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Mast cells (MCs) are immune cells widely distributed in the body, accompanied

by diverse phenotypes and functions. Committed mast cell precursors (MCPs)

leave the bone marrow and enter the blood circulation, homing to peripheral

sites under the control of various molecules from different microenvironments,

where they eventually differentiate andmature. Partly attributable to the unique

maturation mechanism, MCs display high functional heterogeneity and

potentially plastic phenotypes. High plasticity also means that MCs can

exhibit different subtypes to cope with different microenvironments, which

we call “the peripheral immune education system”. Under the peripheral

immune education system, MCs showed a new character from previous

cognition in some cases, namely regulation of allergy and inflammation. In

this review, we focus on the mucosal tissues, such as the gastrointestinal tract,

to gain insights into the mechanism underlying the migration of MCs to the gut

or other organs and their heterogeneity, which is driven by different

microenvironments. In particular, the immunosuppressive properties of MCs

let us consider that positively utilizing MCs may be a new way to overcome

inflammatory and allergic disorders.
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Introduction

MCs predate the emergence of acquired immunity, since

they were first named in 1878, a broad understanding of MCs

biology has been published (1). Recently, an investigation of the

hematopoietic origin of connective tissue MCs using fate-

mapping systems has revealed the dual developmental origin

of MCs (2). It was found that most connective tissue MCs

(CTMCs) are derived from late erythro-myeloid progenitors

(EMPs) produced in the yolk sac at E8.5 (the second transient

definitive wave of fetal hematopoiesis), while mucosal MCs

(MMCs) seem to come from hematopoietic stem cells (HSCs)

in the bone marrow in mice (3). Committed progenitor cells

enter the bloodstream, where they are found as lineage-negative

Lin− c-Kit (CD117)hi FcϵRI+ b7-integrinhi ST2+ CD16/32hi or

FcϵRI− cells (4). In human beings, Lin− c-Kitint/hi FcϵRI+ b7-
integrin+ CD34hi blood cells are considered the immediate

precursor of MCs (5). These MCPs travel in the blood

circulation and eventually arrive at the peripheral tissues [e.g.,

skin, respiratory tract, urogenital tract, gastrointestinal tract, etc.

(1)] under the stimulation and induction of various factors such

as chemokine receptors and adhesion molecules. For example, in

the context of microbiota-influence, MCs migrate to the

intestinal tract and mature under the regulation of various

pathways [e.g., a4b7-MAdCAM-1/VCAM-1 (6, 7), CXC

chemokine receptor 2 (CXCR2) (7) sphingosine 1-phosphate

(S1P) (8)].

In the process of migration and maturation, MCs of different

origins showed distinct preferences in tissue localization (6). For

instance, only the adipose and pleural cavity MCs were derived

from early EMPs, most of which were replaced by late EMPs

during adulthood in mice (3). Late EMPs generate most of the

MCs that home to connective tissues, while mucosal MCs

mainly derive from fetal hematopoietic stem cells HSCs (3).

Diverse tissue preferences also shape remarkable phenotypical

and functional heterogeneity, suggesting that MCs may perform

various functions in response to different physiological and

pathological states (9).

Besides the developmental origin, differences in the tissue

microenvironment are also important causes of MC

heterogeneity (10). It is clear that MCs in different organs

have noticeable differences (11). However, even in the same

organ, the microenvironment under different pathological or

physiological conditions can produce utterly distinct MC

subtypes. Take some examples, in the lung, only MCs of the

proximal lung express MRGPRX2, but not of the distal or medial

lung (12); in the gut, both CTMCs and MMCs are present and

can be transformed into each other in some cases, such as food

allergy (13). All this evidence supports the remarkable

microenvironment-dependent heterogeneity in MCs.

Different cellular phenotypes bring different functions—one

of the representative features of the heterogeneity of MC is
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regulatory-like properties against inflammation and allergy. In

some occasions, MCs have been shown to release cytokines to

inhibit and terminate inflammatory and allergic responses (e.g.,

IL-2 (14) IL-10 (14–16), and TGF-b1 (17), etc.). In addition,

MCs interact with regulatory T cells (Tregs) (14, 18–21) and

alternatively activated macrophages (AAMFs) (22) to inhibit

inflammatory and allergic responses.

In addition, various MC-derived cytokines [e.g., IL-4, IL-8,

IL-13, IL-22, TNF-a, TGF-b1, vascular endothelial growth

factor (VEGF), nerve growth factor (NGF), fibroblast growth

factor-2 (FGF-2), and platelet-derived growth factor (PDGF)],

proteases (tryptase and chymase/chymotrypsin), histamines,

lipid mediators [PGD2 and leukotrienes (LTs), etc.] participate

in the process of wound healing [e.g., vascular permeability and

immune cells recruitment (monocytes and neutrophils),

epithelial proliferation and migration, granular formation and

remodeling, and scar formation, etc.] (11, 23).

Collectively, MCs play a diverse role in various physiological

and pathological processes due to their highly complex

heterogeneity. A full understanding of the phenotypic

characteristics and functional heterogeneity of MCs in specific

diseases will help us create efficient individualized therapy.
Aggregation of mast cells at
intestinal mucosal sites

MCs exists in virtually all organs of vertebrates but different

widely in their number, phenotype, and function (1). The high

heterogeneity is partly attributed to their unique and complex

maturation process. Although controversial (11), MCs are

believed to have two main origins, bone marrow and yolk sac

(2). After leaving the hematopoietic tissue, committed

progenitor cells enter the blood, migrate, and colonize the

target tissue [e.g., skin, respiratory tract, genitourinary tract,

gastrointestinal tract, etc. (1)]. Notably, the exact ontogeny of

mice adult MCs has been suggested in recent studies; early

EMPs, late EMPs, and fetal HSCs are successively involved in the

maturation of fetal MCs (2, 3). Using the inducible runt-related

transcription factor1 (Runx1-icre) and colony stimulatory factor

1 receptor (Csf1r-icre) fate-mapping systems, Zhiqing Li et al.

separately traced three waves of hematopoiesis (3). They

confirmed that late EMP-derived MCs, as long-lived cells,

gradually replace early EMPs and become the main

contributors to the adult CTMC pool. Early EMP-derived

MCs show a short lifespan in connective tissue, only appearing

in adipose tissue and the pleural cavity. Fetal HSC-derived MCs,

another possible type of short-lived cells, are mainly located in

mucosal tissues and constantly renewed by the bone marrow (3).

Therefore, there are at least two ways that MCs mature in mice.

However, whether these pathways apply to other mammals,

including humans, is not fully understood.
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After arriving in the peripheral tissues, MCPs finally

differentiate into mature MCs with the stimulation of local

cytokines and growth factors in humans (e.g., IL-4 (24), IL-9

(25), IL-33 (26, 27), and TGF-b1 (28), etc.) and mice (e.g., IL-3

(29), IL-4 (28), TGF-b1 (28), and NGF (30), etc.). However,

unlike other granulocytic leukocytes (e.g., neutrophils,

eosinophils, and basophils), MCs mature in peripheral sites

rather than bone marrow. Consequently, there are very few

MCPs or mature MCs in bone marrow and blood, so it is

relatively difficult to evaluate human MCs. Moreover, the

molecular expression necessary for MC migration varies not

only during maturation, but also according to cellular

charcteristics, such CMMCs or MMCs (31, 32). All of these

make it relatively difficult to study human MCs in vitro. So far,

MCs are studied mainly in rodents (e.g., genetically modified

mice) or some malignant MCs cell lines (33, 34). We herein
Frontiers in Immunology 03
describe some mechanisms by which MCs migrate to the

intestinal tract and mature in combination with current

findings (Figure 1).

The intestinal mucosa, which is exposed to various foreign

components (including microbiota and food components), is

one of the primary destinations for MCs and the pool for MCPs

(35). MCs have been reported to account for approximately 2%

of the cells in the lamina propria of the gastrointestinal tract

(36). There is no doubt that integrin a4b7 plays a critical role in
the migration of MCs to the intestinal mucosa. MCPs is utterly

absent in the small intestine of a4b7-deficient mice (6). Evidence

suggests that integrin a4b7 interacts with vascular endothelial

molecules, including mucosal addressing protein cell adhesion

molecule-1 (MAdCAM-1) and vascular cell adhesion molecule-

1 (VCAM1), to facilitate directional migration of MCPs across

endothelial cells to the small intestine (6, 7).
FIGURE 1

Assembly of MCs in the gut. The MCPs leave the hematopoietic tissue, enter the blood stream, migrate and colonize the target tissue. With c-
kit, CXCR2, and integrin a4b7 on the cell surface, MCPs bind to MAdCAM-1 and VCAM1 on the vascular endothelial cells, thereby crossing the
vascular endothelium and colonizing the intestinal mucosa and submucosa, where they mature. In addition, transcription factor (dendritic cell-
derived T-bet), Lipid mediator (sphingosine 1-phosphate), and some intestinal microbiota affect the homing of MCs to the gut.
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Like all blood-borne leukocytes, adhesion interactions are

not the only requirement for MCPs recruitment to peripheral

tissues, but also the migration to target tissues. Stem cell factor

(SCF) has chemotactic effects on both mouse (37) and human

(38) MCs in vitro. In vivo, SCF activates the c-kit expressed by

MCs (or MCPs) through PI3K, then mediates migration,

survival, proliferation, and activation with the help of a4
integrin (39–42). No intestinal MCPs was detected in SCF-

deficient mice (6).

CXCR2 also contributes to the migration of MCs. It was

experimentally demonstrated that MCs lacking CXCR2 are less

able to migrate to the small intestine (7). Although the research

of MC migration by CXCR2 is not detailed, the role of CXCR2

has been extensively studied in other cells. For example, in rat

cardiogenic endothelial cells, the binding of CXCR2 and its

ligand CXCL5 leads to downstream PI3K activation and further

cytokine production (43). Another study in which human

CXCR2 was stably transfected into lymphoblastic JY cell lines

showed that the activation of IL-8 (CXCR2 ligand) induced

transient adhesion of a4b7 dependent on VCAM-1 (44).

Consequently, it is reasonable to speculate that in the

circulatory system, c-kit and CXCR2 expressed by MCPs can

interact with their respective ligands to upregulate the affinity of

a4b7 integrin with MAdCAM-1 and VCAM-1, and also

enhance the expression of VCAM-1 on epithelial cells via

PI3K pathway (45), which further promotes the migration of

MCs (7).

Previous studies have indicated that gut microbiota can

mediate the constitutive migration of MCs into the intestine

(46). Germ-free (GF) mice showed a lower intestinal MC density

and higher blood MCs density compared to SPF (specific

pathogen free) mice, followed by an impaired intestinal MCs

function and maturity (reduced edema was observed after

injecting the degranulation-provoking compound 48/80) (47).

In detail, the expression of CXCR2 ligands, e.g., CXCL2, CXCL2,

and CXCL5, were significantly reduced in the intestinal

epithelial cells of GF mice and MyD88-/- mice compared to

the control group (46). Results revealed that the expression of

CXCR2 ligands in intestinal epithelial cells induced by intestinal

microbiota was at least partially dependent on the Toll-like

receptor (TLR) -MyD88 pathway, which promotes MC

migration to the intestine. It remains to be seen whether

intestinal bacteria directly or indirectly affect MC recruitment

via their components and metabolites.

Interestingly, intestinal migration of MCs appears to be

induced by a combination of gut bacteria, rather than a single

bacterial strain. A study based on the Gram-positive Lactobacillus

plantarum provided partial evidence that a single strain did not

seem to mediate MC migration (47). Martin Schwarzer et al.

found GF mice showed lower levels of CXCL1 and CXCL2 in the

jejunal with fewer and less mature intestinal MCs in comparison

to conventional mice after the induction of food allergy. In detail,

the susceptibility to allergy symptoms in GF mice was fully
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restored after they were cohoused with conventional mice.

However, similar results were not observed in mice mono-

colonized with L. plantarum (47). L. plantarum was previously

shown to aggravate allergic reactions associated with

degranulation of MCs (48). Thus, it remains to be determined

whether other single strains (e.g., Gram-negative bacteria) or

specific bacterial products affect MC migration and maturation.

In addition, T-bet, a Th1-specific T-box transcription factor

expressed by leukocytes [e.g., natural killer (NK) cells, dendritic

cells (DCs), and CD8+ T cells], seems to mediate the migration of

MCPs to the intestinal tract indirectly. Pilar Alcaide et al. found that

T-bet-/- mice showed lower number of MCPs homing to the small

intestine or lungs (49). It is worth mentioning that T-bet expressing

DCs somehow contribute to the migration of MCs since MC itself

does not seem to express T-bet during development (49).

Moreover, our previous studies showed that S1P mediates

the migration of MCs to the large intestine (8). S1P is a

sphingolipid metabolite from platelets and MCs, which is

thought to play a role in mediating the migration of

lymphocytes from secondary lymphoid organs and the thymus

(50). It has been know that MCs express various types of S1P

receptors, including type I S1P receptor (S1P1) (8), associated

with Gi protein and small GTPases (e.g., Rho and Rac) (51, 52).

By administration of FTY720 to mice, a blocker of S1P1-

mediated signaling, we found that FTY720 can directly inhibit

the migration of MCs, demonstrating the requirement of S1P-

S1P1 signaling for MC migration (8).
Heterogeneity of mast cells and the
peripheral education system
according to the microenvironment

The unique maturation mechanism of MCs also contributes

to their astonishing plasticity and heterogeneity, which fully

reflects the complex interaction between MCs and

microenvironmental signals transmitted by different tissues

(10). Traditionally, MCs are classified according to the

production of serine proteases, such as trypsin and chymase

(11, 53). In mice, MCs are divided into MMCs and CTMCs (11,

53). MMCs, as the name implies, mainly exist in the mucosa

(e.g., the intestinal mucosa) and express chymase mMCP-1 and

mMCP-2. MMCs are the dominant phenotype in the mucous

layer, such as the gut (53). CTMCs can be found in connective

tissue (e.g., intestinal submucosa, peritoneum, and skin) (1, 11,

54). CTMCs express chymase mMCP-4, trypsin (mMCP-6 and

mMCP7), elastase (mMCP-5), and carboxypeptidase A3, etc. (1,

11, 54). Besides, the cytoplasm of CTMCs contains higher

concentrations of heparin proteoglycan, histamine, and

prostaglandin D2, while MMCs granules contain almost no

heparin proteoglycan and lower levels of histamine (53, 55).

Aside from the differences between the anatomic location and
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protease composition, MMCs and CTMCs vary in the

requirement of T cells-derived cytokines, IL-3, and IL-4 (56)

(Figure 2). Similar to mouse MCs, human MCs can be divided

into two types: one subtype secretes both tryptase, chymase and

carboxypeptidase A3 (MCTC); the other secretes tryptase alone

(MCT) (1). The former is similar to mouse CTMCs, while the

latter is equivalent to MMCs. MCTC is mainly distributed in the

skin and small intestinal submucosa, and participates in

pathological processes, such as urticaria (57). MCT is mostly

expressed in the lung and small intestinal mucosa and is related

to asthma and food allergy (1). In the intestine, it is reported that

MCT accounts for approximately 98% of the total MC

population in the mucous layer but only 13% of the total MC

population in the intestinal submucosa (58), while MCTC

accounts for approximately 77% of the MC population in the

submucosa (59). Another phenotype, MCC, has also been

mentioned in the intestinal mucosa (60). MCC seems rich in

chymase but deficient in tryptase (60). MCC accounts for about

7% of the MCs in the intestinal mucosa and 17% in the intestinal

submucosa (60); however, MCC does not seem to be a unique

population, given the small number of reports.

With the progression of research, it is currently considered

that the existing MC classification system cannot distinguish the

highly microenvironment-dependent MC heterogeneity (10, 54).

For example, it has been revealed that CTMCs can express

different protease phenotypes in different microenvironments

within tissue locations in mice. CTMCs in trachea are mMCP-

1+, -2+, -4 to 7+, and CPA3+, while those in skin and gut are only

mMCP-4 to 7+, and CPA3+ (61). The ImmGen-project-derived
Frontiers in Immunology 05
microarray data also indicated that CTMCs subpopulations

present more or less tissue-specific genetic programming

differences in distinct anatomical locations, such as the skin,

tongue, esophagus, trachea, and peritoneal cavity in mice (9). It

has been reported that only 110 genes differentially expressed in

tongue relative to trachea MCs and 122 in tongue relative to

esophagus MCs. However, the difference in gene expression

transcripts in peritoneal MCs relative tongue and skin MCs was

612 and 957, respectively (9). As a result, there is a growing call

for a new classification method.

The plasticity of MCs in different environments has been

well described. The most obvious evidence is that human MCs

cultured from progenitor cells that obtained from different sites

(e.g., peripheral blood, bone marrow, and cord blood) show

significantly different in the expressions of receptors and

granular components, and also differ in the response to the

cytokines (33, 62, 63). In addition, according to the culture

conditions by incubation with IL-1b, IL-4, IL-6, TGF-b1, and
lipopolysaccharide in SCF-containing medium, human MCs

change the protease expressions from trypsin to chymase (64,

65). In mouse MCs, co-culture with fibroblasts and stimulation

with SCF induces the ability to synthesize and store heparin (66).

Our previous study found that MCs co-cultured with intestinal-

derived fibroblasts produce more heparin and MCPT1 and

MCPT2 (10). Skin-derived fibroblasts, on the other hand, had

quite different results (i.e., the increased expression of

chondroitin sulfate and MCPT4 in MCs) (10, 67). According

to our previous studies, there are significant differences between

MCs in different organs or tissues. For example, intestinal MCs
FIGURE 2

Heterogeneity of MCs. MCs mature uniquely, developing them more susceptible to the tissue homeostasis of the peripheral tissue
microenvironment, and thus exhibit different subtypes and secrete different mediators to achieve different functions.
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expressed high levels of the extracellular ATP receptor P2X7,

which mediates the activation of MCs and worsens intestinal

inflammation. In contrast, skin MCs expressed lower levels of

P2X7; importantly, once the expression of P2X7 is highly

induced in skin MCs, chronic inflammation occurs (10, 68).

With engaging, different tissue microenvironments can produce

distinct MC subtypes, which seem to be required to maintain

tissue homeostasis (11). Thus, it is worth mentioning that these

series of terminal maturation of MCs may receive the effect of a

“peripheral immune education system” dependent on the

tissue microenvironment.

The gut serves as a vast repository of agranular Lin− c-Kit+

FcϵRIa− a4b7+ IL-33Ra+ FcgRIII/II+ MCPs (69, 70). The gut

has almost 10 times more MCPs than the bone narrow in mice

(71). With the constantly-changing microenvironment, the

intestinal tract is likely to create a range of diverse MC

phenotypes. For example, MCs differentiate in different

pathological environments and obtain a more tissue- and

disease- specific phenotype relative to health conditions, which

shows their extreme plasticity. Nematodes, as one of the main

drivers of intestinal MCs, not only mediate the migration and

expansion of MCs (71), but also induce the change of MC

phenotypes. Several studies based on the Trichinella spiralis

helminth infection model have revealed that MCs have

different phenotypes at different stages of the immune

response. During nematode infection, MCs in the jejunum

move from the submucosa to the epithelium and sequentially

expressed mMCP-2, transiently expressed mMCP-9, stopped

expressing mMCP-5 to -7, and finally expressed mMCP-1 (72–

74). However, in the convalescent stage of infection, MCs

returned to their original site and stopped expressing mMCP-

1, mMCP-2, and mMCP-5 successively, accompanied by

different expression combinations of mMCP-6, -7, and -9 (72–

74). The parasite repelling effect of mMCP-1 has been proven

(75). In conclusion, the plasticity of MCs has been fully

demonstrated by their ability to migrate at different depths in

intestinal tissue for the important host defense system.

In addition to parasitic infections, increased MCs in the

intestinal mucosa have also been detected in IBD (15, 76), IBS

(77, 78), and food allergy (13, 79, 80). In food allergy, inoculation

of food antigens leads to a dramatic increase in MMCs (due

partly to infiltrating MCPs and CTMCs). Induced by TGF-b1
(81) and the Notch signaling (13) in the inflamed intestine,

precursor cells mature and even undergo a reciprocal

transformation of CTMCs in the submucosa and/or MMCs in

the mucosa, further demonstrating the environment-dependent

heterogeneity of MCs (82). Additionally, Chen et al. identified a

specific group of MMCs in food allergy named MMC9 (80).

MMC9 cells are a group of MMCs of Lin− c-Kit+ FcϵRIa+ b7-
Integrinlow ST2+, which can secrete large amounts of IL-9 and

IL-13. This population of cells develops fromMCPs that migrate

to the intestinal mucosa with the help of IL-4. Under the action
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of IL-3 and SCF, MMC9 has the potential to rapidly develops

into granular MCs and drive IgE-mediated food allergy (80, 83).

Crosstalk betweenMCs and surrounding cells has been widely

discussed, which significantly increased the complexity of the

terminal differentiation of MCs. For example, studies showed

intestinal neurons could be activated by the increased histamine

and trypsin secreted from MCs enriched in IBS (77) and IBD gut

(76). Correspondingly, intestinal neurons mediated MCs

activation by secreting neuronal factors (e.g., substance P,

somatostatin, ATP, neuropeptide corticotropin-releasing factor,

etc.) that stimulate MC surface receptors (e.g., MRGPRX2, P2X7,

etc.) (78). The activation of MCs and their pro-inflammatory and

pro-allergic mechanisms were described in more detail elsewhere

(11). In addition to intestinal neurons, MCs also crosstalk with

other cell types such as Tregs and intestinal epithelial cells to show

the identity transformation from pathogenic or allergenic to

regulatory, which plays a pivotal role in the fight against allergic

responses (14) and inflammation (84). The transformation of

MCs from pathogenic to regulatory roles will be discussed in more

detail in the next section.

Notably, with the continuous development of technology, more

comprehensive methods have been used to detect the phenotypes of

different MC populations, such as single-cell RNA sequencing

(scRNA-seq). In mice, a study on hematopoietic stem and

progenitor cells (HSPCs) in mouse bone marrow showed that E-

cadherin could be expressed by early precursors of basophils and

MCs, representing the commitment to the lineages (85). Notably,

scRNA-seq based on the peritoneal cavity of mice may establish an

entirely new developmental trajectory for MCs, given that a discrete

group of cells called P1 was found under suitable in vitro culture

conditions, which have the potential to differentiate into MCs and

basophils (86). In human, a study based on scRNA-seq revealed

MCs are existed in the human yolk sac. In these human yolk sac-

derivedMCs, hairy and enhancer of split 1 (HES1), nuclear receptor

subfamily 4 group Amember 2 (NR4A2), and Kruppel-like factor 1

(KLF1) were detected, which may have non-redundant effects on

the differentiation and activation of MCs (87). Another origin of

human MCs was also confirmed by scRNA-seq. The analysis of

human cord blood identified a group of basophil/eosinophil/MCs

progenitors, revealing a close link between MCs and erythroid

commitment cells downstream from HSCs (88). In addition, an

analysis of nasal polyps in the patients of chronic rhinosinusitis with

nasal polyposis detected an intermediate CD38highCD117high MC

phenotype distinct from circulating MCPs (12). The same study

also confirmed that MRGPRX2 was expressed only in MCs of the

proximal lung, but not in the distal or medial lung (12). A high ratio

of tumor-suppressive TNF+/vascular endothelial growth factor A

(VEGFA)+MC phenotype is found in nasopharyngeal cancer in the

patients. It seems associated with a better prognosis (89), while

another ground glass nodule adenocarcinoma analysis detected

pro-inflammatory MCs (90). These results clearly indicated the

origin- and microenvironment-dependent heterogeneity of MCs.
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Deeper analysis of innovative techniques provide sufficient

resolution to fully reveal the heterogeneity of MCs and show the

differentiation trajectory and transcriptional heterogeneity of

specific cell types in different tissues or disease settings, which

helps identify novel putative immune cell subtypes (91).
Mast cells act as the terminator of
allergies and inflammation

In pathological reactions, such as allergy and inflammation,

MCs and their precursors can recruit and expand in the disease

site. For example, Lin− c-Kitint/hi FcϵRI+ CD34hi MCPs are

recruited to peripheral tissues mediated by molecules [e.g.,

a4b7 integrins, VCAM-1 (92, 93)] and cells [e.g., CD11c+ cells

(94), CD4+ cells (95)] in acute allergy. IgE (96) and its immune

complexes (97) seem to be involved in the survival of MCs and

the recruitment of MCPs. Consequently, MCs are closely

involved in most allergy and inflammation processes.

Despite having outstanding achievements in innate and

adaptive immunity, MCs have a well-deserved reputation as

promoters of pathological actions, such as inflammation and

allergy. However, as discussed previously, MCs’ distinctive

migration and maturation patterns contribute to their

remarkable plasticity and tissue-microenvironment-dependent

heterogeneity. On this basis, we have reason to assume that MCs,

as one of the most critical and primary immune cells in damaged

tissues, may have positive regulatory functions in inflammation,

allergy, tissue regeneration, and tissue repair. It is gratifying to

note that there is now accumulating evidence to support the

immunoregulatory part of MCs (Table 1).

In the early years, MCs were demonstrated to have

immunosuppressive effects. For instance, Hart et al. found that

in mice, dermal MCs play an indispensable role in inhibiting

systemic contact hypersensitivity (CHS) response to ultraviolet
Frontiers in Immunology 07
radiation [wavelength 280-320 nm: (UVB)], and that histamine

derived by MCs may be a critical factor for the suppression of

inflammation (109). Both dermal MC-derived and exogenous

histamines inhibited the immune response of UVB-exposed

mice (109), through the production of PGE2. PGE2 inhibits

the production of IL-12, an inducer of pathogenic Th1 immune

responses (110).

In IBD, IL-33 is one of the earliest cytokines released from

the necrotic cells of injured tissues (84). IL-33 has been shown to

polarize AAMFs in vivo, which requires the participation of

MCs (22). AAMFs have been demonstrated to have the

potential to suppress inflammation and promote wound

healing (111). Arginase-1 expressed by AAMFs depletes the

extracellular arginine necessary for T cell activation (112).

Braune et al. and Fernando et al. found that IL-33 can induce

IL-6 and IL-13 secretion by MCs through ST2, which plays a

crucial role in AAMF polarization (111, 113). Consequently, IL-

33 exerts immunosuppressive and anti-inflammatory effects by

indirectly promoting AAMF polarization, thereby inhibiting the

production of IL-17 and IFN-g by T cells. Moreover, upon IL-33

stimulation, MCs secrete IL-10 and histamine to suppress LPS-

mediated monocyte activation, which might be helpful against

rheumatoid arthritis (114). Hence, it is plausible to believe that

the IL-33/ST2-MC axis plays a positive role in limiting

inflammation (115).

CD4+CD25+Foxp3+ Treg plays an essential role in immune

tolerance. Several studies have shown intricate reciprocal

crosstalk between MCs and Tregs. Experiments demonstrated

that OX40 on the Treg surface could bind to OX40L expressed

on the surface of MCs, subsequently inhibiting IgE-mediated

MC degranulation (18). Moreover, TGF-b1 and IL-10 secreted

by Tregs were thought to inhibit the expression of FcϵRI on the

MC surface, which also inhibit the MC degranulation (17, 78,

116). Notably, TGF-b1 reduced the expression of FcϵRI subunit
proteins a, b, and g, while IL-10 inhibited only b proteins. TGF-

b1 has also been reported to induce the apoptosis of MCs (108).
TABLE 1 The immunoregulatory effect of MCs.

Mediators
(Secreted by MC)

Mechanism Reference

IL-2 Ensures the sustained and stable expression of Foxp3 in Tregs to maintain their development, proliferation, activity, and survival (14, 98)

IL-10 Inhibits the production of pro-inflammatory and pro-allergy cytokines (TNF-a, IFN-g, IL-1, IL-13, and IL-6) (99, 100)

Inhibits the expression of FcϵRI subunit protein b on MCs (100)

Inhibits the overactivation and over-proliferation of MCs and promotes MC apoptosis during stable and late inflammatory
phases

(101–103)

Inhibits the proliferation of T cells to inhibit inflammation (104)

Prevention of epithelial barrier dysfunction caused by IFN-g and restoration of the epithelial barrier (105)

Inhibits adaptive immunity by suppressing the migration of mature DCs to the lymph nodes in the bladder (106)

Induces the production of Tregs and mediates autoantigen tolerance (20, 107)

Amphiregulin Boosts the Treg function in colitis and tumors in the tumor-mediated intrinsic immunosuppression vaccination model (21)

TGF-b1 Inhibits the expression of FcϵRI subunit proteins a, b, and g on MCs and induces MC apoptosis (8, 17, 108)

Induces the production of Tregs and mediates autoantigen tolerance (20, 107)
fro
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Research on allotransplantation in experimental mice showed

that Treg-derived IL-9 could maintain the tolerance of allografts

by affecting MCs (19). IL-9 is a critical factor in promoting the

SCF-dependent growth, proliferation, recruitment, and

activation of MCs (25), thus Treg-derived IL-9 and SCF

synergistically activate hepatic MCs and promote the release of

histamine, IL-2, and TGF-b1 in tolerogenic liver allografts. TGF-

b1 promoted the generation of gdT cells, and IL-17 released by

gdT cells further attracted Tregs and enhanced their

immunosuppressive properties (117).

MCs also have inverse impacts on Tregs. MCs secrete TGF-b1,
which contribute to Tregs production and mediate autoantigen

tolerance (20, 107). Epidermal growth factor (EGF)-like growth

factor amphiregulin, which MCs also secrete, directly boosted the

Treg function in colitis and tumor vaccination models by activating

the EGF receptor (EGFR) on them (21). EGFR is reported to

mediate intrinsic immunosuppression in tumors, and EGFR-

targeted therapies are widely used for tumors such as colorectal

cancer (118) and non-small cell lung cancer (119). Therefore, the

immunoregulatory mechanism of MCs may be further applied in

tumor therapy.

MCs also seem to ensure the sustained and stable expression

of Foxp3 in Treg cells by secreting IL-2, thus maintaining the

development, proliferation, activity, and survival of Tregs at sites

(98) to sustain their inhibitory function (120). Studies have

shown that MC-derived IL-2 in the lung promotes Tregs

proliferation and limits allergic airway inflammation (115). In

addition, the feasibility of regulating food allergy by inducing

Treg cells with a continuous exposure of low concentration of

IL-2 has been demonstrated (79).

Our recent research revealed the role of MCs in the

regulation of food allergies (14). To delve into the mechanism

of a more effective treatment for food allergy-oral allergen

desensitization-oral immunotherapy (OIT) from a mucosal
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immune system perspective, we established a clinically relevant

murine model of OIT with an escalating oral dose of ovalbumin

(OVA). The OIT protocol induced mucosal desensitized MCs in

the intestinal compartment with a low degranulation capacity

and IL-4 production but high IFN-g production, which plays an

indispensable role in allergy (14). IL-4 plays a key role in

the initiation of food allergy to mediate the isotype switching

of IgE, the food-specific-IgE generation from B cells, and the

release of MC mediators (e.g., histamine) (121, 122). Moreover,

Tomar et al. found that IL-4 promotes the development of

MMC9 cells, partly through a basic leucine zipper ATF-like

transcription factor-dependent pathway (83). Returning to our

study, we detected a significant increase in Tregs from the

mucosa, peripheral blood, and spleen in OIT treated mice

group. In addition, we discovered that the dual synthesis of IL-

2 and IL-10 by mucosal desensitized MCs induces Tregs and

inhibits allergic symptom (14). In addition, OIT treatment

induce desensitization to MCs and reduced their allergenicity

by acquiring the regulatory function (Figure 3). It can be

expected that elucidation of switch pathway of MCs from

allergenic to regulatory properties can lead to the utilization of

MCs in a positive manner to overcome the allergy.

IL-10 is a well-known anti-inflammatory cytokine that has

been demonstrated to diminish the degree or duration of innate

immune or acquired responses (123) by inhibiting the

production of pro-inflammatory cytokines [TNF-a, IFN-g, IL-
1, and IL-6 (99)] and chemokines, and also the proliferation of T

cells [e.g., CD4+ T cells (123) and CD8+ T cells (123, 124)]. It has

been reported that MCs can reduce inflammation, tissue

damage, leukocyte infiltration and restore the epithelial barrier

function in an IL-10-dependent manner in multiple organs or

tissues [e.g., gut (15) bladder (106) and skin (16)] and the

antigen-specific T cell immune response caused by Anopheles

mosquito saliva (125). MC deficiency can increase intestinal
FIGURE 3

Regulatory properties of MCs in the immunotherapy. OIT treatment for food allergy induces desensitization of MCs with the low expression of
Th2 cytokines and induces expression of IFN-g. Desensitized MCs also synthesize IL-2 and IL-10. MC-derived IL-2 and amphiregulin promote
proliferation and enhancement of the function of Tregs. Activated Tregs release IL-10 and TGF-b1, and the OX40 on their surface binds to
OX40L from MCs, which inhibits the expression of FcϵRI on MCs and the release of TNF-a and IL-13, thereby inhibiting the Th2 responses.
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permeability in IL10-/- mice and cause spontaneous colitis (15).

Artificial IL-10 supplementation prevented IFNg-induced
epithelial barrier dysfunction (105). In addition to the

aforementioned Treg, MCs also secrete IL-10. Evidence of the

secretion of IL-10 by MCs has been revealed both in vivo (14, 16)

and in vitro (126). In Treg-independent graft-versus-host disease

(GVHD), MCs have been found to show an immunosuppressive

function by inhibiting T cell proliferation in an IL-10-dependent

manner to inhibit inflammation (104). Although the mechanism

through which MCs are triggered to produce IL-10 in the disease

remains to be determined, it is speculated that endotoxin (LPS)

from intestinal bacteria activates TLR4 in MCs, given that LPS

has been shown to promote the production of Th2 cytokines by

MCs (127). UVB promotes the production of MC-derived IL-10

by increasing the synthesis of vitamin D3 (128) to reduce allergic

skin inflammation. Additionally, IL-10 derived from MCs,

rather than Tregs, inhibits the migration of mature DCs to the

lymph nodes in the bladder, which helps building the “immune

privilege” (106).

In addition to their anti-inflammatory and allergic effects,

MCs promote tissue repair and wound healing. Studies have

shown that depletion of MCs partly inhibits wound healing

(129). Furthermore, it has been revealed that IL-33/ST2

promoted the release of IL-13 and IL-22 from MCs (84). IL-13

signaling activates STAT6, which contributes to the survival and

migration of epithelial cells and IL-22 can directly promote the

production of mucus and the proliferation of epithelial cells

(130, 131). Moreover, available evidence suggests that MCs are

involved in almost all events of wound healing process

(fibroblast migration/proliferation, and remodeling). In the

early stage of wound formation, MCs are recruited to the

injured site under the action of keratinocyte-derived IL-33,

CCL2, and SCF; then they secrete various substances (23, 132).

For example, MC produces TNF-a and stimulates DCs to

express factor XIIIa, which promotes coagulation (23). Also,

MC-derived histamine, lipid mediators [e.g., PGD2 and

leukotrienes (LTs), etc.], and VEGF increase the vascular

permeability to recruit monocytes and neutrophils (11, 23).

Moreover, MCs are essential for the fibrotic process of wound

healing. Proteases (e.g., tryptase and chymase), VEGF, IL-4, IL-

8, NGF, FGF-2, PDGF, and TGF-b1, which are secreted by MCs,

can contribute to angiogenesis, fibrin production, or re-

epithelialization (23). At the end of wound healing, the

proliferated blood vessels in the tissue degenerate, and the

active granulation tissue is remodeled into fiber-rich scar

tissue (133). Most studies agree that MCs are involved in this

process (134), which might be mediated by gap-junctional

intercellular communication between MCs and fibroblasts or

myofibroblasts (135). In addition, MCs and zinc have been

determined to induce the IL-6 production via Zn receptor

GPR39 expressed on the cells in the inflammatory tissues such

as fibroblasts, macrophages, and DCs (136). IL-6 is essential for

wound healing (137).
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In summary, although MCs show more inflammatory and

allergic properties in the acute phase, they may exhibit more

prominent functions during periods of inflammation or chronic

inflammation subside to prevent excessive tissue damage and the

development of chronic inflammation.
Conclusion

In general, MCs have high plasticity and tissue

microenvironment-dependent heterogeneity owing to the

distinctive migration and maturation modes. MCs interact

with various cells at different physiological and pathological

stages to exhibit vastly different functions. Comprehensively,

understanding the heterogeneity of human MCs and

determining their physiological functions under specific

circumstances is a great challenge. Additionally, human MCs

are difficult to obtain and isolate, and have poor ability to expand

in vitro (63). Therefore, rodent MCs are widely used for the time

being, which also gives rise to a new question: whether the results

observed in these alternative models can be wholly inferred to

human MCs. For example, human MCs and mouse MCs

sometimes show different responses to the same cytokines or

anti-allergic drugs (33, 138). Clinically, due to the profound

negative impression that MCs promote inflammation and

allergy, until recently, simply inhibiting MCs is still the

mainstream way for clinical treatment of allergy and

inflammation. Moreover, it is undeniable that MC neutralizing

therapies do not seem to have satisfactory therapeutic effects due

to the imperfect research at the present stage. According to this

review, based on the strong microenvironment-dependent

plasticity and heterogeneity of MCs, it appears promising to

induce MCs to behave in a manner that regulates and inhibits

chronic inflammatory and allergic responses. Accumulating

research evidence might have revealed the great potential of

MCs in treating disease by proper education in the peripheral

tissues to terminate inflammation and allergy.
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