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Most liver diseases, including acute liver injury, drug-induced liver injury, viral hepatitis,
metabolic liver diseases, and end-stage liver diseases, are strongly linked with hormonal
influences. Thus, delineating the clinical manifestation and underlying mechanisms of the
“sexual dimorphism” is critical for providing hints for the prevention, management, and
treatment of those diseases. Whether the sex hormones (androgen, estrogen, and
progesterone) and sex-related hormones (gonadotrophin-releasing hormone, luteinizing
hormone, follicle-stimulating hormone, and prolactin) play protective or toxic roles in the
liver depends on the biological sex, disease stage, precipitating factor, and even the
psychiatric status. Lifestyle factors, such as obesity, alcohol drinking, and smoking, also
drastically affect the involving mechanisms of those hormones in liver diseases. Hormones
deliver their hepatic regulatory signals primarily via classical and non-classical receptors in
different liver cell types. Exogenous sex/sex-related hormone therapy may serve as a novel
strategy for metabolic liver disease, cirrhosis, and liver cancer. However, the undesired
hormone-induced liver injury should be carefully studied in pre-clinical models and
monitored in clinical applications. This issue is particularly important for menopause
females with hormone replacement therapy (HRT) and transgender populations who want
to receive gender-affirming hormone therapy (GAHT). In conclusion, basic and clinical
studies are warranted to depict the detailed hepatoprotective and hepatotoxic
mechanisms of sex/sex-related hormones in liver disease. Prolactin holds a promising
perspective in treating metabolic and advanced liver diseases.

Keywords: sex hormone, chronic liver diseases, cirrhosis, mechanism, therapy
INTRODUCTION

Chronic liver diseases refer to a progressive deterioration of liver functions over six months. The major
etiologies of chronic liver disease are genetic defect, toxin ingestion, excessive alcohol consumption,
infection, autoimmune reaction, and metabolic syndromes (1, 2). Long-term inflammatory, lipid
peroxidation, and necrotic insults lead to liver parenchyma destruction and scar formation (liver
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fibrosis). A minority of patients will progress to end-stage cirrhosis
and/or hepatocellular carcinoma (3, 4). Cirrhosis, characterized by
evident fibrosis and nodule formation after chronic injury, is the
11th leading cause of death and the 15th leading cause of morbidity
around the world (5). Currently, hepatitis B virus (HBV; 31.5% in
males and 24.0% in females), hepatitis C virus (HCV; 25.5% in
males and 26.7% in females), and alcohol abuse (27.3% in males
and 20.6% in females) are the major etiologies of cirrhosis-induced
death. Obesity-related non-alcoholic fatty liver disease (NAFLD;
currently 7.7% in males and 11.3% in females), which has
overweight and obvious hepatic fat accumulation without a
history of alcohol abuse, is also anticipated to account for
increasing proportions of death in the future because of its
strikingly high prevalence in the world (6). A relatively rare but
important cause of cirrhosis is drug-induced liver injury (DILI),
which rapidly provokes cell death, severe inflammation, oxidative
stress, lipid peroxidation, and alterations in bile acid dysfunction
of the liver. Some cases even have loss of immune tolerance, as well
as the abnormalities of both innate and adaptive immunity (7).
Even after drug cessation, a non-negligible proportion of DILI
patients may progress into chronic DILI. Subsequently, more than
40% of the long-term unsolved DILI patients will develop cirrhosis
(8). In the United States, the most common drugs that can induce
DILI include acetaminophen, antibiotics, herbal/dietary
supplements, and immunomodulatory agents (9). A recent
epidemiological study indicated that in China, the leading drugs
responsible for DILI are traditional Chinese medicines, herbal
supplements, and antituberculosis medications (10). Since the
incidence of cirrhosis and acute-on-chronic liver failure (ACLF;
characterized by acute hepatic decompensation, hepatic and other
key organ failure, and high short-term mortality) in DILI patients
remains high, efficacious drugs that can control the progression of
chronicity are urgently needed.

Sex hormones (include androgen, estrogen, and progesterone),
also called sex steroids, are steroid hormones having critical
functions such as reproduction, sexual development, puberty,
lipid metabolism, body fat distribution, neuronal transmission,
and hair growth, in the reproductive and non-reproductive
systems. They are mainly produced by the gonads and adrenal
glands, including the adrenal cortex, gonads (testes and ovaries),
and placenta (11). The circulating and tissue levels of sex hormones
are under sophisticated regulations to maintain the body
homeostasis and avoid health issues such as infertility, obesity,
and hair/bone loss. Several well-documented factors are able to
affect the fluctuations of sex hormone levels, including aging,
menstruation, stress, menopause, and medications (12). The
involving roles of sex hormones in metabolic diseases received
mass attention in the past decades since both basic and clinical
studies found that those hormones could substantially influence the
pathogenesis of or applied as novel therapies for obesity (13), type 2
diabetes (14), cardiovascular diseases (15), andNAFLD (16). Genes
regulated by sex hormones are especially important for liver
metabolism since the liver expresses receptors for all three sex
hormones in males and females (17). In addition, there are “sexual
dimorphism” for several common chronic liver diseases. For
instance, females exhibit severer liver injury in alcoholic liver
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disease (ALD; with similar liver pathological phenotypes with
NAFLD but has a history of acute or chronic alcohol abuse) and
an increased risk of autoimmune liver disease than males. In
comparison, hepatocellular carcinoma (HCC; the most common
primary malignancy of the liver and strongly associated with
cirrhosis caused by alcohol abuse and viral hepatitis) is more
common in males (18). Although hormone replacement therapy
(HRT) iswell-tolerated by the liver, whether the therapywill change
liver function andworsen the precipitated liver diseases is in debate,
which is probably influencedbyhormonedose, durationof therapy,
alcohol drinking, smoking, genetic susceptibility, and age (19).
Thus, the current review will introduce the hepatoprotective and
hepatotoxic roles andmechanismsof sex/sex-relatedhormonesand
focus on the advances in elucidating the biological functions of
hormone receptors. Since other sex-related hormones, including
lute iniz ing hormone, fol l ic le-st imulat ing hormone,
gonadotrophin-releasing hormone, and prolactin closely
coordinate with sex steroid hormones in both physiological and
pathological conditions of the liver, we also summarized their
involving mechanisms in chronic liver diseases.
SEX HORMONES IN LIVER DISEASES

Androgen
Androgensplay essential roles inboth sexes’ reproductivehealth and
body metabolism. In males, testosterone is the most common
androgen, which is produced by the Leydig cells of the testes, or to
a lower extent, by the adrenal glands. Dihydrotestosterone (DHT),
dehydroepiandrosterone (DHEA), androstenedione (A4),
androstenediol (A5), and androsterone are other common types of
androgens (20). In females, androgens are produced by the ovaries
(testosterone), the adrenal glands (androgen precursors such as
DHEA and A4), and the placenta (testosterone) during pregnancy.
Androgens play an important role in female reproduction and
pregnancy. Although excessive androgen clearly impairs female
fertility, physiological level of androgen plays a positive role (21).
Pathological conditions of females such as polycystic ovary
syndrome (PCOS), obesity, and endocrinopathies (e.g. Cushing’s
disease) are associated with pathologically high levels of
androgens (22).

Ectopic androgen production directly induces hepatic fat
accumulation, indicating a lipid regulatory role of this hormone
(23–26). A low level of testosterone increases lipoprotein lipase
activity, which in turn promotes triglyceride uptake into the
adipocytes and subsequent visceral adiposity. Moreover, low
serum DHEA levels are associated with male metabolic syndrome,
possibly via the exacerbation of insulin resistance (27). In male
rodents, androgen deficiency due to orchiectomized (ORX) also
leads to hepatic steatosis (28). Mechanistically, liver lipid deposition
is primarily attributed to the up-regulation of genes for de novo
lipogenesis (DNL) (e.g. Srebp-1c and Fasn) (23). A prospective
follow-up study of 942 Boston males with a median follow-up of
8.9 years reported that adiposity might influence testosterone
production via the hypothalamus-pituitary-gonadal axis and
confirmed the inverse associations between obesity and total/free
July 2022 | Volume 13 | Article 939631
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testosterones (29). Therefore, in males, obesity is directly associated
with low testosterone levels. Contrarily, in females, excessive
androgen promotes hepatic steatosis. An important example is
that androgen suppression and/or blockade significantly improves
hepatic steatosis in female patients with PCOS (30). Moreover,
several studies have demonstrated that excessive androgen
promoted female food intake to cause obesity and metabolic
dysfunction (31–33). A meta-analysis of 5,840 females (including
both pre-and postmenopausal women) reported that females with
higher circulating testosterone had a higher odds ratio of overweight
prevalence (34). Underlying mechanisms probably include hepatic
inhibition of phosphoenolpyruvate carboxykinase or up-regulation
of proinflammatory mitogen-activated protein kinase 4
(MAP2K4) (35).

The contributing roles of androgens in NALFD seem to be
controversial and sex-dependent (36–39). In a longitudinal analysis
of 1,944 Korean men (median follow-up of 4.2 years) with repeated
liver ultrasonography checks, baseline testosterone concentrations do
not predict subsequent NAFLD development (40). A study
investigating a cohort of 117 males shows that raising serum
testosterone concentrations to normal levels by parenteral
testosterone treatments reduces the serum levels of alanine
aminotransferase (ALT) and aspartate aminotransferase (AST),
body weight, body mass index (BMI), waist size, and improved lipid
profiles (41). In comparison tomales, one studyof 22postmenopausal
females with biopsy-proven NAFLD indicates no significant
difference in total testosterone levels with 18 matched controls (42).
A large cohort study of 1,052 females in the United States identifies a
novel association between free testosterone and risk of prevalent
NAFLD in midlife. Importantly, this association is present even
among females without androgen excess, suggesting a role of
testosterone on NAFLD risk in a broader spectrum of females (43).
Indeed, low androgen levels in males and high androgen levels in
females facilitate NAFLD occurrence and progression. Therefore,
testosterone may act as a potential new target for NAFLD
treatment. In a clinical study of advanced hepatitis C-related liver
disease in males, it is reported that higher serum testosterone is
associated with increased risk of liver inflammation and fibrosis
(44). For end-stage liver diseases, Sinclair et al. measure serum
testosterone levels in 268 patients with cirrhosis and identify low
testosterone is associated with adverse outcomes and mortality. The
result significantlyworsenedbelowatotal testosterone thresholdof8.3
nmol/L or a free testosterone threshold of 139 pmol/L (45). This
conclusion is consistent with an observational study of 171 male
cirrhotic patients in which low testosterone is found to be an
independent but reliable predictor of mortality (46). Androgen
signaling seems to be a potential therapeutic target of HCC since
surgical castration and liver-specific androgen receptor knockout
retard hepatocarcinogenesis (47). A recent study also demonstrates
thatpharmacologicandrogenreceptorantagonismwithenzalutamide
inhibits hepatocellular carcinogenesis in a diethylnitrosamine- (DEN-
) induced HCC mouse model. More important, the upregulation of
androgen receptor is only observed in portal fibroblasts and
leukocytes, but not hepatocytes, implying that hepatocyte-
autonomous androgen receptor signaling is not required for DEN-
induced HCC (48). PD-L1 expression is negatively regulated by
Frontiers in Immunology | www.frontiersin.org 3
androgen receptor, leading to a transcriptional repression of PD-L1
and enhancement of CD8+T function. Thus, inhibition of androgen
receptormight improve the efficacy of HCC immune-therapy to PD-
L1 inhibitor (49).

Overall, decreased androgen in males or increased androgen
in females may lead to metabolic disorders and end-stage liver
diseases. Moderate reduction of testosterone in male is a marker
of NAFLD. However, for male patients with established
hypogonadism, there is no evidence that testosterone
replacement therapy can induce hepatotoxicity. In females, the
same focus should be on the association between ectopic
androgen production and NAFLD-related risk factors/
complications. Further clinical trials are needed to determine
whether the reduction of physiological androgen levels will have
a beneficial effect on the liver.

Estrogen
Estrogen is one of the major female hormones, mainly secreted
by the ovaries, small amounts by the liver, adrenal cortex, and
breast. Estradiol is the most important form of estrogen,
responsible for the regulation of female characteristics, the
maturation of accessory sex organs, the menstruation-
ovulation cycle, and the production of the mammary duct
system (50). Serum concentrations of estrogens such as
estradiol vary periodically throughout the menstrual cycle, with
estradiol being the most abundant estrogen in females of
childbearing age, except in the early follicular phase (51).

It is well known that the liver is a vital target tissue for estrogen
signaling (52). Estrogen has a wide range of protective effects on
hepatocytes. Estradiol reduces hepatic susceptibility to steatosis by
strengthening cellular mitochondrial function in a substrate-
specific manner (53). Moreover, 17b-estradiol (E2) enhances
hepatocytes mitochondrial content and oxidative capacity to
alleviate hepatic lipid accumulation and oxidative stress.
Mechanistically, peroxisome proliferator-activated receptor
gamma coactivator 1B (PGC1B), but not PGC1A, functions as a
modulator of E2 to promote the mitochondrial biogenesis (54).
Since activation of c-Jun N-terminal kinase (JNK) is a key
pathological event during the development of obesity and
NAFLD and E2 can inhibit the activation of JNK, E2 has been
considered in NAFLD treatment in a very cautious way (55, 56).

The pathways responsible for estrogen-mediated hepatic lipid
metabolism could be quite complicated and are not fully
understood. Hepatocyte estrogen receptor alpha (Era) promotes
hepatic absorption of cholesterol and systemic reverse cholesterol
transport, a process that is particularly important in females (57).
In particular, the ability of high-density lipoprotein (HDL) to
initiate reverse cholesterol transport during the female
reproductive cycle is related to plasma estrogen content and
hepatic ERa activity, which effectively induces cholesterol efflux
frommacrophages. Moreover, there is a physiologically functional
cross-coupling between ERa and liver X receptor alpha (LXRa)
which is another important regulator of hepatic lipid metabolism
(58). Estrogen is negatively correlated with serum triglyceride
(TG) level, achieved by regulating the expression of
apolipoprotein A5 in the liver. Estrogen and the G protein-
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coupled receptor 30 coactivate protein kinase A (PKA) to enhance
the expression of hepatic peroxisome proliferator-activated
receptor alpha (PPARa) and hepatocyte nuclear factor 4alpha
(HNF4a), thereby increasing the expression of hepatic
apolipoprotein (59). Estrogen is found to directly inhibit liver
inflammation since (1) postmenopause females often exhibit
accumulated lipid peroxidation and inflammation in the liver
(60); (2) estrogen signaling suppresses pro-inflammatory
cytokine release and reactive oxygen species (ROS) production
in hepatocytes (55, 61); (3) estrogen supplementation restores
depressed Kupffer cell phagocytic capacity via the activation of
Akt (62).

Estrogen is also critical in the amelioration of liver fibrosis
and cirrhosis. It is reported that in a carbon tetrachloride-
induced mouse liver fibrosis model, exogenous E2 significantly
alleviated fibrosis and other liver injuries, partly via a restoration
of miR-29a and miR-29b expression (63). Another study of male
dimethyl nitrosamine (DMN) model found that estradiol
treatment decreased the deposition of type I and III collagen
protein, the total hepatic collagen content, and malondialdehyde
(MDA), a product of lipid peroxidation (64). In high fructose
diet-induced NASH-fibrosis mice models, E2 supplementation
reversed liver cell destruction, macrophage accumulation, and
hepatic stellate cell activation (65). Clinical features of a
disrupted gonadal function (e.g. libido loss and reduced
potency) and feminization (e.g. gynecomastia and female
habitus) can be found in two-thirds of males with alcoholic
cirrhosis. After transjugular intrahepatic portosystemic stent
shunt (TIPS), serum E2 is significantly increased (with
aggravated sex hormone dysbalance) in males but remain
persistent in females with cirrhosis (66). In DMN-induced rat
cirrhosis models, administration with E2 significant decreases
portal pressure and increases hepatic blood flow, which are
abolished by the co-treatment with an estrogen receptor
antagonist (ICI-182.780) (67). In addition, estrogen stimulates
the expression of nitric oxide synthase 3 (endothelial NOS,
eNOS) in sinusoidal endothelial cells to provoke nitric oxide
production, contributing toward a reduction in portal pressure
(67, 68). Inactivated estrogen sulfates are converted to activated
estrogen by the action of steroid sulfatase (STS), which is elevated
in patients with chronic inflammatory liver diseases and
accompanied by increased circulating estrogen levels. STS
serves as a novel nuclear factor kappa-B (NF-kB) target gene
to alleviate liver inflammation, partly via the provoked estrogen
signaling (69). Estrogen is generally thought to be an anti-HCC
hormone (70). Possible mechanisms include: (1) to inhibit
inflammasome activation through estrogen receptor (71); (2) to
repress HCC growth via inhibiting alternative activation of
tumor-associated macrophages (72); (3) to inhibit HCC
progression because of transition from pro-inflammatory to
anti-inflammatory phenotype of Kupffer cell via the physical
interaction between estrogen receptor alpha and NF-kB (73).

Progesterone
Progesterone is a steroid hormone secreted by the granulosa luteal
cells of the ovary. Ovulation, reproduction, mammary gland
Frontiers in Immunology | www.frontiersin.org 4
growth, and pregnancy maintenance are the main functions of
progesterone. The primary target tissues of progesterone are the
endometrium, breast, and central nervous system. In the liver,
progesterone is inactivated to estradiol and excreted into the urine
in combination with glucuronic acid. Progesterone can be divided
into two groups according to its chemical structure: 17a-
hydroxyprogesterone and 19-nortestosterone. Biological
responses to progesterone are mediated by both genomic (e.g.
progesterone receptor acts through specific progesterone response
elements within the promoter region of target genes) and non-
genomic mechanisms (e.g. non-classical progesterone receptor is
activated to elicit the activation of downstream signaling) (74, 75).

Studies have shown that sex hormones have complex and
variable effects on NAFLD (76). Increased progesterone level is
associated with the development of systemic insulin resistance
(77). This hormone is also an independent predictor of insulin
resistance in adolescent girls (78). In NASH patients, progesterone
use, but not estrogen use, will induce observable hepatic lobular
inflammation (79). The mechanisms responsible for progesterone-
induced metabolic liver injury are not characterized. A recent
study indicates that deficiency of progesterone receptor membrane
component 1 induces hepatic steatosis through de novo lipogenesis
in the liver (80). Another metabolism-related study suggests that
progesterone increases hepatic glucose production via the
modulation of gluconeogenesis by progesterone receptor
membrane component 1 (PGRMC1), which may exacerbate
hyperglycemia in diabetes where insulin action is limited (81).

An interesting clinical phenomenon is that females usually
have worse outcomes from DILI than males. It could be partly
explained by progesterone-induced immune toxic responses via
Kupffer cells and the extracellular-signal-regulated kinase (ERK)
pathway (82). Moreover, progesterone itself is reported to induce
DILI in females (83). Hepatitis E is usually a self-limited liver
disease with relatively good prognosis. However, during
pregnancy, fulminant hepatic failure with high mortality rate is
commonly observed in clinical hepatitis E virus (HEV)-infected
patients. Elevated progesterone and HEV RNA levels have been
observed in pregnant females with fulminant hepatic failure.
Because progesterone is essential for the maintenance of
pregnancy, studies on the potential role of progesterone in HEV
replication and disease pathogenesis have demonstrated that in
human hepatocytes, progesterone could enhance HEV replication
but could not modulate HEV-induced interferon response. Loss of
the progesterone noncanonical receptor, PGRMC1/2, was
associated with decreased levels of HEV replication and
increased levels of HEV-induced type III interferon (IFN-l1)
mRNA expression via the ERK pathway (84). In addition, there
is a significant association between vaginal progesterone level and
intrahepatic cholestasis of pregnancy (ICP). ICP is accompanied
by unique maternal pruritus, abnormal liver function tests,
elevated serum total bile acids, and an increased incidence of
adverse fetal outcomes (e.g. intrauterine fetal death). Pregnant
females who receive long-term daily vaginal progesterone
treatment to prevent preterm birth are at increased risk of ICP.
Progesterone metabolites (PM2DiS, PM3S, PM3DiS) are
abundant during pregnancy of genetically susceptible females,
July 2022 | Volume 13 | Article 939631
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leading to supersaturation of the hepatic transport system for
biliary excretion of these compounds (85, 86). In animal models,
progesterone induces proliferation and abnormal mitotic
processes in rat liver cells. Of note, treatment with progesterone,
even at pharmacologically-relevant doses, shows an increase in the
percentage of binucleated hepatocytes (87). Progesterone may
serve as an autocrine/paracrine mediator of cholangiocyte
proliferation. Cholangiocytes express progesterone nuclear
receptor (PR-B) and progesterone membrane receptors
(PRGMC1, PRGMC2, and mPRa). Moreover, progesterone
increases the number of bile ducts in normal rats both in vivo
and in vitro, while anti-progesterone antibodies inhibit bile duct
ligation-stimulated cholangiocyte growth. Thus, antiprogesterone
therapy may therefore benefit patients with cholangiocyte
proliferation, such as those with extrahepatic cholestasis (88). In
terms of end-stage liver diseases, progesterone is reported to
stimulate the production of ROS through progesterone receptor,
leading to transforming growth factor (TGF)-b1 expression,
hepatic stellate cells (HSCs) activation, and extracellular collagen
formation (89). This phenomenon increases the possibility that
progesterone can establish a favorable microenvironment for
tumors and thus contribute to the development of liver cancer.
PGRMC1 is considered to be a biomarker of tumor cell
Frontiers in Immunology | www.frontiersin.org 5
proliferation (90) and is strongly expressed in different kinds of
cancers (91). Hepatic PGRMC1 and progesterone receptor are
continuously active in the presence of high serum progesterone
levels and may facilitate the chemoresistance of HCC (91, 92).
Known protective and toxic mechanisms of sex hormones in the
liver are summarized in Figure 1 and Table 1.
SEX-RELATED HORMONES IN
LIVER DISEASES

Gonadotrophin-Releasing Hormone
Gonadotropin-releasing hormone (GnRH) is a decapeptide
produced in the hypothalamus and secreted by scattered
hypothalamic GnRH neurons in a pulsatile manner. GnRH acts
on its receptor (GnRHR) on the surface of gonadotropin cells in
the pituitary gland to stimulate the release of LH and FSH, which,
in turn, enhance the production and release of testosterone (male
testes) and estrogen (female ovaries and placenta) (108).

Experiments from murine models demonstrate that increased
GnRH causes obesity after ovariectomy. As the upstream
regulator of the gonad axis, GnRH stimulates fat accumulation
FIGURE 1 | Known mechanisms of the hepatoprotective and hepatotoxic effects of sex hormones (androgen, estrogen, and progesterone) on different liver cell types.
Low level of testosterone increases the activity of LPL. The up-regulation of SREBP-1c and FASN lead to liver lipid deposition and aggravated insulin resistance. Those
changes, together with the down-regulation of PEPCK and up-regulation of MAPK may lead to steatosis. Estrogen increases the content and oxidation capacity of
mitochondria in hepatocytes. PGC1B promotes mitochondrial biogenesis. Estrogen also inhibits the activation of JNK and GPR30 to co-activate PKA and enhance liver
PPARa and HNF4a to increase APOA5 expression and reduce TG. Estrogen (via its receptor alpha) induce cholesterol efflux from Kupffer cells with HDL. Estrogen can
restore the expression of miR-29a/b to reduce the deposition of type I and III collagen, MDA, and a-SMA, to reduce liver fibrosis and other types of liver damage.
Estrogen can also significantly reduce portal vein pressure by stimulating eNOS expression. Elevated progesterone leads to insulin resistance, stimulates PGRMC1 to
increase hepatic glucose production, stimulates PGRMC1/2 to promote HEV replication, and inhibits IFN- l1 expression. In addition, the accumulation of progesterone
metabolites (PM2DiS, PM3S, PM3DiS) will increase the risk of ICP. Progesterone stimulates PR-B, PRGMC1, and PRGMC2 to facilitate bile duct cell proliferation. It also
causes ROS environment via its receptor signaling, resulting in TGF-b1-activated HSC. APOA5, apolipoprotein A5; a-SMA, alpha-smooth muscle actin; eNOS, endothelial
nitric oxide synthase 3; ERa, estrogen receptor alpha; FASN, fatty acid synthase; HDL, high-density lipoprotein; HSC, hepatic stellate cell; GPR30, G protein-coupled
receptor 30; HNF4a, hepatocyte nuclear factor 4-alpha; ICP, Intrahepatic cholestasis of pregnancy; IFN-l1, type III interferon-l1; JNK, Jun N-terminal kinase; LPL,
lipoprotein lipase; IR, insulin resistance; LXRa, liver X receptor alpha; MAPK, mitogen-activated protein kinase; MDA, malondialdehyde; mPRa, membrane progestin
receptor alpha; PEPCK, phosphoenolpyruvate carboxykinase; PGC1B, proliferator-activated receptor gamma coactivator 1B; PGRMC, progesterone receptor membrane
component; PKA, protein kinase A; PM2DiS/PM3DiS/PM3S, progesterone metabolites; PPARa, peroxisome proliferator-activated receptor alpha; PR, progesterone
receptor; ROS, reactive oxygen species; SCD1, stearoyl-CoA desaturase1; SRE, sterol regulatory element; SREBP-1c, sterol regulatory element-binding protein-1c; TG,
triglyceride; TGF, transforming growth factor (Created with Biorender.com with a publication license).
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by directly promoting the cell cycle of preadipocytes via the
protein kinase A- cAMP-response element binding protein
(PKA-CREB) pathway and increasing the FSH secretion to
accelerate adipocyte differentiation in adipose tissue of female
mice (109, 110). In humans, the pulsatility of serum LH levels is
accepted as a GnRH pulse generator activity marker due to its
short half-life (111, 112). Therefore, the exact role of GnRH in
human obesity cannot be determined at present. In cirrhotic
patients, disturbance in gonadotrophin secretion with
inappropriately low levels of LH and FSH has been observed in
amenorrheic females with alcoholic or non-alcoholic cirrhosis
(113). However, these GnRH responses can only indicate the
hypothalamus rather than the pituitary as the site of
gonadotropin secretion disorder. Knockdown of hepatic GnRH
alleviates liver fibrosis in a murine primary sclerosing cholangitis
model by the downregulation of miR-200b (108). Another study
confirms above findings by showing that GnRH stimulates
fibrosis gene expression in HSCs in a bile duct-ligated-induced
liver fibrosis rat model (114). Few studies have reported the
interaction between GnRH and metabolic liver diseases, which
clearly warrants further epidemiological, observational, and
mechanistic investigations.

Luteinizing Hormone
Luteinizing hormone (LH) is a glycoprotein gonadotropin
secreted by adenohypophysis cells under the control of GnRH.
LH can promote the conversion of cholesterol into sex hormones
in gonadal cells. In females, LH stimulates the ovaries to release
eggs, and its periodic surge leads to monthly ovulation.
Moreover, LH stimulates the production of progesterone and
estrogen, as well as the growth of the corpus luteum. In males,
Frontiers in Immunology | www.frontiersin.org 6
LH facilitates the production and release of testosterone from
testicular interstitial cells in the testes.

A cross-sectional study of obese male patients in Belgium
reports that NAFLD is associated with lower levels of LH, FSH,
and total testosterone than controls (115). Another study with
Chinese exhibits a slight but not significantly decreased LH level
in NAFLD patients than that in healthy controls (116). In
Chinese postmenopausal female patients, a significantly
reduced LH is only observed in severe steatosis subgroup, but
not in mild/moderate steatosis subgroups, when compared with
that in controls (117). The direct regulatory mechanism of LH in
hepatic lipid accumulation, inflammation, and cell death is
largely unknown.

The LH level in seminal fluid of HCV patient is slightly,
although not significantly, higher than that in healthy controls.
Moreover, anti-HCV therapy does not significantly influence
such level of LH in patients (118). Another similar study high
larger cohort finds a slightly but not significantly lower semen
LH level in HCV patients than healthy controls (119). LH and
FSH levels are commonly decreased in males with advanced liver
disease (120). In a Meta-analysis Of Observational Studies in
Epidemiology (MOOSE) guideline report (including 21 studies
with 1,274 patients), results indicate that liver transplantation
(LT) improves hormonal disturbances associated with chronic
liver disease by restoring circulating physiological levels of
growth hormone (GH), insulin-like growth factor-1 (IGF-1),
testosterone, estradiol, prolactin, FSH, and LH (121).

Follicle-Stimulating Hormone
FSH is a glycosylated protein hormone secreted by basophils in
the pituitary, because of its stimulating capacity of female follicles
TABLE 1 | The involving roles and therapeutic potentials of sex hormones in liver diseases.

Liver
disease

Level change of hormones Involving mechanisms Therapeutic potential References

DILI High serum estradiol reduces acute hepatotoxicity
risk; Higher progesterone in pregnant females with
ICP

Progesterone metabolites makes supersaturation
of the hepatic transport system for biliary excretion

Anabolic androgenic steroid can
induce DILI; Exogenous
progesterone induces hepatic
injury

(79, 85, 86,
93, 94)

Viral
hepatitis

Low testosterone in HBV and HCV in males; Higher
serum testosterone is associated with increased risk
of HCV-related hepatitis and fibrosis; Higher
progesterone in pregnant females with HEV

Androgens play immune-suppressing roles;
Progesterone enhances HEV replication via
receptor signaling

Androgen ablation therapy may
be a potential therapy for HBV
carriers; Estrogen can repress
transcription of HBV genes

(44, 84, 95–
99)

NAFLD Low testosterone in males while higher in females;
Higher progesterone in females

Androgens regulate of MAPK and hepatic
metabolism; Estrogens improve liver metabolism
via estrogen receptors; progesterone increases
hepatic glucose production via its receptors

Testosterone and estrogen
treatments improve NAFLD liver
functions;

(29, 34, 35,
53–59, 81,
100, 101)

ALD Alcohol is potentially associated with increased
estrogen levels and its receptor expression

Estrogen regulates alcohol metabolism via Kupffer
cells and inflammatory pathways

No effect for anabolic-androgenic
steroids; Antiestrogen toremifene
protects against ALD

(102–104)

Fibrosis
and
cirrhosis

Low testosterone but higher progesterone and
estradiol in cirrhotic patients

Estrogen reduces collagen production and
improves LSEC function; Progesterone enhances
ROS and fibrogenesis

E2 therapy improves fibrosis and
cirrhosis

(45, 46, 63–
66, 89, 105)

HCC Higher androgen and progesterone in HCC patients;
Lower estrogen (in debate) in HCC patients

Estrogen protects against HCC through IL-6
restrictions; Progesterone favors carcinogenic
microenvironment

Inhibition of androgen receptor
represses HCC via inflammation
and immune regulation; Estrogen
therapy improves HCC

(49, 91, 92,
95, 106,
107)
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maturation. FSH function is mediated primarily by the FSH
receptor (FSHR), which is located on the plasma membrane of
hepatocytes (122). It is one of the most important hormones for
development, growth, puberty, sexual maturation, and
reproduction in both males and females. The level of FSH is
usually low in childhood and becomes high after menopause in
females. Its secretion is also in pulses with body weight change
and the menstrual cycle. The determination of serum FSH is of
great significance in understanding the endocrine function of the
pituitary, hypothalamus, and ovary, as well as the diagnosing and
treating infertility and endocrine diseases (123).

Endocrine changes during menopause, especially the
dramatic increase in serum FSH levels, have a negative impact
on blood lipid levels. FSH interacts with its hepatocyte receptor
to decrease LDL receptor (LDLR) levels, which in turn attenuates
low-density-lipoprotein cholesterol (LDL-C) endocytosis (124).
After HRT, postmenopausal females with high baseline FSH
levels have more significant improvement in LDL-C levels than
those with low baseline FSH levels (124). Thus, HRT might be a
preventive therapy in postmenopausal patients with higher basal
FSH levels, and these females are encouraged to take HRT for
several years after menopause. Epidemiological findings suggest
that serum FSH levels are positively correlated with serum total
cholesterol levels. Mechanistically, in the liver, FSH activates the
Gi2a/b-arrestin-2/Akt pathway by binding to the hepatic FSHR
and subsequently inhibits the binding between forkhead box
protein O1 (FoxO1) and the sterol regulatory element binding
protein (SREBP)-2 promoter, thereby driving 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMGCR) transcription
and de novo cholesterol biosynthesis, resulting in increased
cholesterol accumulation. Therefore, blocking FSH signaling
could be a novel strategy for the treatment of menopausal
hypercholesterolemia, especially in perimenopausal females
characterized only by elevated FSH (122).

There is an established association between FSH and NAFLD
in postmenopausal females. However, it is not known whether
FSH affects the risk of NAFLD in males. A community-based
study of males aged 20 - 69 years observes a gradual increase in
FSH with age (125). Another cross-sectional study in 444 Chinese
elderly males aged 80-98 years demonstrates that high FSH levels
might enhance the risk of NAFLD. Elevated FSH may be one of
the possible mechanisms explaining the greater number of
NAFLD subjects found in elderly males (126). Considering the
age-related changes in circulating FSH levels and the prevalence of
NAFLD, FSH might have a novel extragonadal role in the
regulation of hepatic gluconeogenesis via FSHR in the liver.
Moreover, there is a positive correlation between FSH and
fasting blood glucose (127). FSH enhances cyclic AMP-regulated
transcriptional coactivator 2-mediated gluconeogenesis via
adenosine monophosphate-activated protein kinase (AMPK)
phosphorylation regulation in the liver, leading to the
pathogenesis of fasting hyperglycemia (128). In a cohort of
postmenopausal females with HCV infection, there is a
progressive decline in FSH from Child-Turcotte-Pugh class A to
C subgroups (129). However, in male HBV-induced cirrhotic
patients, such difference is not observed (130). Menotrophin is a
Frontiers in Immunology | www.frontiersin.org 7
female infertility gonadotropin treatment contains purified FSH
and LH. It is reported to induce autoimmune hepatitis in a female
patient after several cycles of treatment (131).

Prolactin
Prolactin, also known as lactotropin, is a polypeptide hormone
produced and secreted from the pituitary gland. The main
functions of prolactin include milk production and the
development of the mammary gland within breast tissues.
During pregnancy, elevated prolactin promotes the growth of
mammary alveoli and stimulates the breast alveolar epithelial
cells to produce milk components, such as lactose, casein, and
lipids (132). Notably, the level of prolactin receptor (PRLR) is
suppressed on mammary glandular tissue during periods of
elevated progesterone levels and is enhanced to enable
lactogenesis when the serum progesterone level drops (133).

Prolactin has a major role in determining the deposition and
mobilization of fat. Thus, it is suggested that in both adults and
children, increased body weight alters the secretion of prolactin,
possibly due to hyperinsulinemia-induced hypothalamic-
pituitary dysfunction. In obese females, enhanced prolactin
release is in proportion to the size of the visceral fat mass. A
possible explanation is reduced dopamine D2 receptor (D2R)
availability in the brain, since prolactin is inhibited by D2R
activation (134). After the loss of 50% of overweight, such
elevated prolactin secretion rate in obese females is
significantly blunted, along with increased dopaminergic
signaling (135). However, a large cross-sectional study
assessing serum prolactin levels in 344 males and females
obese subjects’ samples one year after gastric bypass surgery
finds no significant association between basal prolactin levels and
the degree of obesity or between the change of systematic
prolactin level and weight loss. Thus, there does not seem to
be a significant role of prolactin in the pathophysiology of obesity
(136). Since obesity is associated with higher NAFLD incidence,
whether prolactin has hepatoprotective roles in NAFLD received
mass attention. A recent clinical study with 859 adults (456
patients with NAFLD and 403 controls without NAFLD)
identifies that circulating prolactin levels and hepatic Prlr gene
expression levels are lower in NAFLD patients than those of
healthy controls (in both sexes). Moreover, in cell models,
prolactin ameliorates hepatic steatosis via PRLR and fatty acid
translocase (FAT)/CD36, an important hepatic transporter of
free fatty acid (137). Thus, prolactin level, body mass index,
alanine aminotransferase, HDL cholesterol, and HbA1cA are
included in a new noninvasive model for the prediction of
NAFLD presence (138). In terms of ALD, since acute and
repeated alcohol ingestions sharply rise plasma prolactin levels
and decrease plasma testosterone levels in male volunteers (139)
and ethanol induces hyperprolactinemia lactotrope growth in
female rats (140), it is speculated that increased prolactin is an
endogenous protective mechanism to alleviated injury of the
liver, and possibly other ethanol-targeted tissues, via unknown
pathways. Another study finds a drastic increase in serum
prolactin in cirrhotic patients than in healthy control,
regardless of hepatic encephalopathy presence, and a cut-off
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value (50 ng/ml) is capable to predict the mortality (141). This
result is consistent with a clinical report including 114 male
cirrhotic patients whose increased prolactin level is parallel to
growing cirrhosis severity (142). In HCC, prolactin prevents
cancer growth by restricting innate immune activation of c-Myc
in mice (143). A recent study reports that prolactin upregulated
female-predominant cytochrome P450 genes in female mice and
downregulated male-predominant 450 genes in male mice,
which may explain the abnormal drug metabolism and DILI
during pregnancy and lactation (144). In conclusion, increased
secretion of prolactin from the pituitary seems to be beneficial for
the development of both metabolic and end-stage liver diseases.
Compared to other sex/sex-related hormones, prolactin holds a
promising perspective in exogenous hormone therapy for those
diseases. However, molecular mechanisms and well-designed
RCTs are still warranted to be investigated. Known protective
and toxic mechanisms of sex-related hormones in the liver are
summarized in Figure 2 and Table 2.
GUT-LIVER AXIS REGULATION BY SEX/
SEX-RELATED HORMONES

The gut microbiome is a microbial ecosystem involved in
nutrient acquisition and energy metabolism of the host (154).
Frontiers in Immunology | www.frontiersin.org 8
Sex plays an important role in the composition diversity of the
gut microbiota (155, 156). The alpha diversity of the gut
microbiota is higher in females than in males (157, 158), with
differences occurring at the onset of puberty, suggesting that sex
hormones cause important composition changes of the gut
microbiome (159, 160). Hyperandrogenism is a key factor in
impaired follicular development and metabolic disorders in
PCOS. In the animal model, intestinal dysbacteriosis is
reproduced in DHEA-induced PCOS-like rats. Antibiotic
mixtures can be used to eliminate the gut microbiota during
DHEA treatment. However, depletion of the gut microbiota
does not prevent the development of the PCOS phenotype in
DHEA-treated rats. The DHEA type intestinal microflora
transplanted into a pseudo-sterile recipient cause disorders of
hepatic glycolipid metabolism and reproductive hormone
imbalance. These findings suggest that androgen-induced
dysbacteriosis may exacerbate metabolic and endocrine
dysfunction in PCOS (161). Males are generally more
vulnerable to glucose imbalance and diabetes than females. It
is revealed that the depletion of the mice gut microbiome largely
eliminates sexual dimorphism in glucose metabolism. Glucose
tolerance in male mice is more evidently influenced by the gut
microbiome than in female mice. Androgen treatment improves
glucose tolerance and insulin sensitivity, in part by modulating
the gut microbiome, leading to sexual dimorphism in glucose
FIGURE 2 | Illustration of the involving mechanisms of sex-related hormones (gonadotrophin-releasing hormone, luteinizing hormone, follicle-stimulating hormone,
and prolactin) in liver physiology and pathology. GnRH increases the secretion of FSH through the PKA/CREB pathway, accelerates the differentiation of adipocytes
in adipose tissue, which finally lead to hepatic fat accumulation. In amenorrhoea females with cirrhosis, abnormal GnRH secretion leads to low LH and FSH levels.
FSH interacts with FSHR to reduce the level of LDLR, weaken the endocytosis of LDL-C, and lead to the increase of circulating LDL-C. After HRT treatment, FSH is
inhibited and LDL-C content is improved. FSH activates Gi2 by binding to liver FSHRa/b-Arrestin-2/Akt pathway, which subsequently inhibits the binding between
FoxO1 and SREBP-2, drives HMGCR transcription and de novo cholesterol biosynthesis, resulting in increased cholesterol accumulation. Liver transplantation can
improve the hormone disorder related to chronic liver disease by restoring the circulating physiological levels of estradiol, FSH, LH, prolactin, testosterone, GH and
IGF-1. Inhibition of prolactin by D2R activation leads to reduction of visceral adipose tissue. Prolactin improves hepatic steatosis through PRLR down regulation of
FAT/CD36. Prolactin levels are significantly increased in patients with liver cirrhosis. Akt, protein kinase B; AMPK, adenosine monophosphate-activated protein
kinase; CREB, cAMP response element binding protein; ESLD, End-stage liver disease; FAT, fatty acid translocase; FoxO1, forkhead box protein O1; FSH, follicle-
stimulating hormone; FSHR, FSH receptor; GH, growth hormone; GnRH, gonadotrophin-releasing hormone; HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A
reductase; HRT, hormone-replacement therapy; IGF, insulin growth factor; LDL, low-density lipoprotein; LDL-C, low-density-lipoprotein cholesterol; LDLR, LDL
receptor; LH, luteinizing hormone; LT, liver transplantation; PKA, protein kinase A; PRLR, prolactin receptor (Created with Biorender.com with a publication license).
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metabolism. Androgens also regulate circulating glutamine and
glutamine/glutamate (Gln/Glu) ratios partly via the actions of
gut microbiome. Exogenous glutamine supplementation may
increase insulin sensitivity in vitro (162). In terms of estrogen,
its related receptor alpha (ESRRA) acts as a key regulator of gut
homeostasis by activating autophagic flux and controlling host
gut microbiota to improve colonic inflammation. In animal
models, ESRRA-deficient mice exhibit a distinct gut microbiota
composition and significantly higher microbial diversity
compared to wild-type mice. ESRRA promotes gut
homeostasis through autophagy activation and gut microbiota
control to protect the host from harmful inflammation and
mitochondrial dysfunction (163). One of the major regulators of
circulating estrogens is the gut microbiome, which modulates
estrogen by secreting b-glucuronidase (GUS), an enzyme that
breaks down estrogen into its active form. When this process is
impaired by dysbacteriosis in the gut, the reduction in
deconjugation results in a decreased level of circulating
estrogens (164). Changes in circulating estrogens may lead to
the development of several diseases (obesity, metabolic
syndrome, cancer, endometrial hyperplasia, endometriosis,
PCOS, infertility, cardiovascular disease, and cognitive
function). Modulation of microbiome composition has been
shown to alleviate many estrogen-regulated disease progressions
(164). Pregnancy is accompanied by changes in the microbiome,
and progesterone, the main pregnancy hormone, is found to
directly regulate the intestinal microbial composition during
pregnancy, such as promoting the growth of bifidobacteria
species (probiotics that live in the intestines) in late
pregnancy, in order to transmit them to newborns (165). In
the serum of ICP patients, the level of a progesterone metabolite,
Frontiers in Immunology | www.frontiersin.org 9
epiallopregnanolone sulfate is significantly elevated, which can
inhibit farnesoid X receptor (FXR)-mediated bile acid export
and synthesis. Administration with probiotic Lactobacillus
rhamnosus GG prevents epiallopregnanolone sulfate-induced
hepatic bile acid accumulation and liver injury, possibly
mediated by hepatic FXR activation (166). GnRH is associated
with gut motility through GnRH receptors signaling, primarily
in cells of parasympathetic ganglion and myenteric plexus of the
enteric nervous (167). There is a bidirectional relationship
between intestinal flora and GnRH/GnRH receptor signaling
axis (168). The potential interaction between GnRH and the gut
microbiota has been suggested through a lipopolysaccharide
(LPS)-induced proinflammatory pathway (169). Disruption of
gut microbiota or large bacterial translocations may lead to
greater circulation alterations in LPS, inflammatory responses,
and GnRH production (170). A study monitoring the effects of
the probiotic Bifidobacterium lactis V9 on the gut microbiome,
gut-brain mediators, and sex hormones in 14 PCOS patients
shows significant higher levels of prolactin, LH and LH/FSH
ratio when compared with 9 volunteers. The levels of sex
hormones, brain-gut mediators (e.g. ghrelin) and intestinal
short-chain fatty acids (SCFAs) are conversely regulated (171).
In a rat model, dietary flaxseed oil (FO) intake improves the
disturbance of estrous cycle and ovarian morphology, as well as
the disorder of sex/sex-related hormones, including
testosterone, estrogen, progesterone, and LH/FSH, body
weight, dyslipidemia, and insulin resistance. One of the major
mechanisms is through the sex steroid hormone-microbiota-
inflammatory axis (172). Possible involving mechanisms of sex/
sex-related hormones in gut-liver axis regulation are illustrated
in Figure 3.
TABLE 2 | The involving roles and therapeutic potentials of sex-related hormones in liver diseases.

Liver
disease

Level change of hormones Involving mechanisms of hormones Therapeutic potential of
hormones

References

DILI Acetaminophen use is
inversely associated with
prolactin but no association
with LH/FSH

Prolactin promotes liver regeneration via IL-6/SOCS3 pathway GnRH agonist causes
hepatotoxicity; Menotrophin
induces DILI;

(131, 145–
148)

Viral
hepatitis

High LH in male HBV patients Unknown Unknown (149)

NAFLD Lower GnRH, FSH, and
prolactin in both sexes’
patients;

GnRH stimulates fat accumulation through PKA-CREB; Increased FSH secretion
accelerates adipocyte differentiation; FSH modulates hepatic gluconeogenesis
via FSHR and AMPK; Prolactin protects steatosis via PRLR and FAT and CD36

Prolactin therapy may
improve NAFLD

(109, 115,
116, 127,
128, 137,

138)
ALD Higher LH and prolactin but

lower testosterone in box
sexes

Prolactin protects ALD via unknown pathway Prolactin therapy may
improve ALD

(139, 140,
150)

Fibrosis
and
cirrhosis

Lower LH and FSH but higher
prolactin in cirrhotic patients
of both sexes

Knockdown of GnRH improves fibrosis via miR-200b inhibition Prolactin therapy improves
fibrosis by inhibiting GnRH

(108, 113,
114, 120,
141, 142,

151)
HCC Increased LH and FSH but

decreased prolactin in HCC
patients of both sexes

Prolactin prevents HCC by restricting innate immune activation of c-Myc GnRH immunogen
vaccination inhibits liver
tumor; Prolactin therapy
may retard HCC

(143, 152,
153)
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ALD, alcoholic liver disease; AMPK, adenosine monophosphate-activated protein kinase; CD36, cluster of differentiation 36; CREB, cAMP response element binding protein; DILI, drug-
induced liver injury; E2, 17b-estradiol; FSH, follicle-stimulating hormone; FSHR, FSH receptor; GnRH, gonadotrophin-releasing hormone; HBV, hepatitis B virus; HCC, hepatocellular
carcinoma; IL-6, interleukin-6; LH, luteinizing hormone; MAPK, mitogen-activated protein kinase; NAFLD, non-alcoholic fatty liver disease; PKA, protein kinase A; PRLR, prolactin receptor;
SOCS-3, suppressor of cytokine signaling 3.
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HEPATIC SAFETY ISSUE OF GENDER-
AFFIRMING HORMONE THERAPY IN
TRANSGENDER POPULATIONS

Transgender people are a diverse population whose assigned sex
at birth are different from their current gender identity. The
global prevalence of people who identify as transgender is
estimated as 0.3-0.5%, which depends on the definition of
transgender used (173). Many transgender people are suffering
from health inequities such social marginalization, discrimination,
stigma, and violence (174). In the past decades, increasing numbers
of people with gender dysphoria have sought medical treatments.
According to the clinical practice guidelines from World
Professional Association for Transgender Health, those treatments
consist of puberty suppression, masculinizing or feminizing
hormone treatment, and gender-affirming surgery (175).
Application of gonadotropin-releasing hormone analog (GnRHa)
or estrogen for puberty suppression in adults and adolescents is
recommended by the guidelines. However, data on the efficacy and
safety, including the possible metabolic dysfunction and
hepatotoxicity, are scarce. A study monitoring triptorelin
treatment in gender dysphoric adolescents reports that this agent
suppresses puberty in most participated gender dysphoric
adolescents. No sustained elevations of liver enzymes or creatinine
are observed (176). Another study of 28 transgirl adolescents treated
with oral estrogen for more than one year reveals that modest breast
development can be found inmost participants. The BMI, lean body
Frontiers in Immunology | www.frontiersin.org 10
mass percentage, fat percentage, and liver function do not change
during two years of estrogen treatment (177). In a European cohort
study of 155 transwomen and 233 transmen, testosterone and
estradiol levels are not significantly correlated with amenorrhoea
in transmen and breast development in transwomen, respectively.
Elevations of liver values are rare (< 4%) and transient in most cases
(178). Thus, it seems that GAHT with a safe and effective hormone
regimen recommended by the guidelines will not induce liver injury.
However, a very recent longitudinal cohort study, which
incorporates follow up of over 10 years of 624 transwomen and
438 transmen indicates that, transwomen are likely to experience a
moderate elevation of ALT and AST following testosterone
initiation, while feminizing GAHT is unlikely to induce such
changes. Importantly, alcohol abuse and obesity are strongly
associated with liver function abnormalities in transgender
populations (179). Thus, more clinical trials and basic studies
are needed to delineate the molecular pathways that mediate the
sex difference in the liver. Although long-term GAHT under the
supervision of clinicians and mental health professionals is not
likely to induce evident liver injury, we cannot ignore that many
transpeople commonly use sex hormones without any medical
supervision and the aware of the potential risks, particularly in the
developing world (180). Since irregular and high dosages of sex
hormones are common in those transpeople, it is important to test
the possible hepatotoxicity and hepatoprotection of those
hormones in animal models and, if available, from medical
records (Figure 4).
FIGURE 3 | Possible involving mechanisms of sex/sex-related hormones in the regulation of the gut-liver axis. The intestinal microbiome is a complex microbial
ecosystem. Androgen induced dysbacteriosis may aggravate PCOS and reduce the circulating Gln/Glu ratio. The study on the effects of intestinal microorganisms on gut
brain mediators and sex hormones in patients with PCOS showed that prolactin, LH and LH/FSH ratio increased significantly, while brain-gut mediators and SCFAs
decreased. Estrogen can improve colitis and protect mitochondrial function by ESRRA-mediated autophagy. One of the main regulators of circulating estrogen is the
intestinal microbiome via the secretion of GUS. Progesterone promotes the growth of bifidobacteria in the third trimester of pregnancy and transmits it to newborns.
Probiotic Lactobacillus rhamnosus GG can prevent epicallopregnanolone sulfate-mediated FXR activation and bile acid synthesis, so as to reduce liver bile acid
accumulation and liver injury in ICP patients. Dysfunction of intestinal microbiota may lead to LPS leakage, inflammatory response, and GnRH secretion abnormality.
ESRRA, estrogen related receptor alpha; FSH, follicle-stimulating hormone; FXR, farnesoid X receptor; GnRH, gonadotrophin-releasing hormone; GUS, b-glucuronidase;
ICP, intrahepatic cholestasis of pregnancy; LH, luteinizing hormone; LPS, lipopolysaccharide; PCOS, polycystic ovary syndrome; SCFA, short chain fatty acid (Created
with Biorender.com with a publication license).
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CONCLUSION

Virtually all kinds of liver diseases are strongly linked with
hormonal influences (181, 182). Identifying the clinical
manifestation and underlying mechanisms of the “sexual
dimorphism” is critical for providing hints for the prevention,
management, and treatment of those diseases (76). HRT is used
to alleviate vasomotor (e.g. hot flushes and night sweats) and
vaginal (e.g. dryness and itching) symptoms of females during
menopause because of the reduction in estrogen levels.
Previously, the use of HRT is cautioned for patients with basic
liver disease since it may provoke or worsen cholestasis (183).
Other studies, however, have proved that HRT in patients with
chronic liver disease was quite safe and efficacious (184–186). In
particular, for patients with chronic liver disease and
osteoporosis, transdermal HRT and oral calcium/vitamin D
supplementation have been the first-line therapy (187, 188).
Results of exogenous sex hormone therapy in liver diseases,
both in humans and animals, are controversial. As identified by a
Cochrane Review, there is no significant beneficial effect of
anabolic-androgenic steroids on clinical outcomes (e.g. liver
histology, mortality, and liver-related mortality) of patients
with ALD (102). Several small clinical trials tried to examine
the efficacy of testosterone therapy in males with cirrhosis, but
none of them found beneficial outcomes (189, 190). Since
androgen receptor signaling has been shown to suppress
metastasis of HCC, combined therapy of Sorafenib and agents
that enhance the functional expression of androgen receptor may
suppress the HCC progression (106). Similar results are reported
in HBV-induced HCC because a small chemical compound that
can degrade androgen receptor (ASC-J9) successfully reduce
tumor foci and volume in a mice model (95). Estrogen therapy
and hormone treatment are generally considered to protect
against fatty liver, insulin resistance, and diabetes, although
this beneficial effect is not equal in males and females (100).
Nuclear receptor proteins (e.g. peroxisome proliferator-activated
Frontiers in Immunology | www.frontiersin.org 11
receptors) are possibly the main targets mediating such
protection in the liver (191). Importantly, active estrogen
metabolites and derivatives, which have limited affinity for
ERs, may play fibrosuppressive roles in the liver (192). Thus,
this provides novel therapeutic options for patients with cirrhosis
and portal hypertension. An unexplored but promising therapy
is the clinical use of prolactin since administration with prolactin
or prolactin-releasing peptide evidently improves steatosis in
mice obesity models (137), and ablation of prolactin receptor
increases hepatic triglyceride accumulation (193). More pre-
clinical studies and well-designed RCTs are needed to establish
the possible therapeutic effects of prolactin on NAFLD or other
chronic liver diseases. Perspectives and side-effects of sex/sex-
related hormones or their agonists/antagonists in liver diseases
therapy are summarized in Table 3.

Several problems hinder the development of sex and sex-
related hormone-based therapy in liver diseases: (1) lack of
mechanistic study, particularly the roles of canonical receptor
pathway and non-canonical receptor pathway, which provides the
detailed information of drug design and adverse effect; (2) lack of
study investigating the complicated interplay between sex/sex-
related hormones and other hormones, because several source
glands do not only secrete sex/sex-related hormones; (3) the
involving roles of precipitating factors of liver diseases, such as
alcohol abuse, smoking, and obesity, in sex and sex-related
hormone-based therapy need further investigation, both in pre-
clinical experiments and clinical trials; (4) maximize the alleviative
effects and minimize the side effects of synthesized hormones or
their derivatives in clinical application are necessary (e.g.
ethynyleestradiol has greater side effects than estradiol valerate);
(5) well-designed RCT studies are warranted to ensure the efficacy
and safety of novel sex and sex-related hormone-based therapy of
liver diseases, with special emphasis in the difference caused by
biological sex, age, psychiatric status, and menopause.

We cannot ignore the urgent need for clinical study of
possible liver injury after GAHT. Although the standards for
FIGURE 4 | Patient care, therapy selection, and balance between desired effects and potential side effects (with special emphasis in the liver) of gender-affirming
hormone therapy (GAHT) for transgender populations. AMPK, D2R, dopamine D2 receptor; GnRH, gonadotropin-releasing hormone; MC, menstrual cycle.
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optimal individual clinical protocols pf GAHT are generally
consistent around the world, the implementation of such
service is unequal because of health system infrastructure and
socio-cultural contexts (214). The large number of transgender
populations that meet difficulty in seeking professional medical
help for sex hormone recipes must not be overlooked.
Developing novel therapeutic agents for over-dose hormone-
induced liver injury is critically urgent for those populations.

In conclusion, both clinical andbasic studies provide evidenceof
sexual dimorphism in liver diseases, from acute liver injury to
cirrhosis and HCC. Delineating these observations requires a deep
Frontiers in Immunology | www.frontiersin.org 12
understanding of the characters of sex/sex-related hormones in
disease initiation and progression. Whether supplementation of a
specific hormone can ameliorate liver injury with acceptable side
effects require further basic and clinical studies, particularly for
transgender people needing GAHT.
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TABLE 3 | Perspectives and side-effects of sex/sex-related hormones or their agonists/antagonists in liver diseases therapy.

Sex/sex-
related
hormone
and their
agonists/
antagonists

Perspectives Possible side-effects References

Androgen Reducing the levels of ALT, AST, body weight, BMI and waist size; Improving lipid
profiles; Providing a potential new target for NAFLD treatment; A potential
therapeutic target of HCC

Worsening sleep apnea; Causing acne and skin
reaction; Stimulating noncancerous prostate growth
and existing prostate cancer; Inducing hepatic insulin
resistance in female mice

(41, 44, 47,
106, 194,

195)

Androgen
receptor
agonist

Reducing atherosclerosis, subcutaneous fat mass, and cholesterol levels in
ovariectomized female mice

Reducing the estrogen-induced up-regulation of
LDLR; Increasing HCC cell growth and apoptotic
resistance

(196–198)

Androgen
receptor
antagonism

Inhibiting HCC; Improving the efficacy of HCC immune-therapy to PD-L1 inhibitor Causing a temporary hepatotoxic effect (48, 49,
198)

Estrogen Reducing hepatic susceptibility to steatosis; Reducing hepatic lipid accumulation
and oxidative stress; Increasing the expression of hepatic apolipoprotein; Inhibiting
liver inflammation; Amelioration of liver fibrosis and cirrhosis; Decreasing the
deposition of type I and III collagen protein, the total hepatic collagen content and
MDA; Reversing liver cell destruction, macrophage accumulation and hepatic
stellate cell activation; Reducing portal pressure and increasing hepatic blood flow;
Inhibiting HCC

Causing hepatotoxicity such as intrahepatic
cholestasis in susceptible females during pregnancy;
Inducing acute hepatic porphyrias

(53–56, 59–
68, 70–73,

199)

Estrogen
receptor
agonist

Improving lipopolysaccharide-induced acute liver Injury; Ameliorating liver cirrhosis in
rats by inhibiting the activation and proliferation of hepatic stellate cells; Ameliorating
hepatic steatosis; Ameliorating liver fibrosis and intrahepatic vascular resistance

Unknown (200–203)

Estrogen
receptor
antagonism

Unknown Increasing portal pressure and decreased hepatic
blood flow

(67)

Progesterone Regulating lipophagy to improve steatosis Inducing metabolic liver injury; Increasing hepatic
glucose production via the modulation of
gluconeogenesis; Inducing DILI in females;
Enhancing hepatitis E virus replication; Increasing risk
of ICP; Inducing abnormal proliferation and mitosis in
liver cells; Contribution of the development and
chemoresistance of liver cancer

(80–92,
204)

Progesterone
antagonists

Improving steatosis, insulin sensitivity, and adipocyte ballooning in NAFLD mice Potential liver toxicity (increased levels of
corticosterone and transaminase)

(205–207)

GnRH Alleviating acute hepatic porphyria Promoting liver fibrosis; Leading to elevated
circulating LDL-C levels

(108, 114,
124, 199)

GnRH agonist Unknown Elevating serum liver injury-related enzyme; Reducing
liver growth in PLD;

(148, 208,
209)

LHRH agonist Increasing HDL content; Inhibiting HCC Reactivating hepatitis B virus (210–212)
FSH Maintaining the growth of bile duct cells A negative impact on blood lipid levels; Increasing

cholesterol accumulation; Increasing the risk of
NAFLD; Leading to the fasting hyperglycemia

(122, 124,
126, 127,

213)
Prolactin Ameliorating hepatic steatosis; Alleviating injury of the liver and possibly other

ethanol-targeted tissues; Restraining HCC growth
Inducing abnormal drug metabolism and causing
DILI

(137, 141,
143, 144)
July 2022 | Volume 13 | A
ALT, alanine aminotransferase; AST, aspartate aminotransferase; DILI, drug-induced liver injury; FSH, follicle-stimulating hormone; GnRH, gonadotrophin-releasing hormone; HCC,
hepatocellular carcinoma; HDL, high-density lipoprotein; ICP, intrahepatic cholestasis of pregnancy; LHRH, luteinizing-hormone releasing hormone; PD-L1, programmed death-ligand 1;
PLD, polycystic liver disease.
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