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Supramolecular organizing
centers at the interface
of inflammation and
neurodegeneration

Petra Sušjan-Leite1*, Taja Železnik Ramuta1, Elvira Boršić 1,
Sara Orehek1 and Iva Hafner-Bratkovič 1,2*

1Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana,
Slovenia, 2EN-FIST Centre of Excellence, Ljubljana, Slovenia
The pathogenesis of neurodegenerative diseases involves the accumulation of

misfolded protein aggregates. These deposits are both directly toxic to

neurons, invoking loss of cell connectivity and cell death, and recognized by

innate sensors that upon activation release neurotoxic cytokines, chemokines,

and various reactive species. This neuroinflammation is propagated through

signaling cascades where activated sensors/receptors, adaptors, and effectors

associate into multiprotein complexes known as supramolecular organizing

centers (SMOCs). This review provides a comprehensive overview of the

SMOCs, involved in neuroinflammation and neurotoxicity, such as

myddosomes, inflammasomes, and necrosomes, their assembly, and

evidence for their involvement in common neurodegenerative diseases. We

discuss the multifaceted role of neuroinflammation in the progression of

neurodegeneration. Recent progress in the understanding of particular

SMOC participation in common neurodegenerative diseases such as

Alzheimer’s disease offers novel therapeutic strategies for currently absent

disease-modifying treatments.

KEYWORDS

neurodegenerative diseases, amyloid deposits, inflammation, neurotoxicity,
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1 Introduction

The rising incidence of neurodegenerative diseases such as Alzheimer`s disease (AD),

Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis

(ALS), prion diseases such as Creutzfeldt-Jakob’s disease (CJD), and others (1)

(Table 1) presents a growing healthcare concern and an increasing societal burden. In

2020, an estimated 6.07 million adults aged 65 or more suffered from the clinical stage of

AD in the US alone and the number is expected to increase to 13.85 million in 2060 (2).
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Even the incidence of rare neurodegenerative diseases is

increasing as shown in the case of ALS with the rise in

prevalence from 3.7 per 100 ,000 in 2002 to 4.8 per 100 ,000 in

2004 in the US (3).

The neurodegeneration that underlies these diseases is a

multifactorial, aging-related process, marked by progressive

dysfunction of various neuronal populations within the central

nervous system (CNS) due to synaptic damage, loss of neuronal

connectivity, and eventually neuronal death (4). A hallmark of

most of neurodegenerative diseases is the accumulation of

misfolded amyloidogenic proteins (4). The location of their

deposition within the CNS determines the clinical presentation

of the disease, which can include impairment of motoric skills,

coordination, sensation, and/or cognition (Table 1). Misfolded

proteins can accumulate within the cells in the form of

inclusion bodies (aggresomes) or extracellularly. PD, HD,

and ALS exhibit intracellular deposition of a-synuclein,
huntingtin, or TDP-43, respectively. Other diseases, most

prominently CJD, are characterized by extracellular

depositions of the scrapie form of prions (PrPSc) and their

infectious nature. AD, on the other hand, is characterized by

both extracellular accumulation of amyloid b (Ab), a

proteolytic fragment of the amyloid precursor protein (APP)

by beta and gamma secretases, into senile plaques and the

intracellular formation of neurofibrillary tangles (NFTs),

composed of hyperphosphorylated tau (pTau) protein.

The mechanisms of neurotoxicity through which amyloids

contribute to neurodegeneration can be categorized into several

hierarchical layers: 1) direct neurotoxicity, 2) production of

inflammatory species through activation of pattern recognition

receptors (PRR), 3) stimulation of cell death, and 4) recruitment

of peripheral immune cells into the CNS (Figure 1).

The first layer of neurotoxici ty is provided by

amyloidogenic proteins directly as their accumulation leads

to disfunction of local synapses, breakage of neuronal

branches, and aberrant axonal sprouting (5). Several

hypotheses have emerged on the mechanisms by which

amyloid proteins mediate neurotoxici ty , including

interference with central protein quality control and

clearance mechanisms, possibly resulting in propagation of

folding defects (6), compromised integrity of lipid membranes

(7), and blockage of proteins with key cellular functions via

their sequestration through their exposed flexible hydrophobic

surfaces (8). It remains unclear which conformation of

amyloidogenic proteins is the primary culprit behind

neurotoxicity. Originally, the fibrillar aggregates were

assumed to drive neurodegeneration; however, multiple

reports suggest that the oligomeric intermediates are more

toxic than mature fibrils (9). In AD, amyloid plaque burden

poorly correlates with the cognitive decline compared to

neurofibrillary tangle counts (10), prompting also suggestions

of their neuroprotective nature (11).
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In addition to being directly toxic to neurons, fibrillar

aggregates/oligomeric intermediates also condition a second

layer of toxicity—neuroinflammation (12, 13). Amyloid

deposits are recognized as damage-associated molecular

patterns (DAMPs) by a wide palette of membrane and

cytosolic pattern recognition receptors (PRRs) in the brain-

resident immune cells in addition to other endogenous

molecules that are chronically released from damaged tissue

during neurodegeneration such as heat-shock proteins, high-

mobility group box 1 (HMGB1), extracellular matrix

components (fibrinogen, fibronectin), S100 proteins,

hyaluronic acid, RNA, mitochondrial DNA, ATP, uric acid,

chromatin, adenosine, galectins, thioredoxin, and cytochrome

c (14). The main neuroinflammation-relevant PRRs constitute

Toll-like receptors (TLRs), nucleotide-binding domain leucine-

rich repeat domain-containing receptors (NLRs), C-type lectin

receptors (CLRs), RIG-I-like receptors (RLRs), and AIM2-like

receptor family (ALRs) (15). Signal transduction from DAMP-

activated PRRs receptors to effector enzymes and transcription

factors is orchestrated within supramolecular organizing centers

(SMOCs) (16), whose role in neuroinflammation is the focus of

this review. Centralization of signal transduction in SMOCs was

proposed to offer considerable advantages such as enhanced

sensitivity of response, signal amplification, resistance to

background noise, temporal and spatial control over signal

transduction, and modularity of response (16–19). SMOCs

convey a characteristic “all or nothing response” achieved due

to nucleated polymerization where a substoichiometric number

of receptors allow for adaptor and effector polymerization (20)

and cooperative binding where the concentration of signaling

components increases the threshold for effector protein

activation (16).

Depending on the type of DAMP, SMOCs can contribute

to neurotoxicity by signaling the production of directly

neurotoxic inflammatory mediators (such as certain types of

cytokines, proteases, reactive oxygen ([ROS]), and nitrogen

species [RNS, such as NO]). For instance, inflammasomes

(through proteolytic cleavage of caspase-1) trigger the

secretion of proinflammatory cytokines interleukin 1b (IL-

1b) (21) while myddosome (22), triffosome (22), RLR-MAVS

(23), and cGAS-STING (24) regulate the secretion of tumor

necrosis factor a (TNF-a) and type I interferons through NF-

kB and IRF3 transcription factors. These cytokines are

reported to induce synaptic and axonal injury in neurons

through excessive stimulation of synaptic receptors also

known as excitotoxicity which leads to neuronal apoptosis

(25–27). Neuronal excitotoxicity is caused by the extracellular

accumulation of neurotransmitter glutamate as a result of

cytokine-mediated upregulation of neuronal glutaminase

responsible for the conversion of glutamine to glutamate in

the inner membrane of mitochondria (25, 28). Also glutamate

produced in and released from other cells, e.g., microglial cells
frontiersin.org
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in response to autocrine action of cytokines contributes to its

cerebral accumulation and consequential neurotoxicity (29).

TNF-a can further potentiate glutamate accumulation

by blockage of certain astrocyte transporters that allow

glutamate reuptake (30).

Myddosome also leads to the production of nitric oxide

(NO) and reactive oxygen species. NO is produced as one of

the most universal inflammatory products of innate immunity

as the expression of the enzyme inducible nitric oxide synthase

(iNOS), responsible for NO generation from the amino acid L-

arginine, is regulated by several major immunity transcription

factors NF-kB, AP-1, STAT, and IRFs (31). Overproduction of
Frontiers in Immunology 03
NO in the CNS causes neurotoxicity by inhibition of neuronal

respiration which results in excessive release of the

neurotransmitter glutamate. Indeed, activation of microglia

in response to injury is associated with an upregulation of

iNOS resulting in increased production of NO and RNS.

Increased immunostaining for iNOS has been detected in

the PD brains (32). Myddosome also upregulates NADPH

oxidases (NOX) which catalyze the NADPH-dependent

reduction of oxygen to form superoxide anion and hydroxyl

radical which exert neurotoxicity by damage to cells via non-

selective oxidation of proteins, lipids, fatty acids, and nucleic

acids (33).
TABLE 1 Main characteristics of common neurodegenerative diseases.

Neurodegenerative
diseases

Aggregating protein Deposit type Cellular
location

Brain region
affected

Affected clinical
features

Alzheimer’s disease (AD) Cleaved products of the APP (amyloid-b):
Ab(1-42), Ab(1-40)

Amyloid/senile/
neuritic plaques

Extracellular Hippocampus Cognitive

Hyperphosphorylated forms of tau Neurofibrillary
tangles

Intracellular Entorhinal cortex

Parkinson’s disease (PD) a-Synuclein Lewy bodies/neurites Intracellular Substantia nigra Motor

Huntington’s disease
(HD)

Mutant huntingtin (HTT) Neuronal intranuclear
inclusions

Intracellular Caudate nucleus,
putamen

Cognitive, motor,
behavior

Amyotrophic lateral
sclerosis (ALS)

TAR DNA-binding protein 43 (TDP-43),
superoxide dismutase (SOD1)

Cytoplasmic
inclusions

Intracellular Motor cortex, spinal
cord, brain stem

Motor, sensory
FIGURE 1

Amyloid-induced neurotoxicity mechanisms.
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Certain DAMPs and TNF-a from the second layer drive

the formation of SMOCs that trigger inflammatory types of

cell death. In what can be described as the third layer of

neurotoxicity, this causes a vicious cycle of cell death and

DAMP release from dying cells , which perpetuates

inflammation through the continuous reappearance of the

original trigger (34). TNF-a stimulates necroptosis through

necrosome or apoptosis through ripoptosome, depending on

the presence of caspase-8 (35). In addition to microglia, TNF-a
receptors are also located on the surface of neurons; therefore,

TNF-a mediated necroptosis, possibly also ripoptosome-

mediated apoptosis as caspase 8 was shown to be instrumental

(36) and it can affect neurons directly (37). Moreover, apoptosis

can also be triggered by PIDDosome in response to DNA

damage (38) or apoptosome in response to cytosolic

cytochrome c as an indicator of mitochondrial stress (39). To

what extent does a particular SMOC participate in

neurodegeneration could be estimated by the use of recently

developed optogenetic tools enabling the precise and fast

activation of SMOCs and/or their effector functions (40–43).

The fourth layer is represented by the involvement of

adaptive immunity. Neurodegeneration is marked by

enhanced CNS infiltration of peripheral immune cells (44)

due to the compromised integrity of the blood–brain barrier

(BBB). This occurs through the chronic action of IL-1b (44,

45), TNF-a (46), IL-6 (47), and IFN-g (48) which diminish the

expression and interactions of tight-junction proteins such as

ZO-1, claudin-5, and occludin. In addition, upregulation of

adhesion molecules, e.g., ICAM-1 and VCAM-1, that can be

found upregulated in blood vessels near Ab deposits (49)

contributes to the extravasation of activated T cells from the

periphery. While the intact BBB allows passage of a limited

amount of Ab bound to transporters, its breakdown in AD

may allow a larger leakage and lead to enhanced immune cell

transmigration (50). The same might be true for other

molecules, e.g., myelin fragments, as in transgenic mouse

models the fibrillar Ab pathology in the gray matter of the

neocortex was associated with focal demyelination (51).

Infiltrated CD4+ Th1 or Th17 effector T cells induce or

produce neurotoxic cytokines such as TNF-a, IL-17, and
IFN-g that may directly interact with cognate receptors

expressed by neurons (52) . CD8+ T cel ls mediate

cytotoxicity by directly targeting neurons and their neurites

via the perforin pathway through which they deliver

granzymes into the neuron and through an expression of

FAS ligand which occupies Fas receptors on neurons (53).

It is clear that abnormal protein aggregates can transduce

neurotoxicity through several different mechanisms. In this

article, we provide a comprehensive review of the structural

and functional characteristics of SMOCs that were shown or are

presumed to play important roles in mediating various layers of

neurotoxicity imposed by protein aggregates.
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2 SMOCs inducing the release of
neurotoxic inflammatory mediators

2.1 Myddosome

Myddosome is a large intracellular complex that forms in

response to activation of all TLRs but TLR3 by a plethora of

PAMP molecules including lipopeptides, lipopolysaccharide

(LPS), flagellin, lipoteichoic acid, peptidoglycan, and DAMP

molecules such as heat-shock proteins, HMGB1, fibrinogen,

fibronectin, and hyaluronic acid (22). The binding of these

agonists to the extracellular leucine rich-repeat (LRR) domain

of TLR triggers the formation of a dimer whose cytoplasmic TIR

domains serve as a nucleus for attachment of the myeloid

differentiation primary response 88 (MYD88) adaptor protein

through TIR–TIR interactions (Figure 2A) (54). TLR2 and TLR4

require MAL/TIRAP as an additional adaptor protein (55).

Through the exposed death domains (DDs), MYD88 forms

myddosomes together with IL-1 receptor-associated kinase 4

(IRAK4) and IRAK1 or 2 in a defined stoichiometry (56). The

IRAK phosphorylation cascade triggers the activation sequence

TRIF 6–TAB2–TAK1–IKK complex which leads to

phosphorylation, ubiquitination, and degradation of the IkB
inhibitor of nuclear factor-kB (NF-kB), thus allowing its

nuclear translocation (57). NF-kB governs the transcription of

proinflammatory cytokines (IL-6, TNF-a), cytokine precursors

(pro-IL-1b), and enzymes iNOS and NOX, which have

neurotoxic effects as discussed in the previous section

(Figure 2) (19). The alternative axis through mitogen-activated

protein kinases (MAPKs) activates another transcription factor,

activator protein 1 (AP-1), which regulates the transcription of

several chemokines, adhesion molecules, and genes involved in

cell proliferation, apoptosis, differentiation, and migration (19).

Myddosome is also assembled in response to IL-1 and IL-18

signaling through their respective receptors (58).

Among glial cells, TLR receptors were reported to be broadly

expressed in human microglial cells, while astrocytes and

oligodendrocytes expressed TLR1–4 in low amounts (59).

TLR3 and TLR4 interestingly appear to be only localized on

vesicular structures within microglia wherein in astrocytes they

are exclusively present in the cellular membrane (59). Several

studies report the upregulated expression of TLR in the

postmortem brain of patients or in mouse models of

neurodegenerative diseases or corresponding mouse models

(59–62); however, this does not necessarily implicate the role

of myddosome in specific disease etiology. Indeed, screening of

innate immune receptors in animal models of AD, PD/DLB, and

ALS revealed upregulation of TLR2 and CD14 as a common

feature in all neurodegenerative diseases and therefore likely part

of a non-specific effector phase common to many

neurodegenerative diseases (62). Regionally and temporally

selective TLR upregulation (as shown for TLR1, TLR4, and
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TLR8 in substantia nigra of PD brain (63) may, however,

contribute to increased vulnerability of specific neuronal

populations to amyloid deposition.

A more reliable indicator of myddosome involvement in

neurodegeneration is TLR activation by neurodegeneration-

associated DAMP. In terms of endogenous DAMP ligands that

are produced recombinantly, caution is necessary as their

contamination with PAMPs, particularly LPS, can give rise to

a false-positive signal (64). Postulates for the declaration of TLR4

agonists were proposed that can be applied to other TLRs as well

(65). Most associated with neurodegeneration are TLR2 and

TLR4. TLR2 is known to detect lipopeptides, peptidoglycan, and

lipoteichoic acids as part of the heterodimeric complex with

TLR1 or TLR6. It was shown to also recognize Ab (60, 61, 66, 67)
as knockout of TLR2 and knockdown of MYD88 inhibited the

Ab(1–42) peptide-induced expression of proinflammatory

molecules (61). TLR2 deficiency appears to shift the microglial

M1 pro-inflammatory phenotype to M2-alternative activation

that enhances Ab phagocytosis, which is associated with

improved neuronal function in AD mice (60).

TLR2 also detects extracellular a-synuclein upon its release

from neuronal cells (68). Detection is conformation-sensitive as
Frontiers in Immunology 05
only specific types of oligomer can interact with it and activate it.

As opposed to other TLRs that homodimerize upon binding of

agonists, TLR2 engages with either TLR1 or TLR6, depending on

the agonist, into heterodimers. In the case of a-synuclein, it was
found that higher-order oligomeric a-synuclein induced the

formation of heterodimer TLR1/2 (Toll-like receptor 1 and 2)

at the cell membrane leading to the MYD88-dependent nuclear

translocation of NF-kB (nuclear factor kB) and the increased

production of the proinflammatory cytokines (69). The small-

molecule inhibitor of TLR2, candesartan cilexetil, currently

approved for treating hypertension, reversed the activated

proinflammatory phenotype of primary microglia exposed to

oligomeric a-synuclein, supporting the possibility of repurposing
this drug for the treatment of PD (69). Direct MYD88

involvement was also shown in a study where MYD88-

dependent agonists induced a marked phosphorylation of

LRRK2 which increased the risk of developing late-onset

autosomal dominant PD (70) and in a study where MYD88

mediated the mSOD1 protein-induced activation of

inflammatory responses (71). The bipolar nature of TLRs in

neurodegeneration is perhaps best presented by a recent study by

Alam et al., who showed that the normal form of a-synuclein
FIGURE 2

TLR signaling mediates formation of several neurotoxic products. (A) Myddosome. All TLRs’ but TLR3’s signaling cascades proceed through the
association of MYD88, IRAK 4, and IRAK 1 or 2 into myddosome through death domain (DD) interactions. Subsequent signaling through TRAF6
can result in transcription factors NF-kB or AP-1 that both induce transcription of neurotoxic inflammatory mediators. (B) Triffosome. Upon
activation of TLR3 or TLR4 on endosomes, TIR domain-containing adaptor protein inducing IFNb (TRIF) oligomerizes through the TIR domain
which allows the formation of triffosome, which comprised TNF receptor-associated factor 3 (TRAF3), TANK-binding kinase 1 (TBK1), and IkB
kinase (IKK)-related kinase i (IKKi), or TRAF6. Activated TBK1 can phosphorylate interferon regulatory factor 3 (IRF3), thus inducing its
dimerization and translocation to the nucleus where it binds to interferon-stimulated response elements and regulates transcription of type I
interferons (IFN). TRIF can interact with receptor-interacting serine/threonine kinase 1 (RIP1) through the RIP homotypic interaction motif (RHIM)
domain and induce either apoptosis or necroptosis and nuclear factor-kB (NF-kB) activation through the IKK complex.
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engages TLR4 to mediate critical immune response against

microbial infections, which however can induce overexpression

of a-synuclein and its accumulation in the nervous system (72).

In their response to protein aggregates, TLRs may act in

concert with each other and with other innate immunity

receptors (73). Knockout of CD14, TLR4, and TLR2, for

example, ameliorated reactive oxygen species production and

phagocytosis of microglial cells stimulated by fibrillar Ab. TLR2
and TLR4 may interact with other cell surface receptors such as

CD36, a6b1 integrin, CD47, and scavenger receptor A (SR-A) to

recognize fibrillar Ab on the cell surface (74). This recognition

might lead to the activation of microglial cells, enhanced

production of pro-inflammatory molecules, and increased

endocytosis. In line with this, TLR4 has been shown to form a

heterodimer with TLR6 and CD36 in response to fibrillary Ab
peptides (67, 68, 75).

Concerning the role of other TLR, several studies for

example show detrimental effects of CpG-stimulated TLR9 on

neurons through release of TNF-a and NO in microbial insults

(76, 77); however, CpG is characteristic of microbial genome and

only rarely found in mammals (78). Recently, Epstein–Barr virus

infection was mechanistically linked to multiple sclerosis; thus,

the role of endosomal TLRs in neurodegeneration cannot be

excluded (79). Additionally, a reduced microglial glucocorticoid

receptor activity in the substantia nigra region was shown to be

able to stimulate TLR9 activation and consequently to contribute

to dopaminergic neuron loss in PD pathology (80).

Selected TLR receptors may have a role in amyloid aggregate

clearance. TLR2 was proposed to act as a receptor for Ab
clearance as TLR2 KO mice overexpressing AD-associated

genes for mutated presenilin 1 and amyloid precursor protein

(APP) exhibited accelerated memory impairment and increased

accumulation of the fibrillary Ab(1-42) peptide in the brain (81,

82). TLR2 or MYD88 deficiency increases Ab phagocytosis but

decreases Ab-triggered inflammatory activation (82). Similarly,

mice bearing destructive TLR4 mutation had increased diffuse

and fibrillar Ab deposits as compared with TLR4 wild-type

mouse models. This study also showed that activation of

microglia with a TLR2, TLR4, or TLR9 ligand significantly

increased their uptake of Ab in vitro (83). Moreover, TLR9

activation by methyl CpG increased the microglial uptake of

toxic Ab oligomers through G-protein-coupled receptor mFPR2

which consequently led to reduced amyloid burden in AD

mice (84).

Genetic risk factors associatedwith enhancedneurodegeneration

were linked with the myddosome signaling network. Polymorphism

in the CD14 coreceptor of TLR4 has been identified as a risk factor

for PD in women (85), whereas haploinsufficiency of TBK1 causes

familial ALS (86).

Reports of multiple TLR receptors displaying an ability to

bind protein aggregates inspired an immune decoy approach to

mitigate neuroinflammation in which an AAV-delivered TLR5

ectodomain alone or fused to human IgG4 Fc was utilized to trap
Frontiers in Immunology 06
oligomeric and fibrillar Ab into complexes which significantly

reduced Ab burden in a mouse model of Alzheimer-type Ab
pathology (87). Interestingly, Ab by itself did not activate TLR5

signaling; however, it did interfere with flagellin activation

of TLR5.
2.2 RLRs-MAVS signaling platforms

Retinoic acid-inducible gene (RIG)-I-like receptor (RLRs):

RIG-I and melanoma differentiation-associated gene 5 (MDA5)

and laboratory of genetics and physiology 2 (LGP2) are cytosolic

receptors for viral single- and double-stranded RNA (15). In

addition, there are several other non-viral activators of RLRs and

their adaptor, mitochondrial antiviral signaling protein (MAVS),

such as ROS (88, 89), mitochondrial dynamics (90), and double-

stranded mitochondrial RNA (mtdsRNA) (23). Active MAVS

further recruits members of the TRAF family which leads to

IRF3 and NF-kB activation (Figure 3) (91–93). CARD domains

of RIG-I and MDA5 bind adaptor MAVS that polymerizes and

represents the core of RLR-induced SMOC, together with

kinases TBK1/IKKϵ (16, 94). Phosphorylation of MAVS is

crucial for IRF3 activation (95). MAVS located at the other

mitochondrial membrane drives antiviral response through

induction of type I IFNs, while peroxisome-associated MAVS

drives the rapid expression of defense factors and induction of

type III IFNs (96, 97). LGP2, although homologous to MDA5

and RIG-I, does not directly interact with MAVS, because it

lacks a CARD domain; instead, it works as a positive or negative

regulator of RIG-I and MDA5 signaling (98–101). More about

the regulation of the RLRs-MAVS signaling platform can be

learned from (102).

RIG-I is upregulated in the temporal cortex and plasma in

patients with mild cognitive impairment and an early-stage AD,

and in the occipital cortex of AD patients. Interestingly,

stimulation of primary human astrocytes with RIG-I ligand 5′-
PPP-dsRNA resulted in an increased expression of APP and Ab,
which suggests that RIG-I might play a role in the pathology

associated with early progression to AD (103), but the

mechanism remains elusive.

Loss-of-function mutations in Parkin, an E3 ubiquitin ligase,

and PINK1, a ubiquitin kinase, are connected to an early onset of

PD (104, 105) (reviewed in (106, 107)). Parkin and PINK1 act as

negative regulators of MAVS (108, 109). On top of that, it was

recently reported that Parkin also interacts with and

ubiquitinates RIG-I and MDA5 for their degradation and

could thus prevent excessive production of type I IFN (110).

Moreover, MAVS was upregulated in a-synuclein transgenic

mice and PD patients (111). The same study also reported the

involvement of MAVS signaling in microglial activation and

consequently dopaminergic neuron loss in vivo (111), which is

consistent with reports that the activation of microglia correlates

with the progression of PD (112–115).
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RIG-I was found to be upregulated in motor neurons of

superoxide dismutase 1 (SOD1) (G93A) mice and

downregulated in spinal cord motor neurons in sporadic ALS

(116). Surprisingly, TDP-43, an important player in ALS and

FTLD, was reported as a translational regulator of RIG-I in

spinal cord motor neurons from a disease-causing mutant TDP-

43 (A315T) mouse model. Immunohistochemical analysis of

ALS patient-derived motor neurons showed a marked increase

in staining for RIG-I compared to control subject specimen

(117). Furthermore, TDP-43 was recently shown to prevent the

accumulation of endogenous immunostimulatory dsRNAs,

activators of RIG-I, suggesting that TDP-43 loss activates the

RLR pathway which leads to neurological dysfunction (118).

HD brains portray neuroinflammation through reactive

microglia and astrocytes (119). MDA5 and RIG-I were also

upregulated in the cortex and cerebellum of HD mice, whereas

LGP2 was downregulated in mice cerebellum, but without a

significant increase in interferon expression (120).
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Upregulation of RIG-I was also reported in MS (121, 122). A

recent multi-omics study in astrocytes and in the experimental

autoimmune encrphalomyelitis mouse model revealed the

involvement of sphingolipid metabolism in MAVS signaling.

MAVS mediated neurotoxic effects, particularly through the

interaction of its CARD domain with cytosolic phospholipase

A2 (cPLA2) that activated the NF-kB pathway. In addition,

cPLA2–MAVS interaction resulted in decreased enzymatic

activity of hexokinase-2 and subsequent lowered production of

lactate (123), needed for optimal neuron metabolism (124). On

the contrary, an early study showed MAVS’s possible protective

role in EAE, as treatment with RLR ligands improved disease

through IFN response (125).

Gain-of-function mutations in patients with Aicardi-

Goutières syndrome (AGS) cause childhood neurodegeneration

and dysfunction (126) likely because of upregulated type I

interferon signaling (126, 127). Interestingly, to date, no RIG-I

mutations were reported in AGS, although there are several
FIGURE 3

Sensing of nucleic acids by RLR-MAVS and cGAS-STING pathway. Retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-
associated gene 5 (MDA5) are RIG-I-like receptors (RLR) that recognize cytosolic dsRNA and ssRNA. RLR filaments that form CARD tetramers
associate with the CARD domain of mitochondrial antiviral signaling protein (MAVS) that is localized on the mitochondrial membrane and trigger
its polymerization. Recruitment of TRAFs results in activation of transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor-kB
(NF-kB). Cyclic GMP–AMP synthase (cGAS) is a cytosolic dsDNA sensor, and when activated, cGAS catalyzes the formation of cGAMP that binds
to stimulator of interferon genes (STING) residing on the endoplasmic reticulum (ER). Upon oligomerization, STING traffics from ER to Golgi
apparatus (GA) leading to activation of transcription of proinflammatory cytokines such as IL-6, tumor necrosis factor (TNF) TNFa, and type I
interferons (IFN).
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reports for MDA5 (128–133). Varzari and coworkers identified

two single-nucleotide polymorphisms (SNPs) in the MAVS gene

that showed a modest association with the age of onset of MS

(121). Several reports showed a rather contradictory role of SNPs

in RIG-I and MDA5 genes in MS (121, 122, 134–138).
2.3 cGAS–STING axis

Cytosolic DNA triggers the activation of cyclic GMP–

AMP (cGAMP) synthase (cGAS) and stimulator of

interferon genes (STING) pathway. cGAS recognizes DNA

regardless of its origin (reviewed in (139, 140)) or sequence

(141–143). DNA binding to cGAS induces phase separation

enabling cGAS to transform GTP and ATP into cGAMP (144).

cGAS afterward activates STING (145) leading to the

formation of SMOC activating both NF-kB and IRF3

responses (Figure 3) (146). STING can also trigger

inflammation through activation of NLRP3 inflammasome

(147), and STING participates in RNA immune response

(reviewed in (148)).

Levels of cGAS and STING were higher in the mouse model

of AD compared to the control. Treatment of microglial cells

with Ab peptides resulted in IL-6 secretion in a STING-

dependent manner which was prevented with a specific

STING inhibitor (149). Rather contradictorily, Xu et al.

reported that cGAMP treatment through activation of STING

reduced pro-inflammatory and induced anti-inflammatory

cytokines in the plasma and brain of AD mice through the

expression of the triggering receptor expressed on myeloid cells

2 (TREM2). TREM2 prevents the accumulation of Ab and

neuroinflammation in the brain (150).

As mentioned before, Parkin and PINK1 are important

players in preserving mitochondrial homeostasis and their

mutations are involved in PD (reviewed in (107)). Mice

lacking either gene exhibit a strong STING-mediated

inflammatory phenotype with the motor defect and loss of

dopaminergic neurons from the substantia nigra (151).

Mutations in the leucine-rich-repeat kinase 2 (LRRK2) are also

associated with mitochondrial function and PD (152). Weindel

and coworkers showed that high levels of type I IFN and IFN-

stimulated genes in Lrrk2-/- BMDMs are due to the chronic

cGAS engagement caused by mtDNA (152). Collectively, these

studies suggest that recognition of mitochondrial DNA by the

cGAS–STING axis leads to the progression of sterile

inflammatory diseases. Two recent studies also point out the

neurotoxic role of STING in PD. Hinkle et al. reported that

STING is upregulated in the substantia nigra of human PD

patients which correlated with a-synuclein accumulation.

Treatment of microglia with a-synuclein-preformed fibrils

caused double-strand DNA breaks and activated STING-

dependent IFN response. Moreover, STING-deficient mice
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were protected from a-synuclein aggregate-mediated

neurotoxicity (153). Szegö and coworkers corroborated this

finding in a recent preprint where they showed that chronic

activation of STING causes degeneration of dopaminergic

neurons. Constitutively, active variant STING knock-in mice

demonstrated the accumulation of pathological a-synuclein
(154). STING activation may contribute to neurodegeneration

in patients with a rare a-synucleinopathy, multiple-system

atrophy (155).

The cell and mouse model of HD and postmortem striata

of HD patients had increased cytosolic mitochondrial DNA

which correlated with act ivat ion of cGAS–STING.

Inflammation was significantly reduced with transfected

DNase I and a cGAS inhibitor (156). Moreover, another

study confirmed these findings, as cGAS was upregulated in

mouse and patient striata, and depletion of cGAS suppressed

inflammation (157).

Mutations in TDP-43 affect mitochondrial dynamics and

function in motor neurons (158). Yu et al. recently showed that

mutant TDP-43 causes translocation of mitochondrial DNA

into cytosol which in turn activates cGAS. Its product, cGAMP,

was also elevated in spinal cord samples of ALS patients (159).

On the other hand, C9orf72 contains hexanucleotide repeat

expansion that causes ALS and FTD and reduced levels of

C9orf72 protein in the brain and peripheral blood cells (160).

Reportedly, loss of C9orf72 resulted in early activation of

STING-dependent type I IFN response in dendritic cells from

C9orf72−/− mice and was suppressed with a STING inhibitor.

Mice depleted for one or both copies of C9orf72 were more

susceptible to EAE, which reflects susceptibility to autoimmune

diseases in C9orf72 caused by ALS and FTD (161). Surprisingly,

separate studies showed that ganciclovir, DNA nanoparticles, or

cyclic dinucleotides activate type I IFN response through cGAS–

STING in vivo which suppressed inflammation and delayed the

EAE onset (162, 163).

Deficiencies in eliminating (damaged or cytosolic) host

DNA activate the cGAS–STING pathway and result in

neuroinflammation in several other diseases. Ataxia–

telangiectasia mutated (ATM) is a serine/threonine kinase

whose mutations cause autoimmunity, neuron degeneration,

and cancer, among others, and is important in the recognition

and repair of damaged DNA (164). AT patient samples display a

spontaneous type I IFN response which might be due to STING

activation (165), and ATM-deficient microglia show aberrant

activation of STING (166). Chronic activation of STING was

observed in mice lacking TREX1 (167) or RNase H2 (168),

important nucleotide-processing enzymes whose defects lead to

AGS. cGAS was also shown to be involved in AGS (169),

whereas its inhibition resulted in reduced constitutive

expression of IFN (170). The ME7 prion disease mouse model

showed dsDNA breaks in cells of the hippocampus and

thalamus that lead to activation of cGAS–STING (171).
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3 SMOCs inducing the release of
neurotoxic inflammatory mediators
and the cell death

3.1 Triffosome

Triffosome is assembled on the endosomal membrane upon

activation of TLR3 (which detects viral and synthetic double-

stranded RNA) and TLR4 (172, 173). The core of triffosome is

composed of TIR domain-containing adaptor protein inducing

IFNb (TRIF) in the case of TLR3 or TRIF and TRIF-related

adaptor molecule (TRAM) for the TLR4. Proteins, also present

in the putative SMOC, are TRAF3, TRAF6, TBK1, and IKKi

(also known as IKKϵ) (Figure 2B) (19, 174). TRIF can initiate

various responses, including activation of transcription factors

NF-kB, IRF3, and AP-1 through different pathways. TRIF binds

TRAF3, and its ubiquitylation results in activation of TBK1 and

IKKi, which in turn phosphorylate and activate IRF3. When

activated, IRF3 binds IFN-sensitive response elements and

subsequently activates type I IFN expression (175). TRIF

contains the RIP homotypic interaction motif (RHIM) domain

through which TRIF interacts with receptor-interacting serine/

threonine kinase 1 (RIP1/RIPK1). RIP1 is able to activate IKK

through TAK1 which further activates NF-kB (176).

Interestingly, like myddosome, triffosome can also activate NF-

kB through TRAF6 (177). Both pathways activate TAK1 which

leads to the activation of AP-1 (178).

The ability of TRIF to induce cell death is important in host

defense to limit the spread of infection. TRIF is also the only TLR

adaptor able to induce cell death because of the C-terminal

RHIM domain. A homotypic interaction of TRIF with RIP1 can

also result in induction of Fas-associated protein with death

domain (FADD)/caspase-8-dependent, mitochondria-

independent apoptosis (179, 180). When caspase-8 is blocked,

which can occur as a pathogen evasion strategy, TRIF triggers

necroptosis through the RIP1–RIP3–MLKL pathway (181).

A widely used PD mouse model is produced with neurotoxin

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Using

this model, Shan et al. showed TRIF’s protective role in

dopamine neuron degeneration (182). Similarly, reported in

another study, TLR3 deficiency led to resistance to MPTP

neurotoxicity (183). Moreover, TRIF may be important for

microglial phenotype switching that can be detrimental or

beneficial in neurodegeneration (182). Adding poly (I:C) to the

medium of human PD patient brain slice cultures activated local

astrocytes and promoted neuronal survival (184). Upregulation of

TLR3 and TLR4 was also observed in different rat PD models, but

the expression level and its time differed between models (185).

Injection of poly (I:C) into rat brains induced an expression of

proinflammatory cytokines and chemokines at 7–12 days and

could thus contribute to the progressive damage (186). Authors

also used neurotoxin 6-hydroxydopamine (6-OHDA) to induce
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the PD model following poly (I:C) injection and observed greater

neuronal cell loss and greater astrocytic activation compared to 6-

OHDA alone (186). The TLR3-IKK-b pathway was recently

shown to be important in the degeneration of dopamine

neurons in the MPTP mouse model (183).

The TRIF pathway was found important for protecting the

microenvironment surrounding motor neurons in ALS mice.

TRIF-deficient ALS mice had a shorter survival time and

contained aberrantly activated astrocytes in lesions, whereas

MYD88 deficiency had no effect (187). The TLR-TRIF

pathway likely eliminates those astrocytes via apoptosis as the

proportion of apoptotic astrocytes was significantly lower in

TRIF-deficient mouse spinal cord compared to control. The

number of aberrantly activated astrocytes was negatively

correlated with survival time (187). Moreover, treating rat’s

brain with TLR3 agonist poly (I:C) caused the translocation of

neuronal TDP-43, a major pathological protein in sporadic ALS,

from the nucleus to the cytosol, but without observed protein

aggregates (186).

Activation of TRIF signaling results in IFNb expression that

has both anti- and pro-inflammatory responses which mainly

depend on the cell or tissue type. IFNb is associated with the

preservation of the BBB integrity, and it was reported that IFNb
can prevent the infiltration of inflammatory cells into the brain

(188, 189). IFNb is used to treat MS as it slows the progression of

the disease (190). TLR3-mediated IFNb production turned out

to be protective in an EAE mouse model (191). Bsibsi et al. also

showed that activation of cultured astrocytes derived from

postmortem brain samples with different stimuli causes the

expression of TLR3 (184). They evaluated the expression of

several cytokines, chemokines, growth factors, and their

receptors with gene profiling after treating cells with poly (I:

C), LPS, or both. Interestingly, only poly (I:C), a ligand of TLR3,

induced the production of neuroprotective factors, angiogenic

factors, chemokines, and anti-inflammatory cytokines, even

though cells generally expressed TLR4 at high levels (184). In

a microarray study, Suh et al. identified indoleamine 2,3-

dioxygenase that was highly induced in poly(I:C)-treated

astrocytes, an enzyme with many biological functions,

especially immunosuppression (192) through the synthesis of

tryptophan metabolites that are cytotoxic to certain immune

cells (193). On the contrary, intraperitoneally injected poly(I:C)

resulted in a rapid expression of proinflammatory cytokines and

chemokines as it was observed in several parts of mouse brain

(194). In another study, an ME7 prion-infected mouse model

was used to assess the effect of acute systemic poly (I:C)

stimulation (195). Poly (I:C) administration worsened the

neurodegenerative process and accelerated the progression of

disease in ME7 mice, despite similar systemic responses with

control-treated mice. This suggests that the degenerative brain

creates a primed state for robust IFN response and subsequent

worsening of pathology with repeated challenges with poly

I:C (195).
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Of importance in neuroprotection is another anti-

inflammatory cytokine, expressed upon activation of

triffosome, IL-10 (184, 196). Reportedly, IL-10 is crucial in

the regulation of prion disease. Mice lacking IL-10 are

susceptible to the development of prion disease and show a

significantly shortened incubation time (197). This might also

be due to the impaired signaling of IRF3, which is the main

transcription factor of triffosome, as neuroblastoma 22L-

N2a58 cells overexpressing IRF3 showed a decreased level of

structural ly abnormal prion protein (PrPSc) (198).

Furthermore, Irf3-/- mice had accelerated progression of

transmissible spongiform encephalopathy (TSE) and

accumulation of PrPSc in the spleen (198). Synthetic

neurotoxic prion fragment PrP106-126-treated microglial

cells showed reduced autophagy when TLR4 or TRIF was

suppressed by siRNA (199), indicating its protective role in

prion disease. On the other hand, systemic poly (I:C)

stimulation also induced the transcription of IL-10, with a

surprisingly higher expression in ME7 prion-infected animals,

but without significant improvement of disease (195).
3.2 Inflammasomes

Upon activation by various exogenous and endogenous

stimuli, certain members of ALR and NLR receptor families

assemble into cytosolic multiprotein complexes called

inflammasomes (21, 200). Inflammasomes convert procaspase

zymogens into active proteases resulting in maturation and

secretion of the pro-inflammatory cytokines IL-1b and IL-18

as well as inflammatory cell death called pyroptosis. Canonical

inflammasome sensors NLRP3, NLRP1, NLRC4, and ALR

member absent in melanoma 2 (AIM2) contain an interaction

domain that varies between inflammasomes (CARD, PYD) and

is responsible for the recruitment of adaptor apoptosis-

associated speck-like protein containing a CARD (ASC) and

effector protein caspase-1 (201, 202) (Figure 4). Non-canonical

inflammasome on the other hand mediates the activation of

caspase-11 (200).

Inflammasomes in the CNS can be found in microglia and

astrocytes (203), neurons, and CNS-infiltrating macrophages

(204–209) and are activated in response to autoimmune-

mediated injury, aggregated and misfolded proteins, or acute

injury. Activation of inflammasomes results in pyroptosis, a

highly inflammatory form of lytic cell death, that greatly

contributes to neuroinflammation by the release of different

cytokines, particularly IL-1b and IL-18 from neurons and glial

cells (205, 210–212). Those cytokines can initiate a signaling

cascade in multiple CNS cells and trigger the expression of

various genes associated with inflammation (213). IL-1b and IL-

18 are important for physiological functions in CNS and have

been shown to participate in learning, memory, and cognitive

processes (214).
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3.2.1 NLRP3 inflammasome
The most studied among the inflammasomes is NLRP3

inflammasome, first identified in Muckle–Wells syndrome (MWS)

(215). It is pivotal for the development of acute and chronic

inflammation, in numerous auto-inflammatory, autoimmune, and

infectious diseases as well as in neuroinflammation (201). Many

triggers of viral, bacterial, or fungal origin can induce the assembly of

NLRP3 inflammasomes including pore-forming toxins (202, 216),

crystalline particles like uric acid (202), alum, silica, and asbestos

(217), ATP (216), and aggregated andmisfolded proteins such asAb
(208, 218). This wide array of molecules that elicit inflammasome

assembly is unlikely to activate NLRP3 through its direct binding.

Two signals are required for NLRP3 activation. The first signal,

known as priming, is required for the activation of the NF-kB
signaling pathway, upregulation of NLRP3 expression, and

posttranslational modifications (219, 220), whereas the second

signal, provided by an NLRP3-activating agent, induces the

assembly of the inflammasome complex (201). In the CNS,

NLRP3 is predominantly expressed in microglial cells and

astrocytes (205, 206, 221).

Excessive activation of the NLRP3 inflammasome has been

demonstrated to contribute to the pathology of several

neurological disorders and diseases (218). The NLRP3

inflammasome was shown to be vital for the development and

progression of Ab pathology, elevated levels of IL-1b, and
activation of caspase-1 (208, 218). Furthermore, Venegas et al.

(2017) demonstrated that ASC specks released by microglia bind

Ab molecules enhance their aggregation and increase the

formation of Ab aggregates acting as an inflammation-driven

cross-seed for Ab pathology (218). This Ab cross-seeding

depends on the PYD domain of ASC. ASC specks can be

visualized in brain sections of patients with AD, located within

microglia and in the extracellular space (218). Tan et al. (2013)

identified SNP rs35829419 (Q705K) in a Northern Han Chinese

population which appears to exert a protective effect against the

development of late-onset AD (218). On the other hand, Ising

et al. (2019) connected NLRP3 to the pathogenesis of

tauopathies, as loss of NLRP3 function reduced tau

hyperphosphorylation and aggregation by regulating tau

kinases and phosphatases (222).

Zhang et al. detected IL-1b and IL-18 in cerebrospinal fluid

(CSF) obtained from PD patients and confirmed the expression of

core NLRP3 inflammasome molecules in neuronal cells which

promoted cytokine maturation and secretion (223). They showed

that CSF-localized kinase Cdk5, which is involved in the

regulation of different cellular events in neuronal development

and disorders, acts as a crucial regulator of NLRP3 in the PD

immune response (223). Further, numerous in vitro studies

described activation of NLRP3 either by pathological a-
synuclein in cultured microglia (224) or by mitochondrial

reactive oxygen species (mROS) (225). Both of these

inflammatory triggers are associated with the progression of

idiopathic and monogenic forms of PD (226–228). Animal
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studies confirmed that mice lacking NLRP3 or caspase-1 are

resistant to the development of PD symptoms and nigral cell

loss resulting from exposure to different neurotoxins (229).

Additionally, histological studies showed an elevated expression

of NLRP3 in mesencephalic neurons of PD patients (229).

Supporting evidence for a pathogenic role of the NLRP3/

caspase-1/IL-1b axis was also found in the 6-OHDA PD rat

model (230). Von Herrmann et al. (2018) conducted exome

sequencing that revealed synonymous SNP rs7525979 that is

associated with a significantly reduced risk of developing PD by

altering the efficiency of NLRP3 translation, thereby impacting

NLRP3 protein stability, ubiquitination state, and solubility (229).
Frontiers in Immunology 11
NLRP3 is also crucial for neuroinflammation in ALS as

Johann et al. reported elevated levels of NLRP3, ASC, caspase-1,

and IL-18 in human ALS tissue (231). ALS can be caused by

dominant gain-of-function mutations in SOD1 which leads to

protein misfolding and the formation of amyloid-like aggregates,

resulting in activation of caspase-1 and IL-1b in microglia.

Caspase-1 and IL-1b shortfall showed extended survival of the

G93A-SOD1 transgenic mice and attenuated inflammatory

pathology. Similar results were obtained with the treatment

with recombinant IL-1 receptor antagonist Anakinra (232).

Unfortunately, a pilot study with Anakinra in ALS patients did

not exhibit a significant reduction in disease progression (233).
A

B

FIGURE 4

Assembly and activation of inflammasomes. (A) Upon activation, the inflammasome sensor assembles into the inflammasome by recruiting
adaptor protein ASC and effector protein pro-caspase-1. (B) In the nervous system, assembly of the NLRP3 inflammasome can be triggered by
misfolded proteins such as amyloid-b, a-synuclein, tau oligomers, mutated SOD1, and PrPSc. Cytosolic protein aggregates can act in an
autocrine fashion or upon cell death as extracellular stimuli. Upon inflammasome assembly, pro-caspase-1 is proteolytically cleaved. Activated
caspase-1 in turn cleaves pro-IL-1b and pro-IL-18 into their active forms, and gasdermin D (GSDMD) to release the pore-forming N-terminal
domain. IL-1b and IL-18 are released from the cell through GSDMD pores. Pyroptotic cell releases a number of other DAMPs.
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Ona et al. (1999) noticed caspase-1 activation in the brains of

HD patients and in HD mouse models. Inhibition of caspase-1

delays disease progression in the R6/2 HD mouse model (234).

Caspase-1 was shown to cleave wild-type huntingtin in vivo,

possibly contributing to neurodegeneration (234). It was shown

that galectin-3 plays an important role in neuroinflammation in

HD, with plasma levels in humans and mice correlating with the

disease severity. Higher levels of galectin-3 were found in

microglial cells contributing to the inflammation through NF-

kB and NLRP3 signaling axis. Furthermore, knockdown of

galectin-3 reduced huntingtin aggregation, suppressed

inflammation, and increased survival in HD mice (235).

Prion diseases are characterized by misfolded aggregated

infectious prion proteins (PrPs). PrP fibrils induce neuron

toxicity and elevated levels of IL-1b that depend on NLRP3 and

ASC (216). Animal studies suggest a pathological role of IL-1

signaling as IL-1R-deficient animals have a prolonged incubation

period when infected with 139A and RML strains (236, 237).

However, genetic ablation of NLRP3 and ASC did not

significantly delay the incubation period of RML-infected mice,

suggesting that NLRP3 inflammasome and other ASC-dependent

inflammasomes do not contribute to the pathology of prion

diseases or that the effect is prion strain-dependent (238). Many

neurodegenerative conditions were linked to high levels of IL-1b
and IL-18 in brain tissue, cerebrospinal fluid, and plasma (239–

242). IL-18 induces increased expression of pro-inflammatory

cytokines, caspase-1, and matrix metalloproteinases in microglia

(213). All in all, not only activation but the whole downstream

cascade of inflammasome assembly considerably impact

inflammation-driven pathology and tissue damage in

neuropathological conditions. Upregulated levels of IL-1b may

lead to cognitive impairment associated with AD and an elevation

in neuronal acetylcholinesterase expression and activity, resulting

in suppression of the synaptic glutaminergic signaling in

hippocampal neurons (242–246). Similarly, IL-18 is also

abnormally upregulated in neurons, microglia, and astrocytes

(247) and increased levels of IL-18 have been found to colocalize

with both Ab aggregation and hyperphosphorylated tau (248).

3.2.2 NLRP1 inflammasome
Human NLRP1 was the first NLR shown to form the

inflammasome (21). It is composed of the N-terminal pyrin

domain (PYD), central NACHT, LRR and “function-to-find”

(FIIND) domains, and a C-terminal CARD domain (249–251).

Interestingly, NLRP1 activation requires posttranslational

autoproteolytic cleavage within the FIIND domain (252, 253),

but due to its own CARD domain, NLRP1 can be activated

independently of ASC (254). Moreover, while the PYD domain

is dispensable, the presence of the CARD domain is necessary for

its function (253). Proteolytic cleavage of the N-terminus can be

triggered by bacterial and viral proteases (255–259) and

ubiquitin ligases (260). Cleavage at the N-terminus releases the
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CARD domain which is then able to recruit ASC and/or caspase-

1, thus forming the inflammasome (261, 262). Bauernfried et al.

identified human NLRP1 as a nucleic acid sensor, which directly

binds dsRNA through the LRR domain (263).

In the CNS, NLRP1 is primarily expressed by pyramidal

neurons and oligodendrocytes (204). Using a rat model, it has

been shown that NLRP1-dependent neurotoxicity is present in

Ab-treated cortical neurons due to activation of caspase-1 and

secretion of IL-1b (210). Kaushal et al. demonstrated that in

humans the NLRP1 inflammasome initiates caspase-1 and

subsequent caspase-6 activation, resulting in axonal

degeneration and neuronal death (264). Furthermore, they

detected a 25- to 30-fold increase in NLRP1-positive neurons

in the brains of patients with AD in comparison to healthy

controls (264). Interestingly, while the cohort study on patients

with AD implicated the association of four non-synonymous

single SNPs in the NLRP1 gene with the disease (265), these

results were not replicated in the genome-wide association study

meta-analysis of AD (266), which might be due to the

heterogeneity of participants in terms of geographic and

ethnic background.

The role of NLRP1 in the pathogenesis of MS has not yet

been completely elucidated. Maver et al. identified a glycine to

serine substitution in NLRP1 that might be associated with

increased IL-1b and IL-18 production in familial patients with

multiple sclerosis (267). On the other hand, Barnales et al. were

not able to identify potentially pathogenic mutations in the

NLRP1 gene from patients with the disease (268).

In ischemia, NLRP1 activation has been associated with

neuronal cell death and behavioral deficits due to increasing

levels of proinflammatory cytokines, IL-1b, and IL-18 (269).

Moreover, inhibition of the NLRP1 inflammasome resulted in a

decreased level of proinflammatory cytokines (270). Inhibition

of IL-1b even ameliorated subarachnoid hemorrhage-induced

brain injury in a rat model (271).

3.2.3 AIM2 inflammasome
AIM2 is an ALR family member containing an N-terminal

PYD domain, which associates with ASC, and a HIN200

DNA-binding domain (272). It serves as a receptor for

cytosolic double-stranded DNA (dsDNA) (272). AIM2 was

reported to be expressed in neurons where it mediates

pyroptotic cell death (209). Moreover, in mouse brain, AIM2

is the most dominantly expressed among common

inflammasome sensors (273).

In AD, AIM2 inflammasome was demonstrated to act as a

mediator in microglial activation, Ab deposition, and cytokine

production, but the knockout of AIM2 in 5XFAD mice did not

improve memory and anxiety phenotype or had any beneficial

effect on cytokine expression (273). Recently Barclay et al.

reported AIM2 activation in astrocytes during the late phase

of EAE (EAE) (274).
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4 SMOCs inducing cell death

4.1 Necrosome and ripoptosome

RIP1 and RIP3 are crucial signaling molecules involved in

the induction of necroptosis or apoptosis (275, 276). Necrosome

is a complex that triggers necroptosis, a programmed type of

inflammatory necrotic cell death, mediated by death receptors

(277–279). Necroptosis is induced by various stimuli, such as

TNF-a, LPS, or other PAMPs and DAMPs (276, 280), and

characterized by the loss of cell plasma membrane and swelling

of organelles (281, 282). Necrosome is composed of the RIP1

(283, 284) and RIP3 kinases (285–287), whose kinase activity is

crucial for the initiation of necroptosis, and MLKL, which is the

effector of necroptosis (287–289). Interestingly, recent studies

indicate that RIP3 may not be essential for necroptosis, as

Gunther et al. (2016) demonstrated the RIP3-independent

activation of MLKL (290). Moreover, another potential

substrate of RIP3 was identified, calcium-dependent protein

kinase II delta (CAMK2D), which executes necrotic cell death

independently of MLKL (291).

TNF stimulation is followed by the formation of Complex I

(TRADD, RIP1, TRAF2/5, LUBAC, and cIAP1/2), which serves

as a platform for recruitment of downstream kinases and effector

proteins, initiating the activation of NF-kB and mitogen-

activated kinases (292, 293). After the internalization of ligand-

bound TNFR1, complex II is formed (deubiquitinated RIP1,

caspase-8, TRADD, FADD) and it can trigger apoptosis or in the

presence of RIP3 switch to a necroptosis-inducing complex, i.e.,

necrosome (294–296). RIP1 and RIP3 are activated by

autophosphorylation and then RIP3 phosphorylates MLKL (at

T357 and S358 residues), which initiates oligomerization of

MLKL and membrane translocation into the inner leaflet of

the plasma membrane, resulting in the loss of integrity of cell

membrane and cell death (Figure 5) (297–301). RIP1, together

with FADD and caspase-8, forms the ripoptosome (35, 275, 302),

which is an intracellular signaling complex that can switch

modes between apoptotic and necroptotic cell death (Figure 5)

(35). In case of genotoxic stress or loss of inhibitor-of-apoptosis

proteins (IAPs), ripoptosome induces apoptosis (35, 275).

RIP3 and caspase-8 are the crucial components of the

ripoptosome, and they interact through the adaptor molecule

FADD. The assembly of ripoptosome depends on the

interactions between the death domains (DD) of RIP1 and

FADD and interactions between death effector domains

(DED) of FADD and caspase-8 (35, 302). Furthermore, the C-

terminal DD of RIP1 allows the recruitment of FADD through

the homotypic DD–DD interactions, while the N-terminal DED

of FADD interacts with the DED of the caspase-8 (303–305).

FLIP isoforms are intracellular regulators of caspase-8 that

regulate the activity of ripoptosome, and while cFLIPL (a long

isoform of cFLIP) prevents ripoptosome formation, cFLIPS
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(short isoform of cFLIP) promotes ripoptosome assembly.

Hence, the loss of cFLIPL or activation of cFLIPS within the

ripoptosome induces caspase-dependent apoptosis or caspase-

independent necroptosis, respectively (35).

Necroptosis is closely associated with the pathogenesis of

various neurodegenerative diseases (279, 306), such as AD

(307–309), PD (310, 311), ALS (312, 313), and multiple sclerosis

(314, 315). Recently, a direct link has been established between

necrosome and neuronal loss in the brains of clinical and

preclinical patients with AD. Caccamo et al. (2017) found that

necroptosis was activated in postmortem human brains with AD

and showed that a set of RIP1-regulated genes overlapped

significantly with the transcriptomic signatures of AD (307).

Furthermore, phosphorylated (activated) necrosome proteins

(pRIP1, pRIP3, and pMLKL) were found inside the

granulovacuolar degeneration (GVD) granules within neurons

and this co-localization was inversely related to neuronal density.

This suggests that necrosome can be activated within neurons,

directly causing neuronal death (308). Building on these findings,

another study demonstrated co-localization of these proteins

within the same neurons upon their exposure to TNFa and co-

immunoprecipitation of pRIP3 and MLKL, which additionally

strengthens the argument of these proteins interacting to form

necrosome within neurons (309).

Growing evidence indicates the role of necroptosis also in

PD. Iannielli et al. detected some landmarks of necroptosis in

neurons of mice, treated with a PD-mimicking neurotoxin 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (316), and

in 2020, Onate et al. (2020) demonstrated that necroptosis is

activated in postmortem brain tissue from patients and in a

mouse PD model (317). Furthermore, upon inhibition of key

components of the necroptotic pathway, the degeneration of

dopaminergic and cortical neurons decreased, improving motor

performance. In the case of multiple sclerosis, Ofengeim et al.

reported that in oligodendrocytes TNFa induced cell death in a

RIP1/3-dependent manner (314), which was further supported

by Picon et al. (2021), who showed that upregulation of

necropto t i c s igna l ing occurred predominant ly in

macroneurons in cortical layers II–III (315).

Currently, the evidence for the role of necroptosis in other

neurodegenerative diseases is limited. Using an ALS in vitro

model (coculture of human adult primary sporadic ALS

astrocytes and human embryonic stem cell-derived motor

neurons), Re et al. demonstrated that also motor neurons

undergo necroptosis (318). Moreover, increased expression of

RIP3 and phosphorylated MLKL was detected in reactive

astrocytes and microglia after spinal cord injury (306, 319)

and following intracranial hemorrhage, free hemin, a product

of decomposition of hemoglobin, was shown to mediate

neuronal necroptosis by assembling the necrosome complex

and triggering cell death (320). On the other hand,

components of the necrosome seem to be actively involved in
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neurodegeneration by forming amyloid structures that are toxic

to cells. Li et al. demonstrated that RIP1 and RIP3 form a

functional, hetero-oligomeric amyloid signaling complex

(composed of RIP1 and RIP3), which mediates programmed

necrosis. In the in vitro conditions, RIP1 and RIP3 formed

irregular and short fibrils; nonetheless, the fibrils exhibited

classical characteristics of b-amyloids. Although initially the

formation was slow, the preformed seeds accelerated the RIP1

fibrillations, while the selected mutations in RIP1 or RIP3

compromised fibril formation, kinase activation, and

programmed necrosis in vivo (321).
4.2 Apoptosome

The apoptosome is a ring-like platform composed of seven

Apaf-1 molecules that acts as the executioner of the

mitochondria-dependent apoptosis (322, 323). When

cytochrome c is released from mitochondria, it acts as the pro-
Frontiers in Immunology 14
apoptotic factor and, in the presence of ATP/dATP, binds the

adapter molecule Apaf-1 in the cytosol (39, 324, 325). The

binding of the cytochrome c to the WD-40 repeat region of

Apaf-1 results in oligomerization of Apaf-1 (through NOD or

NB-ARC domains of Apaf-1) to form a wheel-shaped signaling

platform (326, 327). Assembly of the apoptosome is followed by

binding of procaspase-9, resulting in its activation. The

proteolytically active complex then activates procaspases-3

and -7, which execute intrinsic apoptosis (Figure 6A) (328–330).

Deregulation of apoptosis is associated with several pathologies,

including neurodegenerative disorders. Apaf-1-mediated apoptosis

plays a crucial role in brain development (331, 332), during which a

gradual decrease in Apaf-1 occurs, resulting in mature neurons with

low susceptibility for apoptosis (333–336). Several neurological

disorders including AD (337, 338), PD (339–341), ALS (342), HD

(343–345), and cerebral ischemia (346) are marked by

disproportionate activation of apoptosis, leading to the loss of

neuronal cells and neuronal connectivity, which substantially

contributes to the neurodegeneration (323, 347).
FIGURE 5

Assembly and activation of RIP-associated SMOCs leading to necroptosis, apoptosis, or NF-kB activation. (A) Necrosome. Upon binding to the
TNF receptor 1, TRADD, TRAF2 and 5, RIP-1, cIAPs, LUBAC, and other molecules are recruited to form Complex I, which promotes cell survival
through activation of the NF-kB pathway. Following deubiquitylation of RIP1, Complex IIa or Complex IIb are formed, resulting in apoptosis or
necroptosis, respectively. (B) Ripoptosome. This intracellular complex is composed of the RIP1, FADD, and caspase-8 and can switch between
apoptosis and necroptosis.
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In 2004, Cozzolino et al. demonstrated that apoptosome

inactivation by Apaf-1-knockout rescues proneural and neural

cells from Ab peptide and mutant SOD1 cell death (348).

Analysis of the human brain postmortem tissue revealed that

patients with AD express lower levels of caspase-9 in comparison

to healthy controls but showed no significant difference in the

level of cytochrome c and Apaf-1 expression, suggesting that

apoptosis may occur via the death receptor pathway

independent of cytochrome c (349). Some light on the

mechanism of APAF-1 involvement was then shed by Li et al.

who showed that Ab induced neuronal apoptosis through the

TNF type I receptor, which was mediated by the alteration in

Apaf-1 expression (350). On the other hand, Sharoar et al.

demonstrated that caspase activation and cell death induced

by staurosporine were significantly reduced by Ab42 oligomers,

surprisingly indicating the role of the peptide in the negative

regulation of apoptosis (351). The in vitro study showed that the

inhibitory effect of Ab42 is associated with its interaction with

the procaspase-9 and inhibition of Apaf-1 apoptosome

assembly. While the inhibitory effect was detected in the early

stage of apoptosis, later on, the robust activation of apoptotic

caspases overcomes the inhibition (351).
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To test whether apoptosome is involved in the

pathogenicity of PD, Mochizuki et al. applied an Apaf-1-

dominant-negative variant that interferes with the formation

of a functional Apaf-1-caspase 9 complex, to degenerating

nigrostriatal neurons in a 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) mouse model of PD (352). They

showed that delivery of the dominant-negative variant

prevented nigrostriatal degeneration in mice, indicating that

the mitochondrial apoptotic pathway might be the major

mechanism of dopaminergic neuronal cell death. This was

further supported by Teng et al. (2006) who showed that

Nucling, an apoptosome-associated protein, is required for

MPTP-induced apoptosis in dopaminergic neurons, as the

Nucling-deficient mice were not damaged by the MPTP

neurotoxin (353).

Regarding ALS, SOD1 has been shown to induce Apaf-1-

mediated apoptosis (354). Apaf-1 plays a role also in the

pathogenesis of Huntington’s disease, as high levels of the

protein have been reported in the mouse and fly models of the

disease (355). Sancho et al. (2011) treated the cells with an

inhibitor of Apaf-1, minocycline, and demonstrated that the

minocycline-treated cells and Apaf-1 knockout cells had a
FIGURE 6

Assembly and activation of apoptosome, PIDDosome, and DISC. (A) Apoptosome. Cytochrome c released from the mitochondria binds to Apaf-
1, which enables Apaf-1 to bind dATP/ATP, followed by the conformational change that promotes apoptosome assembly. Next, the procaspase-
9 is bound to the apoptosome and activated and the proteolytically active complex then activates effector caspases-3 and -7, resulting in
intrinsic apoptosis. (B) DISC. The complex is comprised of death receptor, FADD, and procaspase-8/-10. Following autoproteolysis, active
caspases cleave effector caspases-3 (-7) and induce apoptosis. (C) PIDDosome. This multiprotein complex is composed of PIDD1, RAIDD, and
procaspase-2. Upon PIDDosome assembly, procaspase-2 is activated, which leads to apoptosis.
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reduced tendency to mutant huntingtin-dependent protein

aggregation (356).
4.3 Death-inducing signaling complex

Death-inducing signaling complex (DISC) is a platform that

leads to the activation of initiator caspase in extrinsic apoptosis

(357). Membrane death receptors (Fas, TRAIL, TNFR1),

cytosolic adaptor FADD, and procaspase-8/-10 comprise

DISC. For DISC assembly, two homotypic interactions are

required, namely, a DD–DD interaction between Fas and

FADD and a DED–DED interaction between Fadd,

procaspase-8/-10, and cellular FLIP (cFLIP) (357–362). Once

the procaspase molecules are clustered in DISC, the short

distance between them results in dimerization of their C-

terminal protease domains and partial activation. Next, the

autoproteolysis of procaspases-8/-10 occurs, resulting in the

fully active caspases that induce cell death (Figure 6B) (361,

362). Additionally, there is a significant overlap with RIP1-

associated SMOCs, as described in the previous chapter.

Paradoxically, while the DISC is crucial for the initiation

of death-receptor-induced apoptosis, the death receptors can

also signal cell survival through activation of non-apoptotic

pathways. For example, cFLIP isoforms (cFLIPL, cFLIPS,

cFLIPR) control procaspase-8 activation on the DISC and

determine whether apoptosis will be promoted or inhibited

(363, 364). The role of DISC in neurodegeneration has been

poorly investigated. In 2002, Qiu et al. demonstrated that Fas-

associated DISCs assemble in neurons overexpressing the Fas

ligand and in human and murine contused brains after the

traumatic brain injury. In HD, aggregation of HTT is

followed by HIP1 release from the cell membrane and is

made available for DISC formation, which contributes to

neuronal cell death (365). The assembly of the same unique

DISC, composed of Hip1, Hippi, and caspase-8, was reported

also upon the formation of neurodegenerative aggresome

in the case of maternal diabetes-induced neural tube

defect (366).
4.4 PIDDosome

The PIDDosome is a multiprotein complex comprised of the

p53-induced death domain protein 1 (PIDD1), adaptor protein

RIP-associated Ich-1/Ced-3 homologous protein with a death

domain (RAIDD, also known as CRADD), and the proform of

an endopeptidase caspase-2 (367). Two interactions are required

for PIDDosome assembly, firstly between RAIDD and PIDD via

their DDs and secondly between RAIDD and caspase-2 via their

CARDs (38, 368, 369). Assembly of PIDDosome results in

proximity-based dimerization and activation of caspase-2,

leading to cell death (Figure 6C) (367). The PIDDosome
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assembly can be triggered by various stimuli, such as DNA

damage, heat shock (370), cytoskeletal disruption (371) or

accumulation of b-amyloids (372), and it also serves as a

“polyploidy checkpoint” (373). Auto-cleavage of PIDD

determines the course of events, as its C-terminal fragment

(PIDD-C) mediates activation of NFkB, but its further

cleavage into the PIDD–CC fragment leads to activation of

caspase-2, resulting in apoptosis (374).

The involvement of PIDDosome in the induction of

neuronal cel l death has been implicated in a few

neurodegenerative diseases (375). Caspase-2 has been shown

to mediate neuronal cell death induced by b-amyloid in AD

(372). Interestingly, Jabado et al. showed that RAIDD

aggregation promotes apoptotic death of neurons (376) and

later Ribe et al. demonstrated that the induction of caspase-2-

dependent neuronal death depends on the expression of RAIDD,

but not PIDD (377). Niizuma et al. implicated the role of PIDD

in procaspase-2 activation in caspase-2-dependent neuronal cell

death after cerebral ischemia, suggesting inhibition of

PIDDosome assembly as a therapeutic approach to preventing

neuronal cell death (378).

On the other hand, reduced caspase-2-mediated neuronal

apoptosis (during development) resulting from RAIDD

mutations in the DD domain, has been shown to cause thin

lissencephaly and the intellectual disability associated with the

loss of caspase-2-mediated apoptosis implies an important role

in the development of human cerebral cortex (379).
5 Discussion

The last two decades of research have shown that amyloid

protein deposition in the course of neurodegenerative disease

stimulates inflammatory response that significantly

contributes to the disease progression through the

generation of several neurotoxic species. In this review, we

explored how SMOCs, the main engines of the inflammatory

signal transduction and several types of programed cell death,

contribute to neurodegeneration. Recent studies reveal that

SMOC-driven inflammation exhibits both neurotoxic and

neuroprotective features suggesting that the role of

neuroinflammation is more multifaceted than initially

thought. The roles of SMOC may shift depending on the

disease and the stage of the disease. Initially, inflammatory

response to protein amyloids might be a neuroprotective

process, aimed at trying to contain the damage. The

enhanced sensitivity of SMOCs is likely advantageous at this

stage as it enables early response. Microglia continuously

patrol the local microenvironment and clear cellular debris

and apoptotic cells (380). Microglia can switch off the pro-

inflammatory (M1) phenotype, responsible for the generation

of neurotoxic species, and instead exhibit an alternative,

neuroprotective phenotype (M2) (381) which through
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secretion of cytokines IL-10 and TGF-b suppresses

inflammation and triggers t issue regenerat ion and

extracellular matrix remodeling. The M2 phenotype is also

associated with increased phagocytosis. In AD, microglia were

shown to cluster around senile plaques in an attempt to

phagocytose them (382). Both detrimental M1 and beneficial

M2 phenotypes of microglia were found in the AD human and

mouse brains (381) which further highlights the relevance of

potential neuroprotective features of inflammation. CNS-

infiltrating T cells, B cells, and monocytes were shown to

upregulate and secrete anti-inflammatory cytokines (IL-4, IL-

13, IL-10) and neurotrophic factors, particularly BDNF which

has potent effects on neuronal survival and plasticity (383).

Adaptive immunity may assist in the removal of protein

aggregates through neutralizing antibodies and engagement

of complement pathway as active immunization using Ab42 in
a mouse model of AD-enhanced clearance of Ab plaques and

was thought to induce anti-inflammatory Th2 effector T cells

which increased neutralization of anti-Ab antibodies (384).

However, in the long run, the continuous build-up and

spreading of aggregates among the cells of CNS seem to

exceed the rate of clearance (385). a-Syn accumulation in

microglia upon phagocytosis for example induces phagocytic

exhaustion that creates an excessively toxic environment,

recruitment of peripheral immune cells, and consequently

selective dopaminergic neuronal degeneration (386). Thus,

inflammation becomes neurotoxic and starts to aid in the

progression of neurodegenerative diseases. The role of SMOCs

as amplifiers of signal is likely instrumental in potentiation of

neurotoxicity. Current studies also demonstrate that multiple

SMOCs could contribute to neurotoxicity and different SMOC

pathways significantly overlap. Interestingly, some SMOC

complexes may propagate and spread in a similar fashion as

the neurodegeneration-driving aggregates that stimulate their

assembly. In the case of the RLR–MAVS complex, the adaptor

MAVS was reported to induce the formation of large, prion-like

aggregates to activate IRF3 and propagate interferon-mediated

response upon viral infection (387). In the case of

inflammasomes, extracellular ASC specks were shown to seed

nascent aggregates from cytosolic soluble ASC upon

phagocytosis by recipient cells (388, 389). Such seeding ability

is very reminiscent of the mechanism of prion propagation in

neurodegeneration, with the difference that ASC molecules are

not misfolded but retain their native fold in fibrils (20).

Extracellular ASC specks could be important drivers of

inflammation in diseases such as rheumatoid arthritis (390).

Furthermore, ASC specks can recruit Ab and enhance Ab
fibrillation suggesting a direct involvement in AD progression

(218). An interesting phenomenon was observed in the case of

necrosome, where the amyloid heterocomplex of RIP1 and RIP3

seems to be of amyloid nature (321). These similarities may

explain the vicious cycle of neuroinflammation that eventually

leads to neuronal dysfunction.
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The concept of structured higher-order assemblies as

generators of many inflammatory species with neurotoxic

properties provides a new paradigm in the understanding of

signal transduction and should be taken into consideration when

designing novel therapeutic strategies for neurodegenerative

diseases. The currently available treatment for neurodegenerative

diseases is largely outdated and symptomatic. In the case of AD,

the first line of treatment is based on four FDA-approved reversible

acetylcholinesterase inhibitors—rivastigmine, galantamine,

donepezil, and memantine (391)—that compensate for the loss

of limbic cholinergic neurons by increasing acetylcholine in

synapses. While this course of treatment alleviates the symptoms,

it does not slow down the disease progression (392). The first FDA-

approved drug to address the pathophysiology of AD was

aducanumab, which reduces beta-amyloid plaques in the brain

in patients with early-stage AD (391). EMA, on the other hand, did

not approve this therapy due to the lack of clinical improvement

and potentially harmful brain scan abnormalities in some patients.

Lack of effective treatment in combination with increasing life

expectancy is alarming as it leads to poor quality of life for the

growing elderly population as well as to increasing healthcare costs.

Future directions might involve the utilization of several

already known inhibitors of SMOC components to inhibit early

stages of complex assembly, i.e., prior to the formation of the

polymerization seed. Several NLRP3-specific inhibitors have

entered clinical trials (reviewed in (393)). This may be a

possible first course of treatment when coupled with an

early diagnosis. However, since clinical symptoms of

neurodegenerative diseases characteristically appear years after

the underlying pathological mechanisms have already started

and many complexes have thus already formed and spread, it

might also be worthwhile to explore possibilities for blockage of

assembled SMOC activity. Blocking antibodies (384) and other

sequestration strategies (87) were to date mostly directed toward

dissolving amyloid aggregates and blocking their formation,

which provided moderate success in a clinical setting.

Recently, nanobodies were shown to disassemble extracellular

ASC specks and improve inflammatory joint disease in

preclinical setting (390). This study demonstrates that it is

feasible to target SMOCs and disintegrate them. Future efforts

could be directed at testing similar approaches toward other

SMOCs. Taking the growing knowledge of the involvement of

SMOCs and the interplay of various inflammatory and cell death

pathways in neurodegeneration, a combination therapy

simultaneously target ing SMOCs and pathological

protein aggregates might also be a viable approach to

combating neurodegeneration.
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6-
OHDA

6-hydroxydopamine

AD Alzheimer´s disease;

AGS Aicardi-Goutières syndrome

AIM2 Absent in melanoma 2

ALR AIM2-like receptor

ALS Amyotrophic lateral sclerosis

AP-1 Activator protein 1

APP Amyloid precursor protein

ASC Apoptosis-associated speck-like protein containing a CARD

ATM Ataxia–telangiectasia mutated

Ab Amyloid-b

BBB Blood brain barrier

BIR Baculovirus IAP Repeat domain

CARD Caspase activation and recruitment domain

cGAMP Cyclic GMP–AMP

cGAS Cyclic GMP–AMP synthase

CJD Creutzfeld-Jakob´s disease

CNS Central nervous system

cPLA2 Cytosolic phospholipase A2

CSF Cerebrospinal fluid

DAMP Damage-associated molecular pattern

DD Death domain

DED Death effector domain

EAE Experimental autoimmune encephalomyelitis

ER Endoplasmic reticulum;

FADD Fas-associated protein with death domain

FIIND Function to find domain

GA Golgi apparatus

GSDMD gasdermin D

HD Huntington´s disease

iAP Inhibitor-of-apoptosis protein

IFN Interferon

IL-1b Interleukin-1b

IL-6 Interleukin-6

IL-18 Interleukin-18

IRAK IL-1 receptor-associated kinase

LGP2 Laboratory of genetics and physiology 2;

LRR Leucine-rich repeat

LRRK2 Leucine-rich-repeat kinase 2

MAVS Mitochondrial antiviral signaling protein

MDA5 Melanoma differentiation-associated gene 5

MLKL Mixed lineage kinase domain-like;

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine;

mROS Mitochondrial reactive oxygen species

MS Multiple sclerosis

MYD88 Myeloid differentiation primary response 88

MWS Muckle-Wells syndrome

(Continued)
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NOX NADPH oxidases

NBD Nucleotide-binding domain

NFT neurofibrillary tangles

NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells

NLR Nucleotide-binding domain and leucine-rich repeat containing
receptor

NLRP1 Nucleotide-binding domain and leucine-rich repeat containing
protein 1

NLRP3 Nucleotide-binding domain and leucine-rich repeat containing
protein 3

NO Nitric oxide

PAMP Pathogen-associated molecular pattern

PD Parkinson´s disease

PrP Prion protein

PRR Pattern recognition receptor

pTau Hyperphosphorylated tau

PYD Pyrin domain;

RIG-I Retinoic acid-inducible gene-I

RIP Receptor-interacting serine/threonine kinase

RNS Reactive nitrogen species

ROS Reactive oxygen species

SMOC Supramolecular organizing center

SNP Single nucleotide polymorphism

SOD1 Superoxide dismutase 1

STING Stimulator of interferon genes

TLR Toll-like receptor

TMD Transmembrane domain;

TNFa Tumor necrosis factor a

TREM2 Triggering receptor expressed on myeloid cells 2

TRAM TRIF-related adaptor molecule

TRIF TIR domaincontaining adaptor protein inducing IFNb.
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