent results

(HRST vs AS = 1.26, 95% CI: 1.14–1.38, P = 6.15 × 10−6;HRDS vs AS =

1.58, 95% CI: 1.40–1.79, P = 1.41 × 10−13) (ModelPS in Table 1).

Moreover, the associations remained significant in subgroup

analyses (Supplementary Figure 3).
Stratified analyses for associations
between trajectory patterns and
28-day survival

Furthermore, a series of analyses stratified by demographics,

severity score, support within 24 h, and comorbidities were

performed. Significant associations between platelet count

dynamic trajectory pattern and 28-day mortality were

observed in most strata in the eICU-CRD and MIMIC-IV
B

C D

A

FIGURE 1

Trajectory plot and Kaplan–Meier survival curves of patients with three dynamic platelet count trajectory patterns. (A, B) Trajectory plot of
platelet count changes within the first four days after ICU admission in eICU-CRD and MIMIC-IV databases. (C, D) Kaplan–Meier curves of 28-
day overall survival for patients with three different dynamic platelet count trajectory patterns in the eICU-CRD and MIMIC-IV databases.
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databases (Figure 2 and Supplementary Figures 4–5), except

for a few strata probably due to insufficient sample

size (Supplementary Figures 6–11). Notably, significant

heterogeneity in the association was observed between the age

subgroups. ICU patients aged <65 years with either an ST

(PHeterogeneity = 0.024) or DS (PHeterogeneity = 0.005) dynamic

platelet count trend had higher mortality than patients ≥65 years

old (Figure 2). Also, significant heterogeneity was observed in

the different baseline platelet count subgroups at ICU admission

(PHeterogeneity <0.05) (Figure 2).
Relationship between platelet count
trajectory, thrombocytopenia, and 28-
day survival

Thrombocytopenia is an important prognostic predictor

of ICU patient mortality, regardless of when it occurs

(Supplementary Table 16). Furthermore, we observed the

dynamic platelet count trajectory during the first four ICU

days as a powerful predictor of thrombocytopenia risk during

the following days of ICU hospitalization in the eICU-CRD

(ORST vs AS = 3.20, 95% CI: 2.36–4.33, P = 5.73 × 10−14; ORDS
Frontiers in Immunology 05
vs AS = 6.84, 95% CI: 4.95–9.45, P = 1.73 × 10−31) and the

MIMIC-IV dataset (ORST vs AS = 2.58, 95% CI: 1.84–3.61, P =

3.47 × 10−8; ORDS vs AS = 6.27, 95% CI: 4.27–9.20, P = 7.61 ×

10−21). The associations were robust in six models,

adjusting for a list of sequentially adding-on covariates

(Supplementary Table 17).

Furthermore, to test whether dynamic platelet count

trajectory in the first four days after ICU admission could

affect patient survival via thrombocytopenia, we performed a

causal mediation analysis and a significant indirect effect on 28-

day survival was observed in both eICU-CRD and MIMIC-IV

datasets (HRIndirect = 1.11, 95% CI: 1.06–1.17, P = 9.80 × 10−6,

27.2% of effects mediated) (Figure 3). On the other hand, there

were still over 70% of the effects of platelet count trajectory

affecting patient mortality through underlying mechanisms

rather than thrombocytopenia.
Trajectory patterns and 28-day mortality
in patients without thrombocytopenia

Indeed, though thrombocytopenia is common in critically ill

patients (31.2% in eICU-CRD and 30.1% in MIMIC-IV), a
TABLE 1 Sensitivity analyses for association between platelet count trajectories and 28-day overall survival.

Model Cluster
eICU-CRD MIMIC-IV Meta

HR 95% CI P HR 95% CI P HR 95% CI P

Model1 Ascending Reference Reference Reference
Stable 1.44 (1.30–1.61) 1.85 × 10−11 1.61 (1.39–1.87) 2.25 × 10−10 1.50 (1.37–1.63) 8.89 × 10−20

Descending 2.33 (2.05–2.65) 4.94 × 10−38 2.81 (2.33–3.38) 2.01 × 10−27 2.48 (2.23–2.75) 1.93 × 10−63

Model2 Ascending Reference Reference Reference

Stable 1.29 (1.15–1.44) 9.64 × 10−6 1.58 (1.36–1.83) 1.36 × 10−9 1.39 (1.27–1.52) 6.68 × 10−13

Descending 1.67 (1.45–1.91) 2.26 × 10−13 2.00 (1.65–2.42) 1.12 × 10−12 1.78 (1.59–1.99) 7.86 × 10−24

Model3 Ascending Reference Reference Reference

Stable 1.28 (1.14–1.43) 4.17 × 10−5 1.45 (1.25–1.69) 1.17 × 10−6 1.35 (1.23–1.48) 1.22 × 10−10

Descending 1.61 (1.39–1.86) 8.23 × 10−11 1.78 (1.47–2.17) 7.59 × 10−9 1.67 (1.49–1.88) 7.41 × 10−18

Model4 Ascending Reference Reference Reference

Stable 1.28 (1.13–1.45) 1.10 × 10−4 1.33 (1.14-1.56) 3.35 × 10−4 1.30 (1.18–1.43) 1.47 × 10−7

Descending 1.66 (1.42–1.94) 1.07 × 10−10 1.72 (1.40–2.12) 2.20 × 10−7 1.68 (1.48–1.90) 3.14 × 10−16

Model5 Ascending Reference Reference Reference

Stable 1.24 (1.10–1.41) 6.03 × 10−4 1.28 (1.10–1.50) 2.01 × 10−3 1.26 (1.14–1.38) 6.15 × 10−6

Descending 1.61 (1.38–1.88) 1.25 × 10−9 1.58 (1.29–1.94) 1.35 × 10−5 1.60 (1.41–1.81) 8.26 × 10−14

ModelPS Ascending Reference Reference Reference

Stable 1.24 (1.09–1.40) 8.95 × 10−4 1.28 (1.09–1.50) 2.01 × 10−3 1.26 (1.14–1.38) 6.15 × 10−6

Descending 1.59 (1.36–1.84) 3.36 × 10−9 1.57 (1.28–1.93) 1.54 × 10−5 1.58 (1.40–1.79) 1.41 × 10−13
fro
Model1: adjusted for age, gender, ethnicity, baseline platelet count, antiplatelet treatment, platelet transfusion, transfusion amount, malignancies, hematologic diseases, immune therapy,
thrombotic diseases, and thromboinflammatory diseases.
Model2: additionally adjusted for first ICU location, ARDS, sepsis, SOFA, APS-III, and supports within 24 h (mechanical ventilation, vasopressor, and dialysis) upon model1.
Model3: additionally adjusted for differential vital signs upon model2.
Model4: additionally adjusted for differential laboratory results upon model3.
Model5: additionally adjusted for differential comorbidities upon model4.
ModelPS: adjusted for all aforementioned covariates using the propensity score (PS) method.
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considerable proportion of patients without thrombocytopenia

remain during the entire course of ICU hospitalization. Hence,

we further conducted a subgroup analysis among patients with

no history of thrombocytopenia during the whole ICU

hospitalization. The associations between platelet count
Frontiers in Immunology 06
dynamic trajectory and 28-day mortality remained significant

in eICU-CRD (HRST vs AS = 1.22, 95% CI: 1.02–1.47, P = 3.02 ×

10−2; HRDS vs AS = 1.73, 95% CI: 1.39–2.15, P = 9.41 × 10−7) and

MIMIC-IV (HRST vs AS = 1.48, 95% CI: 1.17–1.87, P = 9.11 ×

10−4; HRDS vs AS = 2.13, 95% CI: 1.57–2.88, P = 1.13 × 10−6),
B

A

FIGURE 3

Causal mediation analysis for platelet count dynamic trajectory, thrombocytopenia, and 28-day survival. (A) Mediation model for the effect of
platelet count dynamic trajectory on 28-day survival through thrombocytopenia. (B) Results are described as average causal mediated effect
(indirect hazard ratio), 95% confidence interval and the proportion of effect mediated (M%).
FIGURE 2

Forest plots of stratified associations between platelet count trajectory patterns and 28-day survival of ICU patients. Meta-analysis was
conducted to pool the results from the eICU-CRD and MIMIC-IV databases. The effects across strata were tested using heterogeneity test.
frontiersin.org
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respectively (Supplementary Figure 12), suggesting that dynamic

platelet count trajectory was an independent prognostic

predictor of 28-day mortality of ICU patients, even in patients

who never developed thrombocytopenia.
Dynamic platelet count change and
mortality quantization

Considering the heterogeneity between patients with

different baseline platelet counts at ICU admission, we

stratified patients according to the normal platelet count

range. A significant dose–response relationship between daily

platelet count change and 28-day mortality was observed in the

eICU-CRD and MIMIC-IV datasets (Supplementary Figure 13).

Compared to patients with no change in platelet count, patients

with a daily decline in platelet count in the first four days by 10 ×

109/L and a baseline platelet count of <100, between 100 and

300, or >300 had a 51% (HR = 1.51, 95% CI: 1.25–1.83), 16%

(HR = 1.16, 95% CI: 1.12–1.20), or 8% (HR = 1.08, 95% CI: 1.03–

1.13) increased risk of death, respectively. On the other hand,

patients with a baseline platelet count below 100 × 109/L and a

daily platelet count increment of 10 × 109/L, a baseline platelet
Frontiers in Immunology 07
count in the normal range with a daily increment reaching 22 ×

109/L, or a baseline platelet count more than 300 × 109/L with an

increment of 31 × 109/L, had a 25% decreased risk of death

(Supplementary Figure 13).
Development and validation of the
Mortality-GRID

Based on the mortality quantization, we derived Mortality-

GRID using the baseline platelet count at ICU admission and

daily platelet count change in the first four days of ICU

hospitalization to indicate patient death hazards (Figure 4A).

Using this model, one can assign a hazard risk to a patient by

their average daily platelet count change. For example, suppose

ICU patients with a baseline platelet count of 200 × 109/L have

an average platelet count decline of 30 × 109/L, which might

cause a 1.58-times mortality risk compared to those with an

average platelet count change equal to 0 (stable status).

Subsequently, we independently estimated the corresponding

risk of daily platelet count change across different baseline

platelet count groups in MEARDS (Supplementary Figure 14).

Mortality risks predicted by Mortality-GRID were consistent
B C

A

FIGURE 4

Mortality-GRID and validation in the MEARDS database. (A) Mortality-GRID. Patients with no change in platelet count per day were set as the
reference group, the values in each cell represent hazard ratios of platelet count changes per day derived from restricted cubic spline
regression. (B) Consistency between mortality risks estimated by Mortality-GRID and MEARDS database presented by scatter plot. (C) Estimated
survival curves for patients in the MEARDS database. The mortality risks of MEARDS patients were independently predicted by Mortality-GRID
and categorized into low-, medium-, and high-risk groups using the tertiles.
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with those directly estimated in MEARDS (r = 0.98, P = 1.30 ×

10−23) (Figure 4B), indicating the clinical applicability of

Mortality-GRID. Furthermore, we applied Mortality-GRID to

the MEARDS cohort and predicted patients’ hazard risk.

Patients were then categorized into high-, middle-, and low-

risk groups using the tertiles of their hazard risk values. Based on

the significant survival differences between groups, the proposed

Mortality-GRID successfully identified patients with

unfavorable survival (Figure 4C).
Discussion

To our knowledge, this is the first study to integrate multiple

large-scale databases and apply machine learning methods to

identify longitudinal platelet count trajectory patterns and

validate their relationship with the prognosis of ICU patients.

Such associations were robust in sensitivity analyses, and even

remained significant among patients without thrombocytopenia

during the entire ICU hospitalization. Moreover, the trajectory

is a warning sign of thrombocytopenia, which affects

patient survival.

Compared to the absolute platelet count at a specific time,

longitudinal data provide more information on disease

progression (29, 30). Trajectory analysis can uncover the

hidden values of repeated measurements. Our study indicated

that patients without thrombocytopenia at ICU admission but

who had a rapidly declining platelet count during hospitalization

might eventually have a poor prognosis.

Among the three trajectory patterns, the descending pattern

was characterized as having a high mortality risk, whereas ICU

patients with an elevated platelet count had a favorable clinical

outcome. Platelets are well recognized in hemostasis by

promoting vasoconstriction and platelet aggregation.

Moreover, platelets can release proangiogenic factors (such as

VEGF) that induce the proliferation and migration of fibroblasts

and endothelial cells, thereby contributing to the repair of

vascular epithelial damage (31). Most ICU patients experience

inflammatory stress or infection, while platelets induce the

proliferation, maturation, and activation of immune cells and

interact with Toll-like receptors (TLRs) (32), which can

recognize pathogen or virus, and are involved in the immune

response (33). Thrombocytopenia is a common sign of poor

prognosis in ICU patients (34). The decline of platelet count may

result in weakened immune function, while the increased platelet

count may reflect the elimination of pathogens and the recovery

of immune defense (35–37), which contributes to the recovery of

ICU patients. Nevertheless, excess platelets are a risk factor for

thromboembolism (38), and special attention is required for

ICU patients at risk of thromboembolic diseases.

A series of stratified analyses showed robust associations

across strata. Notably, we found the risk of descending platelet
Frontiers in Immunology 08
count was lower among elderly adults (≥65 years). In older

adults, platelet activation, aggregation, and secretion were

enhanced, and maintaining a relatively low platelet count

may relieve the risk of thrombosis and inflammation (39,

40). Further platelet count decline may exacerbate the

incidence of adverse events among patients with a low

platelet count at admission (41). Moreover, platelet engage in

the antivirus and anti-infection processes by forming

neutrophil extracellular traps (NET), which enhance

leukocyte recruitment and inflammatory factor activation

(42). These mechanisms might induce plasma coagulation

factors, resulting in pro-inflammatory responses and

thrombosis (43). Our results also indicated the heterogeneous

effects of platelet trajectory between patients with and

without thromboembolic diseases, suggesting the necessity

of maintaining a relatively balanced platelet count in

patients with thromboembolic disease. Although the

associations between platelet trajectory and 28-day mortality

were not observed in the subgroup of patients with

thromboinflammatory diseases, that might be due to the

insufficient sample size. The further heterogeneity suggested

no heterogeneity between patients with and without

thromboinflammatory diseases. Nevertheless, emerging pieces

of evidence have underlined the unique role of platelets

in COVID-19, a thromboinflammatory disease (44, 45).

During COVID-19, platelets get activated through multiple

mechanisms involving the global inflammatory reaction, the

dysfunctional endothelium, increased thrombin, or plausible

direct viral infection (44). Moreover, the activated platelets can

interact with neutrophils, which mediated the inflammation

and thrombosis (46). The platelet–neutrophil interaction may

trigger the release of NETs (47), which contribute to acute

organ failure, ARDS, and mortality in COVID-19 (48). Further

data is needed for validation of our model in populations with

COVID-19. In addition, several factors (i.e., platelet treatment,

transfusion amount, hematologic diseases) may affect the

associations. We therefore adjusted them in the models and

performed sensitivity analyses by excluding patients with

platelet treatment. The associations remained significant in

the sensitivity analyses, indicating the robustness of our results.

Additionally, our results showed that the dynamic trajectory

of platelet count could be a warning sign for thrombocytopenia

and affect ICU patient mortality. For about 30% of the effect of

platelet count decline in mortality that is mediated by

thrombocytopenia, the trajectory patterns could provide

considerable information through other underlying

mechanisms. Platelet count can reflect the function and stress

response of organs, such as the lung, liver, and kidney (49, 50).

Notably, even in patients without thrombocytopenia during

their entire ICU hospitalization, the dynamic change in

platelet count retained a significant effect on prognosis, which

might benefit nearly 70% of ICU patients without
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thrombocytopenia. Although the daily platelet change seems

small, it reflects the dynamic trend, which powerfully predicts

mortality. Consequently, the Mortality-GRID system based on

accessible daily platelet count could help identify high-risk

patients, aid clinical decisions, and guide therapy.

Our study has several strengths. First, we analyzed two

large-scale databases, providing robust results. Moreover, these

two databases have extensive documentation and public code

for researchers. We also released the source code for the audit

and tried to ensure reliable data quality and results. Second, we

used longitudinal platelet count measures over the first four

days of ICU hospitalization to identify three novel dynamic

trajectory patterns, which could predict patient prognosis and

would considerably benefit clinical decision-making. Third, we

used the causal inference method and confirmed the

applicability of trajectory patterns for warning signs in

patients without thrombocytopenia. Fourth, we adopted a

three-phase study design and unsupervised trajectory analysis

to better identify the underlying information, along with a

series of sensitivity analyses and stratified analyses to guarantee

the robustness of the findings. Finally, we provided Mortality-

GRID to assist physicians with warning sign detection based on

platelet count changes, dynamical assessment for mortality

hazards, and early identification of high-risk patients, and

then provide personalized prophylactic therapy, i.e.,

platelet therapy.

We acknowledge some limitations in our study. First, since

our samples are mainly Caucasian, a large dataset with other

ethnicities is warranted to confirm the applicability of our

findings across different ethnicities. Second, more patients had

sepsis predisposition in MIMIC-IV than in eICU-CRD. The

database constructor provided sepsis 3.0 diagnostics in MIMIC-

IV; this variable was not provided in the eICU-CRD database

and was manually extracted from the diagnostic texts; thus,

sepsis was probably under-diagnosed. However, no

heterogeneity was observed between sepsis and non-sepsis

subgroups in the two databases. Thus, the potential under-

diagnosis of sepsis in eICU-CRD had no impact on the

findings of this study. Third, although our study included

three databases, heterogeneity might exist across these

databases. Nevertheless, the association remained significant

across these heterogeneous populations, indicating the

robustness of our results.

In summary, we identified three distinct longitudinal platelet

count trajectory patterns within the first four ICU days. The

platelet count trajectory is a better predictor of patient survival

than merely the baseline platelet count. These associations are

partially mediated by thrombocytopenia and remain significant

in patients without risk of thrombocytopenia. The proposed

Mortality-GRID could facilitate prognostic warnings for

vulnerable ICU patients.
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