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The concept of cancer immunotherapy has gained immensemomentum over the

recent years. The advancements in checkpoint blockade have led to a notable

progress in treating a plethora of cancer types. However, these approaches also

appear to have stalled due to factors such as individuals’ geneticmake-up, resistant

tumor sub-types and immune related adverse events (irAE). While the major focus

of immunotherapies has largely been alleviating the cell-intrinsic defects of CD8+ T

cells in the tumor microenvironment (TME), amending the relationship between

tumor specificCD4+ T cells andCD8+ T cells has started driving attention aswell. A

major roadblock to improve the cross-talk between CD4+ T cells and CD8+ T cells

is the immune suppressive action of tumor infiltrating T regulatory (Treg) cells.

Despite their indispensable in protecting tissues against autoimmune threats, Tregs

have also been under scrutiny for helping tumors thrive. This review addresses how

Tregs establish themselves at the TME and suppress anti-tumor immunity.

Particularly, we delve into factors that promote Treg migration into tumor tissue

and discuss the unique cellular and humoral composition of TME that aids survival,

differentiation and function of intratumoral Tregs. Furthermore, we summarize the

potential suppressionmechanisms used by intratumoral Tregs and discuss ways to

target those to ultimately guide new immunotherapies.
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Introduction

Tregs constitute a small yet significant subset of CD4+ T cells with a distinct immune

suppressive role (1). Their primary function is enforcing peripheral tolerance and is largely

dictated by the activity of transcription factor Foxp3. Treg ontogeny involves thymic Tregs

(tTregs), that develop in the thymus from precursors of CD4+ helper T (Th) cells and

peripheral Tregs (pTregs), that differentiate from mature CD4+ Th cells in the periphery. A
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third Treg type is known as induced Treg (iTregs) that can be

produced ex-vivo from mature CD4+ Th cells by providing T cell

receptor (TCR) stimulus and TGF-b (2). A dual expression of

Foxp3 and IL-2 receptor a chain (CD25) accompanied by a low IL-

7 receptor (CD127) expression is widely accepted as the hallmark of

Treg ontogeny in mammals (3). Suppression mechanisms of Tregs

can be grouped into active and counteractive modes, where active

mode represents the production of immune suppressive cytokines

by Tregs such as IL-10, TGF-b, IL-35, adenosine and counteractive

mode includes removal of crucial elements for the activation and

survival of effector T cells such as peptide-MHC class II, CD80-

CD86, and IL-2 (4–12) (Figure 1). While it is largely unknown

which mechanism(s) predominate in vivo, it is widely accepted that

stimulation of Treg TCR precedes the suppressive activity.

The major role played by Tregs is to prevent autoimmunity

as evidenced by the fatal multiorgan autoimmunity in patients

with IPEX (Immune dysregulation, Polyendocrinopathy,

Enteropathy, X-linked) syndrome and Scurfy mice that harbor

deleterious Foxp3 mutations (13, 14). Despite critical

importance, Treg activity is not desired in certain niches, such

as sites of chronic infection and the tumor microenvironment

(TME). It has been shown that the changes associated with

tumor growth, such as altered nutrient composition and oxygen
Frontiers in Immunology 02
availability, cytokines and chemokines released by tumor cells,

stroma and immune cells also favor Treg infiltration and effector

T cell exhaustion. These also is a correlation with disease

progression and resistance to immune checkpoint inhibitors

(ICI), hence Treg infiltration of the TME has started to be

appreciated as a biomarker and predictive factor for tumor

progression and therapy response (15, 16). Moreover, this

highlights the need for more specific approaches to reduce

Treg to effector T cell ratio in the TME. To help achieve this

goal, this review focuses on the factors that recruit Tregs to the

tumor site, promote their differentiation and activity in the TME

as well as biomarkers that distinguish tumor-specific Tregs from

tumor-specific CD4+ effector T cells and self-specific Tregs that

protect against autoimmunity.
How do Tregs populate the tumor
microenvironment?

Antigen-T cell receptor interactions

TCR and antigen-MHC interactions constitute the essence

of T cell development, function, and tolerance. T cell precursors
FIGURE 1

Factors that facilitate Treg infiltration of the TME Tregs that are presented tumor antigens by professional APCs in the tumor draining lymph
node upregulate chemokine receptors including CCR4 and CCR8 and migrate towards CCL17, CCL22, CCL1 gradient created by TME. Once in
tumor tissue, Tregs have subsequent encounters with intratumoral APCs where they upregulate surface expression of coinhibitory receptors
including PD-1 and LAG3. Intratumoral Tregs also express CTLA-4, Nrp-1, lactic acid transporter MCT-1 and free fatty acid (FFA) scavenging
receptor CD36 on their surface as well as nuclear factors such as PPAR family of transcription factors and SREBP-1 responsible for FFA
oxidation. TGF-b from tumor cells, stroma and immune cells induce intratumoral pTreg generation. Tumor and immune cell IDO activity and
reduced glucose concentration of TME inhibits mTOR in effector T cells (Teff) and inhibit their function.
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start to recognize antigens in thymic cortex as soon as they

successfully assemble a pre-TCR complex on their membrane.

Pre-TCRs that are capable of binding self pMHC, get through

positive selection, continue rearranging TCRa loci in both

alleles, then enter thymic medulla and encounter another set

of self pMHCs. This encounter subjects fully rearranged TCRab
chains to a negative selection, which then determines the T cell

fate. Although it is still debated, traditionally it has been assumed

that the affinity of a single interaction between individual TCR

molecule and self pMHC determines the fate of T cells

precursors. In this affinity-based model for negative selection,

the strongest signal leads to elimination of the T cell clone

altogether, weak signals lead to generation of conventional

(effector) T cells while the signals in between tend to produce

Tregs (1, 17–19). However, more recent studies support an

avidity-based model where the fate of CD4+ T cell precursor is

based on the timing and density of the interactions between TCR

and self-antigens as the major determinant (20–22). This allows

for T cells that have fewer reactions with antigens to become

conventional T cells, T cells that have the highest number of

interactions with self-antigens to be deleted, and the T cells that

have moderate amounts of interaction with self-antigen to

become Tregs (20). A common feature for both models, is that

they demonstrate the TCR-pMHCII interactions as the key

determining factor for T cell fate. However, it’s also possible

that costimulatory pathways, integrins, and cytokines further

tune the TCR signals and ultimately contribute to the lineage

decision for Tregs vs. effector T cells (23–25).

Antigens presented at the TME have been heavily

investigated due to their potential use as cancer vaccines (26).

These antigens can be divided into two large groups according to

their expression in normal tissues. Tumor associated antigens

(TAAs) can be expressed in normal tissues hence, the high

affinity T cell clones specific for TAAs are mostly deleted from

the repertoire during thymic development. Therefore, their use

for immunotherapies is limited due to the lack of good effectors

that would use them and the possibility of off-target toxicity

against normal tissues. Because TAA-specific Tregs that are

present in the repertoire unlike effector T cells, it is possible

TAA presentation can selectively recruit them. The second

group of antigens is tumor specific antigens (TSA), also

known as neoantigens. These occur due to mutations in tumor

genome, thus perceived as foreign by immune cells. They can

induce significant anti-tumor T cell response as TCR repertoire

can display a full spectrum of affinities for foreign antigens.

However, their role in Treg recruitment and conversion is largely

unknown (27–29).

TCR-pMHCII interactions are also critical for mature Tregs

to home and function in the periphery. Because mature Treg

repertoire is equipped to detect self pMHCII, a pathological

expression of tissue antigens on MHCII could possibly engage

and expand particular Treg clones in the secondary lymphoid

organs (30, 31). Depending on the inflammatory context that
Frontiers in Immunology 03
tissue-specific Tregs see their antigen, they can unleash a myriad

of suppressive mechanisms such as the removal of self pMHCII

and CD80-86 from APC surface, IL-2 from potential autoimmune

clonal escapees and an active production of anti-inflammatory

mediators (4–12, 32). Tumor site gradually diverges from adjacent

healthy tissue due to increasing mutational burden, emerging

tumor stroma, and new blood vessels. Hence, antigenic profile of

tumor deviates from normal tissue where those antigens can be

presented on MHCI and MHCII by both tumor itself and the

APCs within tumor and draining lymph node (33). This

potentially helps tumor-reactive bona fide tTregs to migrate into

tumor site. An alternative way tumor site can be enriched in Tregs

is the differentiation of tumor-reactive effector CD4+ T cells into

pTregs. This path is mostly attributed to the role of TGF-b in

inducing Foxp3 expression in effector CD4+ T cells in addition to

its prominent role in transforming the architectural and immune

scapes of TME (34–39)

Tregs display a limited TCR repertoire within the TME,

suggestive of a clonal enrichment for Tregs that recognize TAAs

and TSAs (40, 41). Due to a lack of reliable markers that

distinguish the origin of Tregs, it is largely unclear to what

extent pTregs vs tTregs make up these clones (42). Based on

limited overlap between the TCR repertoires of tumor

infiltrating effector CD4+ T cells and Tregs, some have argued

that pTregs do not play a prominent role in the TME (15, 43, 44).

However, a single snapshot of the TIL repertoire may be

misleading due to a number of factors including differences in

the metabolic adaptation and survival of Tregs and effector T

cells in TME. It is possible that TME imposes a bottle-neck for

the incoming tumor-specific CD4+ T cells due to hostile

metabolic environment where the ones that differentiate into

pTregs survive and others face their demise. This may gradually

build a tumor-specific Treg repertoire composed of

metabolically adapted tTregs and pTregs, while CD4+ effector

T cell repertoire may reflect a constantly replenished pool from

periphery. Hence a single repertoire analysis can potentially

capture relatively older Treg clones together with freshly

migrating CD4+ effector T cells reacting to a changing antigen

scape. Moreover, as tumor progresses, clonal representation of

effector T cells may be actively skewed by Tregs via antigen-

specific suppression mechanisms. We have previously shown

that antigen-specific Tregs can steal their cognate pMHCII from

DCs, resulting in an antigen-biased suppression in vivo (45). If

this is a prominent suppression mechanism in the TME, it may

be another reason why some effector CD4+ and CD8+ T cell

clones vanish from TIL repertoire while others remain (46, 47).
Migration and homing of Tregs
to tumor site

Tregs that are primed by dendritic cells in secondary

lymphoid organs upregulate an array of chemokine receptors
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and adhesion molecules can then migrate into tissue (48, 49).

CCR4 and CCR8 expression on Tregs have long been implicated

in Treg recruitment to TME (39, 50–53). CCR4 responds to

CCL17 and CCL22, most ly re leased from severa l

immunologically active “hot” tumors, while CCR8 responds to

CCL1 gradient (51, 54, 55). It has been shown that inhibition of

CCR4 signaling diminishes Treg infiltration of the TME while

Treg numbers are maintained in the periphery (54).

Furthermore, depleting CCR4+ Tregs seems to reduce the

tumor burden both as a standalone therapy and in

combination with checkpoint blockade in certain tumor

settings (54, 56–60). Despite the potential of targeting CCR4

for immunotherapies, exact role of CCR4 in Treg development,

function and tumor-Treg crosstalk remains elusive (61). To

properly address these points, future studies using constitutive

and inducible conditional knockout animal models, where CCR4

deficiency is restricted to Tregs, are required. Similar to CCR4,

CCR8 has also been noted for its specificity to Treg that have

infiltrated the TME (39, 62). While antibody mediated depletion

of CCR8+ Tregs via antibody dependent cell cytotoxicity

(ADCC) can ameliorate the tumor burden, blocking CCR8

activity using antibodies that are devoid of ADCC capabilities

doesn’t seem to create the same effect (52). Furthermore,

comparison of CCR8 knockout and wild type mice revealed

that Tregs infiltrate the TME similarly, suggesting a trivial role

for CCR8 in Treg recruitment and function (63). Similar to

CCR4, the contribution of CCR8 to Treg recruitment needs to be

further elucidated in mouse models that specifically lacks CCR8

in Tregs. Hypoxic environment of TME has also been implicated

in recruitment of Tregs along with myeloid derived stromal cells

(MDSCs) and tumor-associated macrophages (TAMs) (64–66).

Hypoxia driven release of CCL28 from tumors has been shown

to recruit CCR10 expressing Tregs that contribute to

angiogenesis by VEGF production (67–69). Tregs also require

cell adhesion molecules including ICAM-1, L-selectin, P-

selectin, integrin aE (CD103) and VLA-4 to home to

secondary lymphoid organs and inflammation site (70). While

majority of these factors also play role in effector T cells homing,

Nrp-1-Semaphorin-4a axis has recently been recognized for its

unique role in enriching a stable, suppressive intratumoral Treg

population in mice and human (71–74). Although Nrp-1 is also

known as a co-receptor for vascular endothelial growth factor

(VEGF) that regulates endothelial cell adhesion and

angiogenesis, to what extent it plays role in Treg homing to

TME remains to be elucidated (75).
Metabolism

Changing nutrient, metabolite and oxygen composition of

the tumor affect presence and function of anti- and pro-tumor

immune cells (76–78). Upon activation, naïve T cells switch

from oxidative phosphorylation (OXPHOS) to aerobic glycolysis
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to meet the needs of activated T cells (79). This metabolic

adaptation is similar to the Warburg effect seen in cancer cells,

where tumor prefers quick yet less efficient energy supply from

glycolysis over OXPHOS regardless of oxygen tension (80).

However, not only this depletes glucose in TME and puts

effector T cells in a hyporesponsive state, but also hinders T

cell wellbeing via increasing lactate (80, 81). While effector T

cells suffer in this hostile landscape, Tregs thrive largely due to

their adaptations for utilizing fatty acids and lactate (82–87)

(Figure 1). T cell activation in the presence of CD28 stimulation

upregulates machinery for glycolysis via PI3K/Akt/mTOR (the

mammalian target of rapamycin) pathway. mTOR activity

increases glucose and amino acid transporters on cell

membrane, stimulates the hypoxia-inducible factor-a (HIF1-

a), c-Myc, altogether maximizing nutrient uptake, glycolysis and

glutaminolysis (88–90). Foxp3 suppresses c-Myc expression,

thus limits glucose uptake and glycolysis of Tregs while

promoting OXPHOS (91, 92). Hypoxia-driven HIF1-a
activation has been shown to increase Treg fragility by binding

Foxp3 and targeting it for proteosomal degradation (73, 93, 94).

However, there is conflicting evidence on the overall effects of

hypoxia on Tregs as, it also promotes TGF-b expression and

signaling, hence can facilitate pTreg generation (95–97). In

highly glycolytic tumors, glucose is broken down into lactate

that can be taken up by Tregs via MCT1 lactic acid transporter.

Tregs have been shown to metabolize lactic acid into

phosphoenolpyruvate (PEP) in lactic acid rich, glucose poor

environments. This has been shown to increase intracellular

calcium and NFAT translocation in Tregs, but not in CD8+ T

cells, and preserved suppressive abilities of Tregs in vitro (87).

Mice with specific deletion of MCT1 lactic acid transporter in

Treg compartment, displayed increased effector CD8+ and CD4+

T cell activity in the TME that was further enhanced upon PD-1

blockade (87). Tumor growth is also associated with increasing

free fatty acid (FFA) content of TME (98–100). It has been

shown that both tumor-associated myeloid cells and Tregs take

up FFAs via scavenger receptor CD36 (101). CD36-mediated

FFA signals through PPAR-b and promotes mitochondrial

fitness and intratumoral Treg survival. Treg-specific deletion

of CD36 selectively impairs intratumoral Tregs and reduces

tumor burden without overt autoimmunity (102) .

Furthermore, comprehensive transcriptome analyses of Tregs

from tumor and peripheral tissues of mouse melanoma, breast

cancer and head and neck squamous cell carcinoma revealed

that lipid metabolism is among the top enriched pathways

among intratumoral Tregs (86, 103). This analysis also

identified sterol-regulatory-element-binding proteins (SREBPs)

as crucial transcription factors that control lipid metabolism and

homeostasis of Tregs in the TME. Tregs deficient in SREBP1

cleavage activating protein (SCAP) were found less able to

maintain a suppressive phenotype within the TME due to

impaired SREBP activity (86, 104). Phenotype of Treg-specific

SREBP1 deletion is similar to that of CD36, where mice don’t
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develop systemic inflammatory disorder, and have improved

anti-tumor responses. It is worthwhile noting that SREBPs also

play role in metabolism of healthy tissues, therefore broad

targeting of SREBPs may pose serious risks for off-target

toxicity (104). Lastly, Indoleamine 2,3-dioxygenase (IDO) is an

enzyme expressed by APCs, epithelial cells, vascular

endothelium and tumor cells that contributes to tolerogenic

milieu in TME. It metabolizes the essential amino acid

tryptophan into kynurenine, thus induces the stress-response

kinase GCN2 that suppresses mTOR activity. Reduced mTOR

activity can cause Foxp3 induction in effector T cells (105).

Kynurenine has also been found to activate transcription of the

aryl hydrocarbon receptor (AHR) that further promotes Treg

differentiation. IDO is another attractive target for monotherapy

and combination therapies with ICI (105–107).
Targeting the suppression
mechanisms used by Tregs
in the TME

While reducing Treg infiltration of the TME is a desirable

goal for cancer immunotherapy, targeting suppression

mechanisms of Tregs may also provide good outcomes. This

may especially be helpful in treating established tumors that

have already been enriched with Tregs. Tregs have been shown

to require an antigen encounter in the tumor-draining lymph

node and subsequently within the tumor to optimally exert their

suppressive functions (31). Activated Tregs can suppress APCs

and effector T cells using both antigen-specific and bystander

mechanisms. While their bystander effects are mostly mediated

through suppressive cytokines, antigen-specific suppression

relies on a contact-dependent removal of antigenic peptides

(4). The use of these mechanisms by Tregs is dictated, for the

most part, by antigen density and the inflammatory context it is

presented in. Compared to a pathogen activated immune

response, anti-tumoral immune response is surrounded by an

immunosuppressive milieu that inhibits antigen presentation

and overal l lymphocyte function (108). In such a

microenvironment, some Treg clones seem to proliferate and

can possibly reach substantial numbers at later stages,

outcompeting the effector T cells. Although reduced clonal

diversity of Tregs may point out to a Treg response against

particular tumor-derived antigens, it is hard to say that they

operate in an antigen-specific manner (15, 40, 109). Instead,

there may be unique combinations of antigen-specific and

bystander mechanisms that Tregs tailor for the type and stage

of the tumor based on the microenvironmental cues they receive.

Although we are still a long way from deciphering the multiverse

of suppression mechanisms, some useful clues from mouse

models have started to point us in the right direction for

finding Treg mechanisms that may be worth targeting.
Frontiers in Immunology 05
Contribution of Tregs to the regulatory
milieu of TME

Tregs have been reported to release a plethora of cytokines

that inhibit immune responses. Among those, IL-10, IL-35 and

TGF-b have been intensely investigated for their contribution to

Treg mediated suppression. While systemic effects of Treg

specific deletion of these cytokines are controversial, their

production by Tregs seem to be critical in particular niches

such as epithelial barriers and TME (110–116).

IL-10 is a pleitropic cytokine that has immunoregulatory and

immune activating effects. Treg-derived IL-10 has been shown to

suppress antigen presentation and effector T cell function in

vitro, and promote tolerance at the intestinal lamina propria in

vivo. Although it is mostly produced by tumor associated

myeloid cells and Tregs, overall effects IL-10 on tumor

immunity remain elusive (117–119). It has been reported that

tumor associated M2-type macrophages produce IL-10 to

weaken the anti-tumor immunity in various cancer types (120,

121). Treg-derived IL-10 was shown to facilitate CD4+ and CD8+

T cell exhaustion by activating Prdm1 locus and upregulating

BLIMP-1 mediated expression of PD-1, LAG3, TIM3, TIGIT,

2B4 (113, 122). On the other hand, studies that introduced

PEGylated IL-10 for therapy elicited improved CD8+ TIL

function and metabolic profile in mouse models and patients

with solid tumors (123–127). Moreover, tumor targeted delivery

of IL10-cetuximab fusion protein reduced apoptosis of

intratumoral CD8+ T cells, boosted IFN-g production and

decreased tumor burden (124). A multicenter phase 1 clinical

trial for PEGylated IL-10 monotherapy and combination

therapy with anti-PD-1 also demonstrated expansion of

antigen experienced CD8+ T cells in advanced tumor patients

in both groups, further supporting an activating role for IL-10 in

tumor immunity (128). However, the overall effect of Treg-

derived IL-10 in TME and the strategies to target it require

further elucidation.

IL-35 is a suppressive cytokine that belongs to IL-12 family.

It is a heterodimer composed of Epstein-Barr-virus-induced

gene (Ebi-3) and IL-12a chain (p35) and its expression has

been detected in a variety of tumors (129, 130). A Treg specific

Ebi3 deletion was shown to ameliorate anti-tumor responses

similar to the effects observed in anti-IL35 treatment of wild type

mice suggesting that depletion of IL-35 expressing Tregs and/or

blocking IL-35 activity can be developed as potential

immunotherapies (131, 132). IL-35 has been shown to act

together with IL-10 in TME to induce BLIMP-1 mediated

upregulation of inhibitory receptors on tumor-reactive CD4+

and CD8+ T cells (122). Furthermore, IL-35 release by Tregs has

been shown to confer a regulatory phenotype to Foxp3- effector

T cells in an IL-10 dependent manner (131). These cells, called

iTr35, represent a stable suppressive population and can

perform infectious tolerance in TME and transplant settings
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(133). More recently, IL-35 expression has been attributed a role

in tumor cell extravasation and metastatic processes (134–136).

Whether IL-35 producing Tregs are involved in metastasis

remains elusive.

TGF-b is another cytokine that has important roles in

immunoregulation and malignant transformation (137–139).

High plasma TGF-b concentration and tumor TGF-b
expression are used as indicators of poor prognosis in late

stages of cancer and may help predict immunotherapy

resistance in cancer patients (140–142). TGF-b blockade was

shown to have a synergistic effect with checkpoint inhibitors in

animal models, therefore, multiple clinical trials have

investigated therapeutic effects of TGF-b inhibition as a

monotherapy and in combination with ICIs (140). While

TGF-b is secreted mostly by tumor and tumor associated

fibroblasts, it can also be released by activated Tregs in a

paracrine fashion. Upon activation, Tregs express the surface

receptor glycoprotein-A repetitions predominant (GARP),

which tethers inactive latent TGF-b complex to the Treg

membrane. Upon cellular interactions, aVb8 integrins can

activate TGF-b in-cis and trans (143, 144). This provides a

local, niche-restricted delivery of biologically active TGF-b by

Tregs. Among T cells, GARP expression is limited to activated

Tregs and in mice with Treg-specific GARP deletion, mice

develop spontaneous colitis resembling the phenotype seen in

Treg-specific TGF-b deletion. Furthermore, deletion of GARP in

Tregs confer protection from colorectal cancer, suggesting that

GARP may be an ideal drug target for inhibiting TGF-b
mediated immunosuppressive effects of Tregs in colorectal

tumors (145–149). GARP is also expressed by tumor cells,

providing a reservoir of TGF-b, thus GARP inhibition may

have broad tumor-directed effects beyond limiting Treg

suppression (146, 150–152).

A potential mechanism whereby Tregs can alter TME is the

removal of extracellular ATP by its surface ectonucleotidases,

CD39 and CD73. Rising extracellular ATP largely reflects tissue

injury and hypoxia and is perceived by the immune system as a

danger signal (153). While low and moderate levels of

extracellular ATP provide activating signals to T cells via

purinergic P2XR receptors, high levels can be toxic leading to

mitochondrial dysfunction and cell death. However, this is not a

Treg-specific mechanism. In fact, a plethora of innate and

adaptive immune cells, including myeloid cells, DCs, B cells,

effector T cells and Tregs, can metabolize ATP via CD39 and

CD73 (154). While CD39 degrades ATP into AMP, CD73

metabolizes AMP into immunoregulatory adenosine (155,

156). Adenosine binds to adenosine receptor 2a (A2a) on CD8

+ T cells and NK cells and inhibit their anti-tumor activity (157,

158). Overall, targeting CD39, CD73 and/or A2a receptor one by

one or in combination are attractive strategies to enhance anti-

tumor immune responses.
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Costimulatory and coinhibitory pathways
used by Tregs

Tregs express a plethora of costimulatory and coinhibitory

molecules, mainly members of the CD28-B7 family and the

tumor necrosis factor receptor superfamily of receptors (159,

160). CTLA-4 is one of the most well-known coinhibitory

receptors of CD28-B7 family that is constitutively expressed on

Tregs while its expression on the effector CD4+ and CD8+ T cells is

induced following activation (161). CTLA-4 regulates effector T-cell

responses in cell intrinsic and extrinsic manners, cell-extrinsic

functions primarily being operated by Tregs (162). CTLA-4 has

been shown to quench the signals downstream of TCR and CD28 at

the effector immune synapse, compete with costimulatory receptor

CD28 for binding CD80-CD86, downregulate CD80-CD86

expression and remove CD80-CD86 from APCs via trogocytosis

and transendocytosis (Figure 2) (7, 11, 162–167). However, whether

Tregs use CTLA-4 as a major player in maintaining peripheral

tolerance or suppressing anti-tumoral immunity is still debated.

While a Treg specific deletion of CTLA-4 from birth causes severe

autoimmunity and death, an induced deletion during adulthood

displays no overt autoimmunity with a slightly enhanced resistance

to experimental autoimmune encephalomyelitis (111). This

discrepancy possibly points out the importance of CTLA-4 in

Treg development instead of function, and also suggests a role for

CTLA-4 in tuning the CD28-driven homeostatic Treg proliferation

(111, 168). Furthermore, suppressive ability of CTLA-4 deleted

Tregs were found unchanged, suggesting that CTLA-4 is not used as

a standalone mechanism by Tregs (45, 111). However, the overall

effect of Treg CTLA-4, if any, seems to be diminishing the duration

and quality of the contacts between APCs and effector T cells within

the TME (163).While the role played by CTLA-4 in the TME is still

obscure, the depletion of Tregs via anti-CTLA-4 antibodies seems

to be an efficient strategy to boost the anti-tumoral immune

responses. Yet, due to the well-established role of CTLA-4 in

maintaining peripheral tolerance, its broad inhibition poses a high

risk for serious irAE (169). This highlights the need for developing

more specific strategies and/or targeted drug delivery systems for

anti-tumoral immunotherapeutics.

Similar to CTLA-4, PD-1 is also tasked to quench the activation

signals transmitted by TCR and CD28 and plays a central role in the

immunosuppressive nature of the TME (170). High PD-1 expression

is one of the hallmarks of exhausted phenotype in T cells, hence the

blockade of PD-1-PD-L1 axis has been adapted as another ICI

modality (171, 172). Inhibiting PD-1 activity using antibodies against

PD-1 or PD-L1 has been shown to rejuvenate exhausted effector T

cells and reduce tumor burden (169, 171). While this therapy has

already made its ways to clinics, our understanding of its action is

largely limited to CD8+ T cells. However, a number of recent studies

attempted to lay out role of PD-1 in Treg biology and maintenance

in the TME (170). For instance, mice with Treg specific deletion of
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PD-1 displayed an activated phenotype and their increased

suppressive abilities ameliorated autoimmune pathology (173). In

the TME, high PD-1 expression on Tregs seems to be associated with

reduced suppressive ability, therefore, blocking PD-1 pathway may

revive those Tregs helping them more effectively compete with the

effector T cells (174). Recent findings demonstrated that PD-1

blockade is less effective in tumors that are enriched with PD-1high

Tregs, supporting the risks associated with activating Tregs in the

TME (171, 175, 176). This may also explain why ICI is more effective

when it is combined with Treg-depleting strategies. The synergistic

effect of anti-CTLA-4 (Ipilimumab) and anti-PD-1 (nivolumab)

may also point out to the benefit of removing Tregs to make ICI

more effective (177). However, clinicians should carefully evaluate

the options and timing for monotherapy vs combination therapies

case by case to keep irAE at bay (177, 178). In the context of new

combination therapies, dual PD-1 and LAG3 inhibition has gained

attention to reverse T cell exhaustion (179, 180). Similar to PD-1,

LAG3 expression also correlates with CD8+ T cell dysfunction that is

characterized by reduced capacity for proliferation and cytokine

production (181–183). As a corollary, LAG3 blockade reinvigorates

CD8+ T cell function however, its role in CD4+ effector T cells is

rather complex. Extracellular portion of LAG3 is cleaved off by

metalloprotease enzymes ADAM10 and 17 upon activation and

released as soluble monomeric LAG3 (sLAG3). LAG3 shedding was
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found critical for CD4+ T cell function in an elegant mouse model

where CD4+ T cells were introduced a non-cleavable LAG3 mutant

(184). This may be due to an incessant inhibitory signal through

mutant LAG3 which would otherwise stop because of shedding.

Alternatively, sLAG3 shed by CD4+ T cells has a local stimulating

effect on CD4+ T cells or DCs in an autocrine or paracrine fashion.

LAG3 harbors further complexities in Treg compartment. A Treg-

specific deletion of LAG3 from birth was found to reduce

autoimmune diabetes incidence and severity in NOD mice and

diminish immune infiltration of pancreas (185). This was possibly

due to exhausting effect of LAG3 expression on Tregs, similar to that

of PD-1 due to chronic stimulation within tissue (175, 176). On the

other hand, in experimental autoimmune encephalomyelitis and

adoptive transfer colitis models, adoptive transfer of LAG3 deficient

Tregs failed to protect against disease despite normal trafficking and

stable foxp3 expression suggesting that LAG3 can be required for

Treg mediated suppression in certain autoimmune settings while it

can be detrimental in others (186, 187). However, we still don’t know

which category tumor-specific Tregs fall in the spectrum of LAG3

mediated effects.

Another costimulatory molecule that plays role in fine-

tuning Treg activity is GITR (188). GITR is a member of the

TNFR superfamily of coreceptors that is constitutively expressed

at high levels on Tregs (189). Naïve effector T cells also harbor a
FIGURE 2

Targets for limiting intratumoral Treg activity based on in vivo mechanisms of suppression Treg-APC encounters activate antigen-specific and bystander
suppression mechanisms. Tregs interfere with effector T cells function directly via producing inhibitory cytokines IL-10 and IL-35, delivering bioactive
TGF-b via GARP-aVb8 integrin axis, degrading proinflammatory ATP into AMP by surface 5’ ectonucleotidase CD39 and cleaving AMP into tolerogenic
adenosine by 3’ ectonucleotidase CD73. Tregs can also deplete IL-2 by high affinity IL-2Ra (CD25), thus lead to effector T cell apoptosis. Indirect
suppressive mechanisms include removal of antigen-MHCII and CD80-CD86 via TCR and CTLA-4 mediated transendocytosis and trogocytosis events.
Tregs can also activate IDO activity via CTLA-4 reverse signaling into APC.
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low surface expression that is upregulated upon activation (190).

GITR seems to play a complex, context-dependent role in the

immune system and so far, it has been shown to promote effector

T cell activity in a cell-intrinsic manner, induce Treg expansion

and inhibit Treg suppressive function (160, 188, 191, 192). In the

context of tumors, stimulation of GITR pathway has been shown

to destabilize Tregs, equipping them with cytotoxic abilities

(192). While the effect of GITR monotherapy appears to be

limited and varies with the tumor type, adding GITR agonists to

PD-1 blockade has been shown to potentiate its anti-tumor effect

(160, 192). Therefore, GITR agonism presents a promising new

strategy for cancer immunotherapy hence, there are multiple

ongoing clinical trials investigating the effects of GITR agonism

and its combination with ICI in different cancer types (193, 194).
Strategies harnessing TCR and CD25 for
eliminating tumor-specific Tregs

CD25 is the high affinity IL-2 receptor expressed

constitutively at a high level by Tregs. It also gets expressed on

effector T cells, B cells, NK cells upon activation (195–197).

While a constitutive high expression seems to make it a reliable
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marker for murine and human Tregs, CD25 is not enough on its

own and needs to be combined with other indicators such as

Foxp3, Helios and/or lack or low expression of CD127 to

determine Treg lineage (198). Likewise, failure of CD25 in

distinguishing Tregs and activated effector T cells at sites with

an ongoing immune response, such as the TME, makes it an

unreliable target for immunotherapy. Indeed, CD25-targeting

agents can hamper the anti-tumor immunity by depleting

activated effectors or restricting their access to IL-2 and this

may explain, at least partially, why anti-CD25 antibodies that

have been used to deplete Tregs from the TME have not yielded

optimal results (196, 197, 199, 200). Another possible reason

could be the selection of an anti-CD25 antibody that

suboptimally engages the Fc receptors in the TME, leading to

a reduced ADCC (196). These setbacks have led to an effort to

develop antibodies with better characteristics such as an

improved intratumoral ADCC capability and an incessant IL-2

signaling in the effector T cells. These strategies, while not

completely specific for Tregs, have been shown to be effective

in boosting anti-tumor T cell response and reducing tumor

burden in mice (197). Furthermore, their combination with PD-

1 inhibitors has demonstrated significant synergistic effect,

somewhat similar to the combination approaches using CTLA-
FIGURE 3

A multipronged approach for outcompeting vs. eliminating tumor-specific Tregs Diagnostic workflow for revealing antigen-specific elements in tumor
tissue includes a multi-pronged approach; (A) Mass spectrometry-based detection of candidate antigens that potentially drive effector or regulatory T
cell expansion, (B) Single cell RNA and TCR ab VDJ sequencing for identifying and phenotyping the most frequently represented CD4+, CD8+ and Treg
clones. (C) Next step aims at selecting biologically relevant antigen-TCR combinations in vitro. Validated antigen and TCR information can be used to
develop strategies to selectively boost effector T cells and/or eliminate Tregs. Strategies for effector T cell support (Teff support therapy) include antigen
vaccines, adoptive transfer of TCR transgenic effector T cells that contain select effector T or Treg TCRs. Strategies for Treg inactivation/removal consist
of Treg antigen (ag) -MHCII tetramer to cease Treg-APC contacts, antibodies targeting select Treg TCR-CDR3 for removal (conjugated to a toxin or via
FcR mediated ADCC) and CAR-T or CAR-NK cells targeting Treg TCR-CDR3 for Treg removal.
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4 (196). Yet, these new approaches must be carefully tested in

clinical trials as the evidence for their ability to discriminate

peripheral vs. intratumoral Tregs in human body are still

lacking. This is a key safety point that should not be

overlooked as the attempts to elicit better Treg depletion

strategies may lead to intractable irAE.

One poorly understood characteristic of the TME that future

therapies can focus is the oligoclonal, potentially tumor-specific,

expansion of the intratumoral Tregs. As was shown for

secondary lymphoid organs in vivo, it is possible that the TME

harbors a competition between the effector T and Treg clones for

the tumor neoantigens (45). If so, a slow take over by the

neoantigen-specific Tregs may gradually transform the clonal

landscape of the TME for the intratumoral neoantigen-specific T

cells via mechanisms such as antigen-specific suppression by

pMHCII depletion and/or conversion into tumor-specific

pTregs due to suboptimal antigen stimulus and elevated TGF-

b as well as bystander mechanisms of suppression (40, 109).

Unfortunately, it has so far been difficult to capture these

possibilities due to a lack of tools such as reliable markers to

distinguish tTreg and pTregs and time-sensitive sampling and

analysis for the clonal representation and antigen-specificity of

Tregs and effector T cells. Until we have a better understanding

for how bystander and antigen-specific suppression mechanisms

operate in the TME, we can utilize TCR sequence and antigen

specificity of intratumoral Treg clones as a proxy to understand

the type of response that needs to be potentiated (Figure 3). This

would facilitate new antigen-targeted cellular biotherapies such

as TCR-transgenic T cell, CAR-T cell and antigen-loaded

immunogenic DCs and would ultimately revive or deliver right

set of effectors that can outcompete intratumoral Tregs.
Conclusion

The fine balance between intratumoral Tregs and effector T

cells is closely linked to disease prognosis. Tregs have a myriad of

adaptations that facilitate their survival and function in TME.

They can metabolize FFAs and lactic acid, hence survive in low

glucose, low oxygen environments. Tolerogenic milieu enriched

in TGF-b, adenosine and kynurenine can also induce Foxp3

expression in effector CD4+ T cells, further contributing to

intratumoral Treg pool. Several contact-dependent and

paracrine mechanisms have been proposed for Treg mediated

suppression. However, strategies targeting Tregs have so far been
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hampered by our limited success in delineating how they

suppress in-situ. This has been compounded by a lack of

reliable markers that discern tumor-specific Tregs from

tumor-specific effector CD4+ T cells and self-reactive Tregs,

taking us back to the drawing board due to unpredictable risks

of harming peripheral tolerance. Although antigen-targeted

precision therapies have a long way from clinics, they appear

to be a safer route to limit immune related adverse events. By

unraveling immune interactions taking place in TME

thoroughly, we would be able to lend a hand to the right

effectors in their tug of war with intratumoral Tregs.
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