:' frontiers ‘ Frontiers in Immunology

PERSPECTIVE
published: 13 July 2022
doi: 10.3389/fimmu.2022.940674

OPEN ACCESS

Edited by:
Peter Boross,
Genmab, Netherlands

Reviewed by:

Ramon Arens,

Leiden University Medical Center,
Netherlands

Sara Mangsbo,

Uppsala University, Sweden

Fubin Li,

Shanghai Jiao Tong University, China

*Correspondence:
Rony Dahan
rony.dahan@weizmann.ac.il

Specialty section:

This article was submitted to
B Cell Biology,

a section of the journal
Frontiers in Immunology

Received: 10 May 2022
Accepted: 21 June 2022
Published: 13 July 2022

Citation:

Salomon R and Dahan R (2022) Next
Generation CD40 Agonistic Antibodies
for Cancer Immunotherapy.

Front. Immunol. 13:940674.

doi: 10.3389/fimmu.2022.940674

Check for
updates

Next Generation CD40
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The clinical use of anti-CD40 agonist monoclonal antibodies (mAbs) is aimed at recruiting
the immune system to fight the tumor cells. This approach has been demonstrated to be
effective in various preclinical models. However, human CD40 Abs displayed only modest
antitumor activity in cancer patients, characterized by low efficacy and dose-limiting
toxicity. While recent studies highlight the importance of engineering the Fc region of
human CD40 mAbs to optimize their agonistic potency, toxicity remains the main limiting
factor, restricting clinical application to suboptimal doses. Here, we discuss the current
challenges in realizing the full potential of CD40 mAbs in clinical practice, and describe
novel approaches designed to circumvent the systemic toxicity associated with
CD40 agonism.

Keywords: CD40, fc receptor, agonistic antibody, therapeutic antibody, cancer immunotherapy, bispecific
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INTRODUCTION

The field of immuno-oncology has progressed steadily over the last decade. Immunotherapy has
joined the ranks of surgery, chemotherapy, radiation, and targeted therapy in the arsenal of cancer
treatments (1, 2). An increasing number of immune checkpoint-targeted monoclonal antibodies
(mADbs) have been developed with the aim of harnessing the immune system to eradicate tumor cells
(3, 4). These efforts have resulted in successful clinical application of blocking mAbs against CTLA-
4 and PD-1/PD-L1 checkpoints on T lymphocytes (T cells) to induce effective tumor-eliminating
immunity. However, a remaining unmet clinical challenge is to stimulate immunity against “cold”
tumors, which lack significant immune infiltration at treatment onset. Agonist mAbs targeting the
cluster of differentiation 40 (CD40) immune receptor emerge as a potential approach to increase the
number and quality of tumor-infiltrating T cells (TILs) and, thereby, response effectiveness, either as
a monotherapy or to reverse resistance to checkpoint-blocking antibodies (5-9).

CDA40 is a tumor necrosis factor receptor (TNFR) superfamily member. It is expressed on antigen-
presenting cells (APCs) including dendritic cells (DCs), B cells, macrophages, classical and non-classical
monocytes (10-12), on a variety of non-immune cells including platelets and endothelial cells (13, 14),
and on several types of tumor cells (15). CD40 plays a central role in stimulating immune synapses,
including during T cell priming by APCs, when its interaction with the CD40 ligand (CD40L) licenses
DC:s to activate antigen-specific T cells (5, 16). This is accomplished through the upregulation of major
histocompatibility complex (MHC) molecules, increased expression of the costimulatory molecules
CD86/CD80, and upregulation of TNF superfamily ligands on the DC surface, as well as by secretion of
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interleukin-12 (IL-12), which fuels CD8" T cell activation. Likewise,
the CD40/CD40L axis plays a central role in the B-T cell immune
synapse, promoting B cell activation and proliferation as well as
antigen presentation (5, 6, 11, 16).

Agonistic anti-CD40 Abs are designed to mimic CD40L by
crosslinking CD40 and, thereby, promote the maturation of DCs
and improve their antigen presentation capabilities. This results in
expansion of tumor antigen-specific cytotoxic T cells, which can
lead to the eradication of tumors (5, 17, 18). Motivated by promising
results in a variety of cancer animal models, several human CD40
mAbs have been developed and evaluated in clinical trials over the
last two decades (6, 19-22). However, the preclinical potency has
not yet been recapitulated in clinical setting and none of these mAbs
has advanced beyond early trial phases. Among the challenges that
were encountered during these evaluations are low detected levels of
immune activation and high toxicity levels associated with the
treatment. The toxicity limited the use of CD40 mAbs to
suboptimal doses, resulting in insufficient immune activation and
antitumor efficacy (21, 23-26). Here, we highlight key factors and
cellular pathways associated with effective agonism and the observed
clinical toxicity. Furthermore, we describe recent antibody-
engineering approaches and treatment regimens that we find the
most advanced and promising in the quest to overcome the
challenges preventing the clinical use of CD40 agonistic mAbs.

Enhanced efficacy
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HARNESSING FCYRS TO POTENTIATE
THE ACTIVITY OF CD40 mAbs

Fc-gamma receptors (FcyR) are central players in the in vivo
agonistic activity of CD40 mAbs (25, 27-29). This Fc-mediated
mechanism involves higher order crosslinking of the CD40
mAbs by FcyRIIB expressed in trans by cells neighboring the
CD40-expressing cells. This results in enhanced clustering of
CD40 on the target cell and, consequently, increased CD40
signaling. The relatively low clinical response elicited by
different anti-human CD40 mAbs (15, 19) can be attribute to
the structure of their IgG scaffold, which is not optimized for
FcyRIIB binding. It was demonstrated that the in vivo activity of
human CD40 mAbs is dependent on their affinity to FcyRIIB
and, notably, this activity was significantly improved by Fc
engineering (25) (Figure 1). Following this preclinical
observation, a second generation of Fc-engineered anti-human
CD40 mAbs with enhanced FcyRIIB binding are now being
tested in clinical trials (25, 30-32).

One such antibody is 2141-V11. Based on selicrelumab, the
original IgG2 isotype was converted into IgG1 and the affinity to
FcyRIIB was selectively enhance by Fc engineering. The Fc-
engineered version of this mAb displayed a significantly
enhanced in vivo antitumor response compared to the parental

Improved safety
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FIGURE 1 | Approaches to enhance the efficacy and safety of CD40 agonistic mAbs. Left: Enhanced CD40 agonism by Fc-engineered mAbs designed to increase
FeyRIIB-mediated crosslinking. Right: Approaches to bypass treatment associated toxicities. 1) Intratumoral administration. Injection of low mAb dose directly into the
tumor enables local antitumor immune activation without systemic side effects. 2) Tumor-targeted bispecific CD40 antibodies direct the agonistic antibody to the
TME by targeting tumor-associated antigens, which are overexpressed and/or selectively expressed at the tumor site. 3) Dendritic cell-targeted bispecific CD40
antibodies direct the agonistic antibody to the cell types that drive treatment-associated antitumor activity but not toxicity.
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IgG2 variant in multiple tumor models, includes melanoma,
colon adenocarcinoma and bladder cancer (25, 30, 31).
APX005M (sotigalimab) is another CD40 mAb that was Fc-
engineered to increase the interaction with FcyRIIB, now
evaluated in several early-phase studies (32, 33). Different Fc
mutations were introduced to the IgG1-Fc scaffold of 2141-V11
and APX005M. While the binding of 2141-V11 is enhanced
selectively to FcyRIIB and not to other FcyRs, APX005M engages
both the inhibitory FcyRIIB and the activating FcyRITA™'R,
Preclinical studies showed increased in vivo agonistic activity
for both Fc-engineered mAbs over their parental non-mutated
IgG1 variant (25). However, due to the opposite effect of
decreased mAb potency upon engagement with FcyRIIA, the
FcyRIIB-selective enhanced Fc variant displayed superior
agonistic activity.

Because crosslinking of CD40 on the membrane surface is key
for the activity of CD40 agonists, various strategies to enhance
CD40 receptor trimerization have been developed. These Fc-
independent approaches include hinge engineering to the unique
structural configuration of IgG2 subclass, which was reported to
enhance CD40 agonistic activity. Mutations of specific cysteines in
CD40 agonistic mAbs are used to prevent shuffling of disulfide
bonds between the IgG2 hinge and CH1 regions, thus locking the
hinge conformation that contributes to enhanced CD40 clustering
(34, 35). Other approaches to promote CD40 receptor
multimerization include the use of recombinant CD40L-based
instead of antibody-based molecules (36), or utilizing Fc-docking
scaffolds to multimerize anti-CD40 mAbs (37). A notable difference
between these Fc-dependent and Fc-independent engineering
approaches is the requirement for FcyRs engagement in addition
to CD40 engagement in the former but not the latter, which may
results in different biodistributions of these molecules. The
consequences of these distinct properties for the mechanism and
therapeutic index of these reagents should be clarified in future
studies. A combination of different approaches to enhance agonism
was also suggested in a study demonstrating synergistic agonist
potency of a combined hinge and Fc-engineering strategy (38).

While these Fc and protein engineering strategies can
improve the antitumor efficacy of CD40 agonists, the stronger
potency of these next-generation agonists is accompanied by an
increase in side effects and toxicity that characterize this type of
immunotherapy (25, 30). Consequently, the systemic
administration of these agonists is limited to suboptimal doses
and their full potential could not be exploited.

SIDE EFFECTS AND TOXICITIES OF
CD40 mAbs

As mentioned, human CD40 agonistic mAbs were reported to
trigger severe adverse effects and toxicities. These include
hepatotoxicity, cytokine release syndrome (CRS) (19, 20, 39),
thrombocytopenia (19, 24, 25, 30), general hyperimmune
stimulation (40), and tumor angiogenesis in response to
endothelial cell activation (41). The broad expression of CD40
by various immune and non-immune cells types in the tumor

and in other organs is likely to contribute to the occurrence of
these side effects.

Recent studies highlighted the role of macrophages, Kupfter cells,
platelets and neutrophils in mediating liver toxicity. Using a single-
cell RNA sequencing approach, Siwicki et al. described a
mechanistic interplay involving IFN-y-secreting lymphocytes and
IL-12-producing tissue-resident Kupfter cells, resulting in liver
toxicity (42). This anti-CD40 mediated hepatotoxicity is
associated with an IL-12-dependent accumulation of MHC II",
CD14" and CD11b" macrophages in the liver (43). It was further
shown that IL-12 and IFN-y were not toxic by themselves and that
neutrophils respond to these two cytokines by upregulation and
secretion of TNF, the levels of which determine the severity of liver
toxicity. Another player in the network that mediates the toxic effect
of CD40 mAbs on the liver are platelets. In a recent study, we have
demonstrated the causal role of macrophages and platelets in liver
toxicity after CD40 treatment (44). Systemic cell depletion of
macrophages or platelets completely abrogated the elevation in
liver transaminases (ALT/AST) that was observed after anti-human
CDA40 treatment. While these findings highlight the involvement of
macrophages, Kupffer cells, platelets and neutrophils, the full
mechanistic interplay between these players driving liver toxicity
following anti-CD40 treatment still needs to be elucidated.

In the clinic, CRS was evident within minutes to hours after
CD40 mAb infusion and was associated in these patients with
elevation in serum IL-6 (19). In vivo upregulation of intracellular IL-
6 was detected by classical CD11¢” monocytes in the blood, lymph
nodes and spleen, after immunization with anti-human CD40 mAb
in humanized CD40 mouse strain (44). This suggests monocytes as
the major cell population driving IL-6 secretion.

DCs and, in particular, the conventional type-1 dendritic cells
(cDCls) are essential for CD40-targeted immunotherapy due to
their key role in CD8" T cell priming and early CD4" T cell
activation, which induce a strong and durable antitumor
immunity (45). Unlike macrophages, monocytes and platelets
that mediate hepatotoxicity, CRS and thrombocytopenia,
respectively, ¢cDC1 activation by CD40 agonist do not
contribute to any of these dose-limiting toxicities.

Collectively, these findings suggest that different cellular
pathways and locations are engaged by CD40 agonists, which
determines the balance between antitumor immunity and side
effects. Macrophages and, specifically, liver-resident Kupfter cells
are the key population that is engaged by CD40 agonist to
mediate hepatotoxicity, in which neutrophils and platelets have
also been implicated. Other evidence suggests that IL-6 secretion
by monocytes underlies CRS induced by CD40 mAbs.

APPROACHES TO INCREASE THE
THERAPEUTIC WINDOW OF CD40 mAbs

Intratumoral Administration

Understanding the mechanisms driving the antitumor immunity of
CD40-targeted immunotherapy, as well as those causing adverse
effects, provides a rationale on how to improve the efficacy and
safety profile of existing treatments. For example, the finding that
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the location of immune activation is associated with distinct
outcomes, ie., antitumor activity vs. systemic toxicity, advanced
approaches aiming to direct CD40 agonism selectively to the tumor
microenvironment (TME) to avoid toxicity. One such strategy is an
intratumoral route of mAb administration (30, 46) (Figure 1).
Indeed, preclinical studies demonstrated a safe profile and lack of
hepatotoxicity and thrombocytopenia when anti-human CD40
mAb was administered intratumorally. Treatment resulted in T
cell activation and was shown to induce abscopal effects
characterized by systemic antitumor T cell activity and long-term
memory response (30, 31, 46, 47). Comparison of biodistribution
profiles after local or systemic anti-CD40 mAb administration in
bladder cancer model revealed that local injection led to CD40 mAb
accumulation in the draining lymph node and spleen, presumably
because of the high density of CD40" immune cells, whereas
systemic injection led to higher Ab concentration in the liver and
blood circulation (47). In an early clinical study, intratumoral
administration of anti-human CD40 mAb (ADC-1013) into
superficial lesions was well tolerated and was accompanied by
pharmacodynamic responses (48). Another advantage of local
CD40 mAb administration is the avoidance of Ab sink effect by
cells with high CD40 expression, mainly circulating B cells.

Tumor-Associated Antigen-Targeted
Bispecific Antibodies

While intratumoral administration is a promising approach for
some patients, it is not suitable for all tumors and may be limited to
patients with primary or metastatic tumors near the skin,
intravesical treatment of bladder cancers, and tumors that are
accessible to radiographically directed therapy. This highlights the
need to reduce the toxicity of CD40-targeted immunotherapy
through systemic administration. One proposed solution is a
bispecific antibody (bsAb) that contains a binding arm to tumor-
associated antigens (TAA). The rationale behind this approach is
that the anti-TAA arm will direct the antibody to the TME and
activates APCs locally, thereby avoiding systemic immune
stimulation and reducing toxicity (Figure 1). The first developed
CD40 bsAb is ABBV-428, which is constructed from a CD40 arm
and a mesothelin TAA (49). This molecule was designed to engage
the TME due to the overexpression of mesothelin by several types of
tumor cells (50). Indeed, preclinical studies with ABBV-428
suggested less systemic toxicity with similar antitumor immunity
compared to the parental monospecific CD40 mAb (49). In a phase
1 clinical trial, ABBV-428 showed a safe profile and the maximum
tolerated dose was not reached. However, efficacy was very limited,
with no signs of substantial response in patients (51). This outcome
could be explained by low expression of mesothelin on tumor cells,
that would limit bsAb accessibility to the tumor and thus its ability
to crosslink the CD40 receptor, which is required for CD40
signaling (50). Indeed, it was shown in animal models that the
expression levels of mesothelin on tumor cell lines dictates the
antitumor activity of ABBV-428 (49).

The results of the ABBV-428 trial highlight the need for a bsAb
targeting a more highly expressed TAA. 4224 is a CD40/EpCAM
bsAb that displayed improved in vivo antitumor efficacy compared
to the corresponding monospecific CD40 mAb (52). EpCAM is

highly expressed on certain tumors and on tumor exosomes, which
may induce cross-presentation of tumor-derived neoantigen (i.e., in
exosomes or debris), resulting in better priming of tumor
neoantigen-specific T cells (52). The toxic profile of 4224
compared to the parental monospecific CD40 mAb has not been
reported to date.

A drawback of the CD40/TAA approach is its dependence on
sufficient expression levels and density of a specific TAA, which may
not be uniformly expressed across different tumor lesions and
patients. This may result in variable clinical efficacy, potentially
limiting the use of the compound to selective tumor types. In
addition, TAA targeted by bsAbs may be required for CD40
crosslinking, similar to FcyRIIB role in neighboring cells.
Therefore, their density, membrane fluidity and the binding
affinity of the targeting bsAb can substantially affect the potency
of these reagents. Because of these limitations, only a handful of
tumor surface antigens have thus far been identified as suitable
targets for CD40 bispecific antibodies.

Dendritic Cells-Targeted
Bispecific Antibodies
An alternative approach that bypasses the dose-limiting toxicity is to
induce CD40 agonism in a cell-specific rather than organ- or tissue-
specific manner, by delivering the agonist to the cell population
driving treatment efficacy but not toxicity (Figure 1). As mentioned,
cDCls mediate the antitumor immunity of CD40 mAb without the
toxic side effects. Harnessing this mechanistic understanding, our
group recently developed Fc-engineered CD40/DC bsAbs, e.g.
CD40/CDl11c and CD40/CLEC9A, which exhibit preferred
binding and selective activation towards cDCl1 populations. This
approach improved the therapeutic window of CD40-targeted
immunotherapy significantly by increasing antitumor immunity
and reducing systemic toxicity in vivo in an isogenic mouse model
fully humanized for CD40 and FcyRs (44, 53). Importantly, these
CD40/DC bsAbs displayed reduced binding and activation of B
cells, macrophages and monocytes, the cell types that contribute to
sink effect, liver toxicity and CRS. Comparing the mode of action in
the TME of CD40/DC bsAb vs its parental monospecific CD40
mADb reveled similar activation of effector CD4" and CD8" T cell
response, presumably the result of similar DC engagement by these
two types of agonists, leading to DC maturation, expansion and
subsequent T cell priming and activation (44). While the
monospecific CD40 mAb induces remodeling of the cell state of
non-DC CD40" myeloid and B cells in the TME, the DC-targeted
bsAb lacks this activity. Despite the more restricted engagement of
myeloid cell types in the tumor, the CD40/DC bsAb retains
antitumor potency, further supporting the importance of
activating the DC-T cell axis for the antitumor activity of CD40
agonists. While this effect was observed in multiple tests in
transplantable syngeneic tumor models, further validation in
additional tumor types and, eventually, in clinical settings is
essential to evaluate the generalization and translational potential
of this approach.

The monovalent nature of the CD40 arm in the CD40/DC
bispecific format required special considerations in their design.
First, these bsAbs exhibit increased sensitivity to FcyR-mediated
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crosslinking as compared to bivalent IgG formats and Fc
engineering was necessary to CD40 clustering and subsequent
activation. Second, the monovalent CD40 targeting arm
apparently reduces CD40 binding and agonism as compared to a
bivalent parental CD40 mAb. However, fine-tuning the affinities of
the Fab domains to optimize the DC selectivity of CD40 agonism
allows to dose-up these bsAbs without compromising their safety
profile, unlike with traditional CD40 mAbs. Thus, this new tri-
functional antibody format requires efficient binding to FcyRIIB,
CD40, and a DC marker to result in better safety profile and
superior antitumor response compared to the parental monospecific
CD40 mAb (Figure 2).

DISCUSSION

Driven by recent mechanistic insights into the cellular pathways
mediating efficacy and toxicity, as well as the latest developments
in antibody and protein engineering, the next generation of Fc-
engineered and multi-specific CD40 agonistic mAbs are being
developed to bypass toxicity and optimize their potency.
Multiple ongoing clinical trials evaluating the safety and
potency of these new reagents, either as monotherapies or part
of combination therapies, will soon reveal the potential of CD40
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