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Immune checkpoint inhibitors (ICIs) are effective against advanced and even

perioperative non-small-cell lung cancer (NSCLC) and result in durable clinical

benefit, regardless of programmed death ligand-1 (PD-L1) expression status in

cancer. Existing clinical evidence shows that the effect of immunotherapy in

patients with EGFR-mutant NSCLC after the development of tyrosine kinase

inhibitor (TKI) resistance is not satisfactory. However, compared with

monotherapy, ICIs combined with chemotherapy can improve the efficacy.

Encouragingly, compared with that of patients with sensitive mutations, the

progression-free survival of patients with rare mutations who were treated with

ICIs was increased. Adequately maximizing the efficacy of ICIs in EGFR-mutant

NSCLC patients is worth exploring. In this review, we described preclinical and

clinical studies of ICIs or combined therapy for EGFR-mutant NSCLC. We

further focused on EGFR mutations and the cancer immune response, with

particular attention given to the role of EGFR activation in the cancer-immunity

cycle. The mechanisms for the natural resistance to ICIs were explored to

identify corresponding countermeasures that made more EGFR-mutant

NSCLC patients benefit from ICIs.

KEYWORDS
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Introduction

Among newly diagnosed patients with lung cancer, non-

small-cell lung cancer (NSCLC) patients accounted for the

highest proportion, approximately 80 percent of the total (1).

In most countries, the 5-year survival rate of patients diagnosed

with lung cancer between 2010 and 2014 was only 10% to 19%

(2). In the past 20 years, many advances in molecular detection

technology and molecular targeted therapy have shown promise

for NSCLC patients. Epidermal growth factor receptor (EGFR)

mutation is currently the most common target; approximately

10% to 15% of the Caucasian population and more than 50% of

Asian patients with non-squamous cell carcinoma carry this

mutation (3–5). Currently, clinical guidelines recommend

EGFR-tyrosine kinase inhibitors (TKIs) as a first-line therapy

for patients with advanced NSCLC (6–8) who are sensitive to

EGFR mutations and do not harbor drug resistance genes.

Compared with chemotherapy, treatment with first-generation

and second-generation EGFR-TKIs has resulted in a median

progression-free survival (PFS) of 9 to 13 months in patients

with advanced NSCLC, and the median PFS provided by third-

generation drugs was 18.9 months (9–12). However, nearly

inevitably, patients acquire resistance within 9-19 months (13–

15). Innovative therapies to overcome EGFR-TKIs resistance are

still under investigation.

In research insights of the last few years, immune checkpoint

inhibitors (ICIs), represented by programmed cell death receptor-1

(PD-1)/programmed death receptor ligand-1 (PD-L1) inhibitors,

have attracted increasing attention due to durable clinical benefit

along w1ith low toxicity in patients with NSCLC (16). Preclinical

studies have shown that EGFR activation can upregulate the

expression of endogenous PD-L1 on tumor cells, thus inducing

apoptosis of T cells and promoting immune evasion of EGFR-

mutant NSCLC (17). However, the fact that immunotherapy has

little effect in advanced NSCLC patients with EGFR-sensitive

mutations remains a challenge (18). Additionally, immunotherapy

in these patients may be positively correlated with the development

of hyperactive diseases, leading to increased toxicity and side effects

(18, 19). However, in a phase I study of nivolumab (CheckMate

012), 21 patients with NSCLC harboring EGFR mutations received

a combination of nivolumab and erlotinib, and the toxicity was

tolerable (20).

Some reports have noted that tumor immunogenicity (21–

23), the tumor microenvironment (TME) (24–26), copy number

variations (27, 28), tumor-specific mutations, and specific

intestinal bacteria (23) can influence the efficacy of ICIs. It was

suggested that the low efficacy of ICIs in EGFR-mutant NSCLC

was related to the specific TME, tumor mutation load (TMB)

and PD-L1 expression level (29). The precise boundaries and

interrelationships of these elements remain unclear and deserve

further exploration. In this overview, we summarized recent

studies on the application of PD-1/PD-L1 ICIs in EGFR-mutant
Frontiers in Immunology 02
NSCLC, mapped the cancer-immunity cycle of individual

patients, and tried to explore the potential mechanisms leading

to the poor clinical efficacy of ICIs in EGFR-mutant NSCLC,

providing ideas for the development of specific immunotherapy

or immunotherapy combinations.
Clinical outcomes of ICIs for EGFR-
mutant NSCLC patients

Recent clinical trials had found that ICI monotherapy has

few effects on patients with EGFR mutations. However, in

existing clinical studies, ICI combined with chemotherapy or

anti-angiogenesis had achieved encouraging results. While

ensuring the efficacy, the safety also should be guaranteed.

Here, we reviewed the clinical efficacy and toxicity of ICIs in

EGFR-mutant NSCLC (Tables 1–3).
PD-1/PD-L1 monotherapy

The phase III clinical trial CheckMate 057 confirmed (33) that

patients with advanced NSCLC who were treated with nivolumab

survived longer than those treated with docetaxel during or after

platinum-based chemotherapy, and it was reported for the first time

that ICIs did not improve PFS or overall survival (OS) in NSCLC

patients with EGFR mutations. Meta-analysis data from three

clinical trials (CheckMate 057, POPLAR and KEYNOTE 010)

proved that PD-1/PD-L1 ICIs did not prolong OS (HR=1.05,

95% CI: 0.70-1.55, P=0.81) in EGFR-mutant NSCLC patients (35)

compared with docetaxel. In addition, a meta-analysis of five trials

(CheckMate 017, CheckMate 057, KEYNOTE 010, OAK and

POPLAR) reported by Lee et al. also confirmed that prolonged

OS was not observed in the EGFR mutations subgroup (16). Most

studies have shown that PD-1 monotherapy may be ineffective in

patients with EGFR-mutant NSCLC (Table 1).
ICI-based immunotherapy combinations

Conventional chemotherapeutic drugs can promote

recovery of immune surveillance function in tumor patients.

Therefore, it was hypothesized that the ideal clinical effect can be

obtained by adding ICIs to chemotherapy in patients with

NSCLC with EGFR mutations. In the first-line setting of

CheckMate 012, PFS and OS were 4.8 and 20.5 months,

respectively, in the EGFR-mutant group, while PFS and OS

were 7.5 and 24.5 months, respectively, in the EGFR wild-type

group that received combination therapy of nivolumab and

chemotherapy (Table 2) (40). In another phase II study of

NCT03513666, when receiving a combination of toripalimab

and chemotherapy, the objective response rate (ORR) was 50%,
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and the median PFS was 7 months for EGFR-mutant NSCLC

after TKI resistance (42). The effects of the combination of

chemotherapy and ICIs are ambiguous because of the small

sample size, and more large clinical studies are worth

further exploration.

In addition to its well-known antiangiogenic effect,

bevacizumab has also been found to mediate immune regulation

(54–56). The results of an open-label phase III study, Impower 150

(NCT02366143), seemed to confirm this hypothesis. Regardless of

PD-L1 expression and gene alterations in patients with metastatic

NSCLC who did not receive chemotherapy, the PFS (8.3 months vs.

6.8 months) and OS (19.2 months vs. 14.7 months) of patients in

the chemotherapy ± atezolizumab + bevacizumab group (ABCP

group) were significantly longer than those of patients in the

chemotherapy + bevacizumab group (BCP group) (57).

Unfortunately, in patients with EGFR mutations, OS did not

benefit in the ABCP group compared with the BCP group

(HR=0.61, 95% CI 0.29-1.28) (57). ORIENT-31 was the first

phase III study to confirm that ICI combined with antiangiogenic

therapy and chemotherapy significantly improved PFS in EGFR-

mutant non-squamous NSCLC patients with EGFR-TKIs

treatment progress (58). The PFS was prolonged in group A

(sintilimab + IBI305 + chemotherapy) compared with group C

(placebo1 + placebo2 + chemotherapy): 6.9 months vs. 4.3months

(HR=0.750, 95% CI 0.337-0.639; P<0.0001). And the confirmed
Frontiers in Immunology 03
ORR were 43.9% and 25.2% in group A and group C respectively.

The combination of ICI and antiangiogenic therapy creates a new

pattern of EGFR-TKIs resistance.

In theory, cytotoxic T-lymphocyte antigen-4 (CTLA-4) and

PD-1 have a coordinated effect on antitumor immune responses.

The combination of ipilimumab and nivolumab was used as the

first-line treatment for EGFR-mutant NSCLC, and the ORR was

50% (43). In a subgroup of phase II study KEYNOTE 021, when

receiving a combination of ipilimumab and pembrolizumab, the

ORR was 10% for EGFR-mutant NSCLC after TKIs resistance

and 30% for the EGFR wild-type group. These trials indicated

that the efficacy of double ICIs needs further confirmation (44).
The heterogeneity of EGFR-
mutant subtypes

In a multicenter retrospective clinical cancer study, 171 NSCLC

patients with EGFR mutations were treated with PD-1/PD-L1 ICIs

or ICIs combined with a CTLA4 inhibitor (59). Immunotherapy

was less effective in patients with EGFR exon 19 deletion or L858R

mutation than in patients with wild-type EGFR. In addition, the

efficacy in the exon 19 deletion group was worse than that in the

exon L858R group (ORR, 22% in the wild-type subgroup, 16% in

the L858R subgroup, and 7% in the EGFR exon 19 deletion
TABLE 1 EGFR-mutant NSCLC patients benefit little from PD-1/PD-L1 monotherapy.

Clinical trial Line n Treatment ORR Median PFS
(months)

Median OS(months) Safety Phase

CheckMate
012 (30)

1 7 Nivolumab 14% in EGFRm, 30%
in EGFRwt

1.8 in EGFRm vs 6.6
in EGFRwt

18.8 in EGFRm
NR in EGFRwt

G3-4*: 1%, G5:
0%

1

NCT02879994
(31)

1 11 Pembrolizumab 0% – – TRAE: 46%, no
G4-5

2

NCT02008227/
OAK (32)

≥2 85 Atezolizumab (A)
vs Docetaxel (D)

5% NA 10.5 in EGFRm,
16.2 in EGFRwt;

G3-4:37% 3

CheckMate 057
(33)

≥2 82 Nivolumab (N) vs
docetaxel (D)

11% HR1.46(0.90-2.37) HR1.18(0.69-2.00); G3-5*:10% 3

KEYNOTE 010
(34)

≥2 86 Pembrolizumab (P)
vs Docetaxel (D)

NA HR1.79(0.94-3.42); HR0.88(0.45-1.70) G3-5*:13-16% 2/3

POPLAR (35) ≥2 19 Atezolizumab (A)
vs docetaxel (D)

NA NA HR#: 0.99 in EGFRm vs 0.70 in
EGFRwt with A vs D

G3-4*: 40%, G5:
4%

2

KEYNOTE 001
(36)

≥2 74 Pembrolizumab
vs docetaxel

4% 1.86 6.0 in EGFRm vs 11.9 in EGFRwt G 3–5: 6% 1b

PACIFIC (37) ≥2 43 Durvalumab (D) – – HR 0.76 (0.35~1.64) G3-4: 29.9% 3

ATLANTIC (38) ≥3 102 Durvalumab
-

3.6% for PD-L1
<25%, 12.2% for PD-

L1≥25%

1.9 9.9 for PD-L1 <25%, 13.3 for PD-
L1≥25%

G3-4: 5% 2

WJOG8515L
(39)

≥2 102 Nivolumab (N)
Carboplatin-
pemetrexed (CP)

N vs CP: 9.6% vs
36.0%

N vs CP:1.7 vs 5.6 N vs CP:20.7 vs 19.9 TRAE:60.8%
G3-5: 9.8%

2

frontie
NSCLC, non-small-cell lung cancer; EGFR, epidermal growth factor receptor; EGFRm, EGFR mutant; EGFRwt, EGFR wild type; PD-L1, programmed death-ligand 1; n, No. of EGFR
mutant patients; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; HR, hazard ratio; CI, confidence interval; TRAE, treatment related adverse event; AE,
adverse event; G, grade of toxicity. *TRAEs for the entire study population and not selected for EGFRm patients. #OS or PFS data not given for EGFRm subgroup. NA, not applicable; TKIs,
tyrosine kinase inhibitors.
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subgroup). New evidence from several recent studies suggested that

NSCLC patients with rare EGFR mutations had a priority response

to ICIs (Figure 1). Chen et al. showed that the good response of

patients with rare EGFR mutations in NSCLC, including patients

with exon 20 insertion or G719X, L861Q, or S768I mutations (69),

was associated with the concomitant expression of PD-L1 in the

TME (70) and the high incidence of CD8+ tumor-infiltrating

lymphocytes (TILs). The heterogeneity of the TME of distinct

EGFR mutations results in different immune responses to ICIs.

Further exploration of the pathological and immunological

characteristics of different subtypes may help us select the

population benefiting from ICIs.
The toxicity of ICIs

From existing preclinical and clinical studies, ICIs were generally

well tolerated asmonotherapy or in combination with chemotherapy

or anti-angiogenesis for EGFR-mutant NSCLC patients, and no

newly treatment-related adverse events have been observed.

However, it is worth noting that ICIs combined with EGFR-TKIs

enhanced toxicity among EGFR-mutant NSCLC patients.
Frontiers in Immunology 04
Some studies have shown that EGFR-TKIs can induce the

immunogenic apoptosis of tumor cells, recruit T cells or upregulate

the expression of PD1/PD-L1. Therefore, it is logical to combine

TKIs with ICIs. Dismally, in clinical trials, the combined application

of EGFR-TKIs and ICIs for the treatment of EGFR-mutant NSCLC

patients did not provide a significant clinical benefit but increased

side effects (Table 3). Compared with previous studies of EGFR-

TKIs monotherapy, pembrolizumab combined with erlotinib did

not improve ORR in the phase I/II KEYNOTE-021 trial

(NCT02039674) (49). Moreover, five of the seven patients treated

with pembrolizumab combined with gefitinib developed grade 4

hepatotoxicity, which led to premature termination of treatment. In

clinical, the application of ICIs should be cautiously considered in

patients receiving EGFR-TKIs.
Probable mechanisms responsible
for ICI resistance in EGFR-
mutant NSCLC

Collectively, according to preclinical and clinical trials,

EGFR-mutant NSCLC patients benefit little from ICIs,
TABLE 2 ICI-based immunotherapy combinations for EGFR-mutant NSCLC patients.

Clinical trial Line n Treatment ORR Median
PFS

(months)

Median OS
(months)

Safety Phase

with chemotherapy

CheckMate
012 (40)

1 6 Nivolumab + PT-DC 17% in EGFRm vs
47% in EGFRwt

4.8in EGFRm
vs 7.5 in
EGFRwt

20.5 in EGFRm
vs 24.5 in
EGFRwt

TRAE:7%,
G3-4*:50%,

Pneumonitis most
common

1

IMpower 130
(41)

≥2 NA Atezolizumab + PT-DC
vs PT-DC

NA 7.0 vs. 6.0
HR, 0.75

14.4 vs. 10, HR
= 0.98;

G3-5*: 32% vs 28% 3

NCT03513666
(42)

≥2 40 Toripalimab + PT-DC 50% 7.0 23.5 TRAE:97.5%, G3 -5:
65.0%

2

with CTLA-4 blockade

CheckMate
012 (43)

1 8 Nivolumab + ipilimumab
-

50% – – TRAE*: 72-82%, G3-4:
33-37%, no G5

1

KEYNOTE
021 (44)

≥2 10 Pembrolizumab + Ipilimumab 10% in EGFRm vs
30%EGFRwt

- - TRAE*:98%, G3-G5:
49%, one G5
pancreatitis

1/2

ICIs + VEGF Inhibitor + Chemotherapy

IMpower150
(45)

≥2 34 Atezolizumab (A) + bevacizumab (B) +
carboplatin-paclitaxel (CP)
Atezolizumab (A) + carboplatin-paclitaxel
(CP); bevacizumab (B) + carboplatin-
paclitaxel (CP)

70.6% for ABCP,
35.6% for ACP, 41.9%

for BCP

10.2 for
ABCP, 6.1 for

BCP
HR 0.38(0.21–

0.68)

NR for
ABCP,

17.5 for BCP

G3-4: 64% of ABCP,
68% of ACP, and 64%

of BCP

3

NCT03647956
(46)

≥2 40 Atezolizumab + bevacizumab +
pemetrexed-carboplatin

62.5% 9.43 the 1-year
OS rate was

72.5%.

G3-5: 37.5%, One G5
myocardial infarction

2

frontie
NSCLC, non-small-cell lung cancer; EGFR, epidermal growth factor receptor; EGFRm, EGFR mutant; EGFRwt, EGFR wild type; PD-L1, programmed death-ligand 1; n, No. of EGFR
mutant patients; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; HR, hazard ratio; CI, confidence interval; TRAE, treatment related adverse event; AE,
adverse event; G, grade of toxicity. *TRAEs for the entire study population and not selected for EGFRm patients. NA, not applicable; NR, not reached; TKIs, tyrosine kinase inhibitors; PT-
DC, platinum-doublet chemotherapy; ICIs, immune checkpoint inhibitors.
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especially ICI monotherapy, due to their heterogeneous immune

characteristics. Encouragingly, compared with that of patients

with sensitive mutations, the PFS of patients with rare mutations

who were treated with ICIs was increased. At present, the

specific mechanism that causes this phenomenon is not clear

and is worth exploring further. Daniel S. Chen et al. (71)

proposed that by understanding the individualized biological

features of patients, biomarkers associated with tumor immunity

may enable us to track the cancer-immunity cycle of specific

patients and customize precision immunotherapy or

combinatorial immunotherapy. In the following paragraphs,

we describe the main steps in the characteristic cancer-

immunity cycle of patients with EGFR-mutant NSCLC

(Figure 2) to explore the potential mechanism underlying the

poor immunotherapy response.
Decreased release of MHC-I and
MHC-II neoantigens

The T-cell-mediated anticancer response starts with the

release of new antigens produced by tumorigenesis that are

captured by antigen presenting cells (APCs). Immunogenic cell

death (ICD) accompanied by the release of neoantigens is an

irritation signal; tolerable or apoptotic cell death is an inhibitory

signal (72). Wu et al. (73) reported that the specific T-cell

response to the clonal tumor antigen encoded by EGFR-driven

mutation was successfully identified in a patient with advanced
Frontiers in Immunology 05
EGFR-mutant NSCLC who benefited from ICIs after developing

TKIs resistance. In other words, due to the presence of new,

highly immunogenic, and specific clonal antigens, ICIs have

potential application in NSCLC patients with acquired drug

resistance to EGFR-TKIs. Unfortunately, somatic mutations and

predicted major histocompatibility complex (MHC) class I and

class II neoantigens were significantly lower in EGFR-mutant

NSCLC than in EGFR wild-type tumors (P < 0.01) (74), which

inhibited anticancer responses and promoted immune evasion.

From this point of view, the investigation of ICD will provide

new approaches for tumor treatment in EGFR-mutant NSCLC.

Practically, a study has proven that combined antigen-capturing

treatment and ICIs have a positive impact on the cancer-

immunity cycle (75).
Decreased ability to capture
cancer antigens

Recently, an in vitro study by Nigro et al. (76) showed that

gefitinib-induced downregulation of CD47 expression can

promote phagocytosis of cancer cells by reactive cells, while

the establishment of gefitinib resistance can reverse this

response. When exposed to increasing drug concentrations,

the expression of CD47 (a “do not eat me” signal) on the

surface of PC9GR cells that were resistant to gefitinib was

significantly increased. Blocking the CD47/SIRPa axis by

adding a CD47-specific monoclonal antibody can significantly
TABLE 3 ICIs combined with EGFR-TKIs enhanced EGFR-mutant NSCLC patient toxicity.

Clinical trial Line n Treatment ORR Median PFS
(months)

Median OS
(months)

Safety Phase

NCT02088112 (47) 1 56 Gefitinib + durvalumab
dose escalation

63.3%-70% 10.1-12.0 - TRAE: 100%, G3-5 hepatotoxic
AEs:42.5%

1

NCT02013219 (48) 1 20 Atezolizumab + erlotinib 75% 15.4 32.7 G3: 43%
no G4-5 occurred.

1b

KEYNOTE 021 cohort
E and F (49)

1 19 Pembrolizumab +
erlotinib(n=12)/
gefitinib (n=7)

Erlotinib 41.7%,
gefitinib
14.3%

Erlotinib19.5,
gefitinib1.4

Erlotinib NR,
Gefitinib 13.0

P+E: TRAE: 100%, G3:33.3%,
no G4-5

P+G: TRAE: 85.7%, G3-4
hepatotoxic AEs: 71.4%

1/2

Myung-Ju Ahn, et al.
(50)

1 11 Durvalumab +
Osimertinib

82% 9.0 terminated early
owing to ILD

35%ILD 1b

Myung-Ju Ahn, et al.
(50)

≥2 23 Durvalumab +
Osimertinib

43% DOR:20.4 - 50% diarrhea, 41% nausea,
35% appetite decreased

1b

TATTON (51) ≥2 23 Durvalumab +
Osimertinib

43% – – TRAE:100%, G3-5: 48%. 22%
ILD with 8.7% G≥3

1b

CAURAL (52) ≥2 14 Durvalumab +
Osimertinib
vs Osimertinib

64% NR vs19.3 NR TRAE:100%, G3-5: 8%. One G2
ILD reported

3

CheckMate 012 (53) ≥2 21 Nivolumab + erlotinib 15% 5.1 18.7 G3: 24%, no G4-G5 3
frontie
NSCLC, non-small-cell lung cancer; EGFR, epidermal growth factor receptor; EGFRm, EGFR mutant; EGFRwt, EGFR wild type; PD-L1, programmed death-ligand 1; n, No. of EGFR
mutant patients; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; DOR, duration of response; HR, hazard ratio; CI, confidence interval; TRAE, treatment
related adverse event; AE, adverse event; G, grade of toxicity. *TRAEs for the entire study population and not selected for EGFRm patients. NR, not reached; TKIs, tyrosine kinase inhibitors;
ICD, interstitial lung disease; ICIs, immune checkpoint inhibitors.
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increase the phagocytosis of PC9GR by dendritic cells (DCs).

Similarly, an in vivo experiment confirmed that administration

of CD47-specific monoclonal antibodies significantly inhibited

the growth of lung cancer patient-derived xenotransplant

tumors via recruitment of macrophages into the TME (77).
Restriction of cancer antigen
presentation and T-cell activation

A recent study in vivo showed that EGFR E746-A750 deletion

mutant lung cancer can induce DC anergy and inhibit antitumor

immunity, while T-cell infiltration and DC function were restored;

meanwhile, the efficacy of ICIs in EGFR-19del tumors was

improved because of the use of TKIs in combination with

granulocyte-macrophage colony-stimulating factor (78).

Moreover, DCs in tumors show different phenotypes and

draining lymph nodes, and a marked reduction in the

proliferative activity of T cells in lymph nodes was also observed.

Regardless of whether tumor antigens are captured and

presented internally by APCs or transmitted externally, T-cell

activation is another strategy for interfering with the cancer-
Frontiers in Immunology 06
immunity cycle. In addition to homologous antigen recognition,

costimulatory signals are needed for optimal T-cell activation, while

in tumor tissues, not only the levels of costimulatory ligands but also

the levels of MHC molecules are reduced by immunosuppressive

factors (79). Some researchers analyzed the TME in mice with

EGFR-driven tumors: among TILs, the ratio of CD8+/CD4+ T cells

to CD8+/Foxp3+ T cells was markedly decreased compared with

that in normal lung tissue (80). In detail, they found a significant

increase in PD-1+ and Foxp3+ T cells in tumors, and PD-1 was

expressed on most Foxp3+ T cells. In other words, the PD-1

pathway and Tregs are the main factors that inhibit the function

of effector T cells. It is conceivable that blocking PD-1 in the EGFR-

driven mouse model of lung cancer did not change the number of

Tregs expressing high levels of CTLA-4, while combined dual ICIs

may have a coordinated effect.
Inhibition of T cells trafficking and
infiltration into tumors

Under the action of cell adhesion molecules and chemokine

receptors, activated T cells leave lymph nodes, enter the blood,
B

A

FIGURE 1

Clinical data of ICI-based immunotherapy for subtypes of EGFR-mutant NSCLC patients. (A) The PFS and OS of ICI-based immunotherapy for
subtypes of EGFR-mutant NSCLC. (B) The ORR and DCR of ICI-based immunotherapy for subtypes of EGFR-mutant NSCLC. NSCLC, non-small-
cell lung cancer; EGFR, epidermal growth factor receptor; n, No. of EGFR mutant patients; ORR, overall response rate; DCR, disease control rate;
OS, overall survival; PFS, progression-free survival; ICIs, immune checkpoint inhibitors; 19del, exon 19 deletion; Ex20 ins, exon 20 insertion.
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roll along the endothelium, exude from the blood circulatory

system and either infiltrate into or surround the tumor mass (81,

82). In EGFR-mutant NSCLC, EGFR signaling plays an

important role in tumor invasion activity by regulating

hypoxia-independent hypoxia inducible factor-1a (HIF-1a)
and vascular endothelial growth factor (VEGF) expression.

Cells with acquired resistance to EGFR-TKIs maintain high

levels of HIF-1a and VEGF expression, and this pathway is no

longer regulated by EGFR (83). VEGF expression interferes with
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the infiltration of CD8+ T cells into tumor tissue (84), while

angiogenesis and tumor growth continue (Figure 3).

Early studies confirmed that EGFR signaling activates c-Jun/

c-Jun N-terminal kinase and reduces interferon regulatory

factor-1 expression; the former increases CCL22 expression to

recruit CD4+ regulatory T cells, while the latter reduces the

induction of CD8+ T-cell infiltration via CXCL10 and CCL5

(85). Unfortunately, a number of clinical studies on the

combination of standard-dose TKIs and ICIs have been
FIGURE 2

The immunosuppressive TME throughout the whole cancer-immunity cycle in EGFR-mutant NSCLC. EGFR activation alters immune profiles
through the following pathways: the surface of cancer cells creates a “do not eat me” signal that inhibits professional phagocytic cells, such as
dendritic cells (DCs), from engulfing cancer cells due to the presentation of tumor antigens; promotes CTLA-4 expression to enhance the
inhibitory function of Tregs; increases the infiltration of Tregs in the TME and promotes tumor growth; increases mast cells that contribute to
angiogenesis and induces neovascularization by releasing proangiogenic factors; decreases CD8+ T-mediated antitumor activity, inhibiting the
expression of MHC (Figure 2); enhances T-cell apoptosis, promoting the M2-like polarization of macrophages and increasing the levels of IL-10,
CCL13, GDF15, CCL23, CXCL17, TGF-b, soluble PD-L1 and CCL2. CCL2 plays a critical role in the migration of MDSCs to the TME. MDSCs exert
antitumor immunosuppressive actions, such as producing immunosuppressive molecules, inhibiting antitumor functions, inducing T-cell
apoptosis, and upregulating Tregs. CAFs, with characteristics of MDSCs, in EGFR-mutant NSCLC might interfere with the immune response.
EGFR-mutant tumors secrete exosomes containing EGFR mutations or PD-L1 to promote distant metastasis. EGFR-mutant tumor cells may
change metabolic pathways, such as upregulating CD73 and converting ATP to adenosine. Massive adenosine exerts immunosuppressive activity
on a variety of immune cells: Tregs and accumulation of MDSCs, further attenuating antitumor function in NKs, B cells and DCs activity, skews
Mj polarization toward M2 macrophages and inhibits the CTL-mediated antitumor response, mediating tumor immune evasion. NKs, natural
killer cells; DCs, dendritic cells; IDC, immature dendritic cells; MDC, mature dendritic cells; Tregs, Treg cells; MHC, major histocompatibility
complex; MDSC, myeloid-derived suppressor cells; EGFR, epidermal growth factor receptor; TME, tumor microenvironment; ATP, adenosine
triphosphate; PD-L1, programmed death-ligand 1; Mj, macrophages; CTL, cytotoxic T lymphocytes.
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stopped prematurely due to severe side effects. Further

investigation suggested that low-fractionated EGFR-TKIs

(HypoTK I ) we r e mo r e e ff e c t i v e t h an s t a nd a r d

hyperfractionated EGFR-TKIs (HyperTKI) because HypoTKI

can induce more dsDNA and RNA release than HyperTKI in

vivo and trigger MyD88–type I IFN innate sensing pathways,

which enhance tumor-specific T-cell infiltration and

reactivation. More importantly, blocking with ICIs had a

synergistic effect without serious side effects (86). In

conclusion, therapies that improve T-cell transport and

infiltration may act synergistically with ICIs in EGFR-

mutant NSCLC.
Decreased ability of T cells to
recognize tumors

Antigens captured by MHC-I and MHC-II molecules are

presented to T cells by APCs. Some studies have shown that an

activating mutation in EGFR suppresses the expression of MHC-

I in NSCLC through the extracellular signal-regulated kinase

(ERK) kinase MEK pathway, which leads to the poor response of

NSCLC to immunotherapy. Homoplastically, other studies

suggested that in patients with EGFR-TKI resistance, T790 M-

negative tumors tended to respond more favorably to the ICI

nivolumab than T790 M-positive cells (87). In T790 M-positive

tumors, the activation of the EGFR pathway remains unchanged,
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which may lead to inhibition of MHC-I expression. These results

suggest that EGFR-TKIs combined with ICIs can improve the

response to immunotherapy. However, data from several early

studies conducted simultaneously with EGFR-TKIs and ICIs in

patients with NSCLC were disappointing (88–91), showing high

toxicity due to adverse events, such as interstitial lung disease

and elevated liver enzymes (89, 90). Therefore, further

investigation to determine the best treatment strategy for the

simultaneous or continuous use of EGFR-TKIs or MEK

inhibitors and ICIs in EGFR-mutant NSCLC is needed.

The T-cell receptor (TCR) lineage consists of thousands of TCR

clones, reflecting an individual’s immunity during aging, infection

and even malignancy. It is of high clinical value to distinguish the

clonality and diversity of TCR (Shannon index, richness, etc.) and

the overlap index (OLI) of unique TCR chain sequences identified

between tissue and blood. One study found that obvious curative

effects of ICIs can be seen in patients who had high clonality and

high OLI scores (92–94). The NADIM clinical trial NCT03081689T

identified two parameters from TCR sequence analysis as predictive

biomarkers of complete pathologic response (CPR) after

neoadjuvant chemoimmunotherapy, which may be superior to

the PD-L1 tumor proportional score (TPS) and TMB, and

revealed the possible mechanism by which CPR is involved in

enhancing tumor immunogenicity and peripheral immune

monitoring (95). Researchers analyzed a total of 39 pairs of

normal and tumor lung tissue samples (20 cases with EGFR

mutations), and the TCR diversity index was found to be
FIGURE 3

Multiple intrinsic cancer cell pathways induce cancer cell immune evasion in EGFR-mutant NSCLC. EGFR activating mutations may help cancer
cells escape cytotoxic T-cell recognition and specific killing by promoting PD-L1 expression and downregulating MHC expression. The
activation of EGFR may influence the expression of VEGF, inhibiting T lymphocyte infiltration into tumors, generating vascular endothelial
growth and promoting tumor progression. In addition, activation of EGFR may influence the expression of CD47, decreasing the phagocytosis
of cancer cells by DCs. In addition, EGFR-TKIs enhance MHC expression, and HypoTKI can induce more dsDNA and RNA release and trigger
MyD88–type I IFN innate sensing pathways, which enhance tumor-specific T-cell infiltration and reactivation. EGFR, epidermal growth factor
receptor; MEK/ERK, extracellular signal-regulated kinase (ERK) kinase MEK; MHC, major histocompatibility complex; EGFR-TKIs, epidermal
growth factor receptor tyrosine kinase inhibitors; HypoTKI, low-fractionated EGFR-TKIs; DCs, dendritic cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.940288
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2022.940288
significantly elevated, while the clonal expansion of T cells in EGFR

mutant tumors was compared with that in EGFR wild-type tumors.

In whole exon group sequencing, the nonsynonymous mutations

and predicted new antigen expression levels were markedly

decreased in EGFR mutant tumors (96). Similarly, other

researchers collected and studied samples from 93 patients with

NSCLC and divided them according to EGFR mutation and

subtype (94). They found that the different responses to ICIs in

patients were attributed to the presence of differences in TCR

clonality, the Shannon index and the OLI of different EGFR

subtypes. These findings may partly explain the molecular

mechanism underlying the poor response to ICIs in patients with

EGFR mutations.
Remodeled ability of T cells to kill
tumor cells

TILs are the most critical cell group infiltrating tumor nests

and stroma. The higher the density of CD8+ TILs is, the better

the immune effect (97, 98). An increasing number of studies

have revealed that EGFR-mutant NSCLC cells alter the TME to

limit TILs and suppress T-cell-mediated immune attack (99).

Zhao et al. discussed the mechanism underlying the low

abundance of tumor-infiltrating CD8+ T cells in EGFR-mutant

NSCLC: the exosomes secreted by the EGFR-mutant NSCLC

lines PC9 and HCC827 promoted the apoptosis of CD8+ T cells

more than the EGFR wild-type cell lines H1299 and SK-MES-1

(100). In addition, a retrospective study suggested that tumors

with rare EGFR mutations benefited more from ICIs that were

rich in TILs (101). Similarly, in a retrospective analysis of 58

patients who received ICIs after EGFR-TKIs, correlation analysis

showed a significant negative correlation between TKI-PFS and

the corresponding IO-PFS (102). Furthermore, the proportion of

TILs in patients with short TKI-PFS was higher, and the ratio of

M2-like macrophages to M1-like macrophages was lower.

Moreover, Simoni et al. (103) showed that a large number of

bystander CD39-CD8+ T cells in EGFR-mutated tumor cells led

to poor reactions to ICIs, while the proportion of CD39+ CD8+

TILs was visibly higher in patients with wild-type EGFR. In

addition, coinhibitory molecules, such as PD-L1, PD-1, TIM-3,

TIGIT, and LAG-3, play essential and fundamental roles in

immune suppression (104). Notably, HHLA2, a newly

discovered member of the B7/CD28 family, contributed to

tumor immunosuppression by regulating T-cell function and

was not detected in most normal lung tissues, but an expression

rate of 66% was observed in different subtypes of NSCLC (105).

In particular, compared with that in wild-type NSCLC, the

expression of HHLA2 in EGFR-mutant NSCLC was relatively

high. HHLA2 may become a new target in the exploration of

strategies to improve the efficacy of ICIs in EGFR-

mutant NSCLC.
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Immunosuppressive cells recruited by EGFR-mutant

NSCLC cells can negatively regulate the killing ability of T

cells. Wang et al. (106) confirmed for the first time that the

EGFR signaling pathway was closely related to Tregs regulation.

EGFR signal activation causes more Tregs to be generated and

activated (107, 108). Gefitinib reduced the inhibition of EGFR

signaling in the TME by decreasing Treg numbers in

tumors (109).

The metabolic pathway of tumor cells and related products

affects the immune killing function of T cells. The single-cell

transcriptome indicated that EGFR-mutant NSCLC cells had

more genes related to metabolic pathways, which was crucial for

the negative impact on the TME (110). The adenosine signaling

axis was thought to have a wide range of immunosuppressive

effects on the TME, including inhibiting the lytic activity of

cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs)

and enhancing the proliferation of Tregs, myeloid-derived

suppressor cells (MDSCs) and inhibitory macrophages (111,

112). CD73 is a critical enzyme in the conversion of AMP to

adenosine and an exo-50-nucleotidase encoded by the NT5E

gene (113). It was found that the expression of CD73 in EGFR-

mutant NSCLC was significantly increased compared with that

in EGFR wild-type cell lines (114). CD73 blockade markedly

inhibited tumor growth in a mouse model of EGFR-mutant

NSCLC. It seems to be understood that CD73 may cause EGFR

mutations in NSCLC with a low response rate to ICIs, but Ishii

et al. (115) revealed that in patients with EGFR-mutant NSCLC,

high CD73 expression showed greater protective ICI effects. The

role of the CD73 adenosine pathway in EGFR-mutated NSCLC

needs to be validated in more experiments.

From what has been discussed above, current studies on

tumor immunotherapy have mainly focused on T-cell

immunity, and inhibitory factors exist in every link of the

cancer-immunity cycle, which seems to explain the poor

efficacy of ICIs for EGFR-mutant NSCLC patients. From this

perspective, it was necessary to combine with other treatment

strategies to break these adverse conditions and to make EGFR-

mutant NSCLC patients benefit from ICIs.
Potential strategies to improve
efficacy of immunotherapy in
EGFR-mutant NSCLC

In general, EGFR-mutated NSCLC responds poorly to ICI

monotherapy, but some subgroups may benefit, especially in

combination with chemotherapy and/or antiangiogenic agents.

In view of the characteristics of the different responses of ICIs in

EGFR-mutant subgroups, individualized diagnosis and

treatment measures need to be formulated in clinical practice.

Here, we scientifically envisioned several promising strategies to
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improve ICI efficacy in EGFR-mutant NSCLC after

TKI resistance.
Combined chemotherapy and/or anti-
angiogenesis treatment

Considering the improved benefits of NCT03513666A and

the IMpower150 trial, a promising treatment was to combine

ICIs with chemotherapy to improve the immunogenicity of

tumor cells or anti-angiogenesis to promote more TIL

infiltration into the tumor in EGFR-mutant NSCLC. Further

optimization schemes and more are under way, such as the

CheckMate-722, ABC-lung and NCT04147351 studies.
Novel ICIs

According to T-cell-targeting immunomodulator immunology,

another promising treatment to overcome the poor efficiency of

ICIs is to target other ICIs associated with the TME (116). Several

clinical studies against novel ICIs, such as LAG3, TIGIT, and B7-

H3, are ongoing for NSCLC. Zhou reported that LAG-3 was

upregulated after TKI resistance in EGFR-mutant NSCLC (71),

which provided novel insights for the anti-LAG treatment of EGFR-

mutant NSCLC patients. The exploration of more novel ICIs in

monotherapy or combination therapymay provide more and better

treatment options for EGFR-mutated NSCLC after TKI resistance.
Combined radiotherapy

Radiotherapy causes random point mutations and double-

strand breaks in DNA, increases the effects of TMB and new

antigens, and can provide good local tumor control, thus playing

an important role in the treatment of lung cancer (117).

Radiotherapy can lead to ICD and the release of high

migration group box 1 protein (HMGB-1); HMGB-1 binds to

Toll-like receptor-4 (TLR-4), participates in the progression and

presentation of tumor antigens, and promotes the activation and

maturation of DCs. Through a series of the abovementioned

pathways, the immunogenicity of tumor cells is enhanced (118–

121). Radiotherapy also increases the expression of natural killer

group 2 member D (N-K-G2-D) and the first apoptotic signal

and promotes the recognition and clearance of tumor cells by T

cells and NKs (122, 123). In short, radiotherapy can transform

noninflammatory tumors (also known as “cold” tumors) into

inflammatory tumors (also known as “hot” tumors) through

complex mechanisms, increase tumor immunogenicity and

increase sensitivity to ICIs.

A retrospective analysis of the KEYNOTE 001 study showed

that the good prognosis resulting from ICIs was closely related to
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having received radiotherapy (124). Another prospective clinical

study of high-dose fractionated radiotherapy combined with ICIs,

PEMBRO-RT, confirmed that radiotherapy improved the ORR of

ICIs (125). For patients with EGFR-sensitive mutated NSCLC, a

number of clinical studies have confirmed that consolidation

radiotherapy during EGFR-TKIs significantly prolongs PFS and

total OS (126, 127). Of course, the secondary T790 M mutation in

patients with EGFR-TKI resistance will also affect the OS of

patients, while Ouyang et al. found that whether patients received

radiotherapy before developing drug resistance did not affect the

occurrence of acquired T790 M mutation (128). It is suggested that

radiotherapy can not only reduce tumor load and prolong the time

until acquisition of drug resistance to TKIs but also prolong the total

survival of patients through its immunomodulatory effect.

In summary, future exploration should focus on verifying

whether radiotherapy can effectively change the TME in EGFR-

mutant NSCLC and which radiotherapy can maximally

activate immunity.
Cancer vaccines

Vaccination can accelerate anticancer immunity by

inhibiting negative regulatory factors (129). In one study

(130), an EGFRT790 M/C797S mutant-derived peptide

(MQLMPFGSLL) that can bind to human leukocyte antigen

(HLA)-human leukocyte antigen was identified, and an

EGFRT790 M/C797S- peptide-specific CTL clone isolated

from human PBMCs from healthy HLA-A2 donors showed

high responsiveness to cancer cells because T2 cells pulsed with

the EGFRT790 M/C797S peptide suffered strong cytotoxicity.

Immunotherapy targeting new antigens that arise from EGFR

mutations or in combination with ICIs may be a useful new

therapeutic strategy for patients who are resistant to osimertinib.

In a recent major trial (131), 24 patients with grade III/IV

NSCLC who developed progressive disease after a variety of

conventional treatments, including surgery, radiotherapy,

chemotherapy and TKI therapy, received a personalized

neoantigen peptide vaccination (PPV). Immunosurveillance

showed that five of the seven patients with EGFR-mutant

NSCLC showed a vaccine-induced T-cell response to EGFR

neoantigen peptide. All of these patients showed an increase in

the frequency of neoantigen-specific CD8+ T cells in peripheral

blood after PPV. These results suggest that personalized

neoantigen vaccination is a viable, safe and well-tolerated

option for patients with advanced NSCLC. The neoantigen

peptide displayed by human leukocyte antigen molecules on

the surface of tumor cells shows exquisite tumor specificity and

can cause T-cell-mediated tumor rejection. However, it is

predicted that there are few neoantigens shared among

patients; therefore, more preclinical and clinical data on

vaccination are needed.
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Bypass vaccination through adoptive
T-cell therapy

Eshhar et al. proposed for the first time that chimeric antigen

receptor (CAR)-targeted T-cell therapy was a promising strategy

for the treatment of malignancies (132). Han’s team (133)

infused an increasing dose of EGFR-targeted CAR-T cells into

patients with EGFR positivity (> 50% expression) and recurrent/

refractory NSCLC in a phase I clinical study (NCT01869166). Of

the 11 assessable patients, 2 achieved partial remission, and five

were stable for 2 to 8 months. The infusion of EGFR-targeted

CAR-T cells was safe and well tolerated and resulted in no severe

toxicity. The pathological clearance of EGFR-positive tumor

cells after treatment and detection of the CAR-EGFR gene in

tumor-infiltrating T cells in all four patients were observed in

tumor biopsies. EGFR targeting CAR-T cells are a safe and

feasible option for the treatment of advanced EGFR-mutant

NSCLC. At present, current research is still focused on EGFR-

positive lung cancer, but CAR-T-cell treatment of EGFR-mutant

NSCLC also needs to be further studied. Of course, potential

efficacy assessments and safety assessments have not been fully

conducted, including whether the transfer of a large number of

monospecific T cells will lead to drug resistance due to antigenic

drift and whether the identified toxicity problems can be

safely addressed.
Target B cells and related products

Increasing evidence has proven that the significant efficacy of

B cells may promote both the response and prognosis of ICIs

(134). Compared with the EGFR-wild-type group, the

proportion of plasma cells was lower in the EGFR-mutant

NSCLC group (110). A more recent study established that the

disappearance of follicular helper CD4+ T (TFH)-B-tissue-

resident memory CD8+ T (TRM) cooperation mediated by the

CXCL13-CXCR5 axis in EGFR-mutant NSCLC may account for

poor responses to ICIs (135). Patient-derived antibodies are

involved in the regulation of the TME (136); therefore, it was

worthwhile to further explore the roles of B cells in EGFR-

mutant NSCLC.
Conclusion

In summary, achieving the goal of complete and safe cancer

eradication through ICIs may require only monotherapy in a few

patients with EGFR-mutant NSCLC, while most of these

patients may need combination therapy, and the major

challenge for the latter group is joint toxicity. In addition,

current studies suggested that EGFR L858R, a common

mutation, and rare mutation still showed superiority in ICIs
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treatment. More preclinical and clinical studies exploring the

combination of ICIs and several other treatments, such as anti-

angiogenesis, chemotherapy, novel ICIs, radiotherapy, anti-

CD47-SIRP-a, anti-CD73- adenosine axis, and B-cell-

associated immunity are urgently needed because most

analyses are based on subgroup analysis or retrospective

studies. Moreover, the optimal dose, sequence and schedule of

the combination should also be included in future studies.

However, in basic research, it was challenging to obtain

humanized animal models containing EGFR mutations, which

seriously restricts the progress of research. We speculated that

continued improvement of the mouse preclinical model would

accelerate the pace of ICI optimization in EGFR-mutant

NSCLC patients.

Through the cancer-immunity cycle, immunotherapy has

informed promising approaches for EGFR-mutant advanced

NSCLC patients. Considering the large population of EGFR-

mutant NSCLC patients and low toxicity and durable clinical

benefit of ICIs, it is particularly important to explore

immunotherapy strategies after TKI resistance.
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