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Multisystem inflammatory syndrome in children (MIS-C) is a febrile pediatric inflammatory
disease that may develop weeks after initial SARS-CoV-2 infection or exposure. MIS-C
involves systemic hyperinflammation and multiorgan involvement, including severe
cardiovascular, gastrointestinal (GI) and neurological symptoms. Some clinical attributes of
MIS-C—such as persistent fever, rashes, conjunctivitis and oral mucosa changes (red
fissured lips and strawberry tongue)—overlap with features of Kawasaki disease (KD). In
addition, MIS-C shares striking clinical similarities with toxic shock syndrome (TSS), which is
triggered by bacterial superantigens (SAgs). The remarkable similarities between MIS-C and
TSS prompted a search for SAg-like structures in the SARS-CoV-2 virus and the discovery of
a unique SAg-like motif highly similar to a Staphylococcal enterotoxin B (SEB) fragment in the
SARS-CoV-2 spike 1 (S1) glycoprotein. Computational studies suggest that the SAg-like
motif has a high affinity for binding T-cell receptors (TCRs) and MHC Class II proteins.
Immunosequencing of peripheral blood samples from MIS-C patients revealed a profound
expansion of TCR b variable gene 11-2 (TRBV11-2), which correlates with MIS-C severity and
serum cytokine levels, consistent with a SAg-triggered immune response. Computational
sequence analysis of SARS-CoV-2 spike further identified conserved neurotoxin-like motifs
which may alter neuronal cell function and contribute to neurological symptoms in COVID-19
and MIS-C patients. Additionally, autoantibodies are detected during MIS-C, which may
indicate development of post-SARS-CoV-2 autoreactive and autoimmune responses. Finally,
prolonged persistence of SARS-CoV-2 RNA in the gut, increased gut permeability and
elevated levels of circulating S1 have been observed in children with MIS-C. Accordingly, we
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hypothesize that continuous and prolonged exposure to the viral SAg-like and neurotoxin-like
motifs in SARS-CoV-2 spike may promote autoimmunity leading to the development of post-
acute COVID-19 syndromes, including MIS-C and long COVID, as well as the neurological
complications resulting from SARS-CoV-2 infection.
Keywords: SARS-CoV-2, superantigen, MIS-C multisystem inflammatory syndrome in children, long COVID,
superantigen-like motif, neurotoxin-like segment, post-acute sequelae of COVID-19 (PASC)
INTRODUCTION

COVID-19, an infectious disease caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), became a
major pandemic in 2020. The spectrum of COVID-19 clinical
manifestations is broad, and SARS-CoV-2 infected individuals can
present as asymptomatic or with mild symptoms such as fever,
fatigue, sore throat, runny nose, and coughing. Severe COVID-19
develops in some individuals and is characterized by interstitial
pneumonia, hypoxemia, and acute respiratory distress syndrome
(ARDS), which may be lethal (1, 2). Advanced age, male sex and
underlying conditions such as diabetes, obesity, active cancer,
chronic lung and kidney diseases and cardiovascular diseases are
risk factors associated with severe disease development (3–5).
Children are less severely affected by COVID-19 than adults and
severe respiratory deteriorations are rare in SARS-CoV-2 infected
children (6). This variation in clinical presentation might be
explained by more rapid and potent innate and adaptive
immune responses, the lower rates of comorbidities associated
with severe COVID-19 in children and, to a lesser extent, the
presence of cross-reactive T cells triggered by previous coronavirus
infections (7, 8). However, weeks after SARS-CoV-2 infection, a
small fraction of children develop a post-infectious febrile
pediatric hyperinflammatory entity called multisystem
inflammatory syndrome in children (MIS-C) (9–14). MIS-C
affects multiple organs, including the cardiovascular system, the
gastrointestinal (GI) tract, and the kidneys, and may lead to the
development of neurological symptoms (9–14). Because of some
shared clinical manifestations, MIS-C has been initially
described as a Kawasaki disease (KD)-like syndrome. However,
MIS-C demographic features, clinical, laboratory and
immunopathological findings differ from those of KD (15–17).
A similar MIS developing in adults of 21 years and older, called
MIS-A, has also been reported by the CDC (18). Two years after
the initial reports of MIS-C, it remains unclear why some children
develop MIS-C after SARS-CoV-2 infection, whereas others
successfully clear the infection without the complications of
long-lasting sequelae.
MIS-C AND SARS-COV-2-INDUCED
HYPERINFLAMMATION AND TOXIC
SHOCK SYNDROME

MIS-C can lead to severe health complications, such as
cardiogenic shock and multiorgan failure, and frequently
n.org 2
requires admission to the intensive care unit (ICU). It was
initially reported in a small cohort of English children as a
hyperinflammatory shock presenting with clinical features
similar to KD, KD shock, cytokine storm, and toxic shock
syndrome (TSS) (10). Following this initial report, MIS-C cases
were described in multiple cities that were strongly affected by
COVID-19 (9, 11, 13, 14, 19, 20). MIS-C is now understood as a
post-infectious hyperinflammatory response with an autoimmune
component that develops in children who either had a SARS-CoV-
2 positive test or contact with a SARS-CoV-2 infected individual in
the weeks preceding diagnosis (21). Increased incidence of MIS-C
cases is usually observed 2 to 5 weeks after the peak of SARS-CoV-
2 infections in affected geographic areas (22).

Persistent fever, conjunctivitis, skin rash, myocardial
dysfunction, hypotension or shock and temporary development
of coronary artery dilatations are common clinical complications
associated with MIS-C (9–12, 14). These features overlap with
symptoms of KD, a febrile inflammatory and systemic vasculitis of
unknown etiology that leads to coronary artery aneurysms in
young children (23–25). However, distinct etiology,
epidemiological and demographic data, clinical symptoms and
laboratory results indicated that MIS-C likely represents a different
entity than KD (15–17, 26). Compared with KD, which is mostly
reported in younger children (< 5 years) and has highest incidence
in Pacific Islander and Asian populations (23–25), MIS-C
incidence is higher in children from non-Hispanic Black and
Hispanic or Latino ethnicities, with a median age of 9 years (21).
Some MIS-C patients develop mild coronary artery aneurysms,
which, unlike the aneurysms that occur in KD patients, are
transient and regress over time (27, 28). Furthermore, clinical
and laboratory findings indicate more pronounced lymphopenia
and thrombocytopenia and higher neutrophil counts and C-
reactive protein (CRP) levels in MIS-C individuals than in KD
patients (9, 11, 12, 20).

Children with MIS-C also exhibit severe abdominal pain and
GI symptoms, myocardial cardiogenic shock, neurological
findings, and kidney involvement, which are very uncommon
in KD but frequently associated with TSS (13, 14, 16, 29–31). TSS
is triggered by bacterial superantigens (SAgs). SAgs bind MHC
class II (MHC II) molecules on antigen presenting cells (APCs)
and T cell receptors (TCRs) bearing specific Vb fragments, which
leads to the activation of up to 30% of T cells and uncontrolled
release of proinflammatory cytokines (cytokine storm) (32, 33).
Initially linked to the use of tampons by menstruating young
women, TSS is also reported after postsurgical infections, and
may affect healthy children and male individuals (34, 35). The
July 2022 | Volume 13 | Article 941009
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clinical manifestations of TSS also include acute fever,
hypotension, and multisystem involvement, including the GI
tract and cardiac tissues, and skin rash which progresses to skin
desquamation 1 to 2 weeks after disease onset (35). TSS is also
associated with neurological symptoms, such as headache and
confusion, which are also reported during MIS-C (35, 36).

SAg activity has also been observed in several viruses,
including Epstein-Barr virus (EBV) (37), Herpes Simplex
Virus type I (HSV1) (38), Ebola (39), human endogenous
retroviruses (40), cytomegalovirus (41), HIV-1 (42) and
rabies virus (43). The viral etiology of MIS-C and its
overlapping clinical features with TSS prompted us to search
for a SAg-like structure in SARS-CoV-2 (44).
DISCOVERY OF A SUPERANTIGEN-LIKE
MOTIF IN SARS-COV-2 SPIKE

Spike glycoproteins are expressed as trimers at the surface of
SARS-CoV-2, each monomer being composed of two subunits,
S1 and S2 (Figures 1A–D), which have different functions (45).
S1 binds to the human angiotensin converting enzyme 2 (ACE2)
at the surface of the target cell, and S2 mediates the fusion of the
viral and host cell membranes (45, 46). After SARS-CoV-2 spike
protein binds to ACE2, the spike is sequentially cleaved, first at
the S1/S2 junction and then at the so-called S2’ cleavage on the
S2 subunit, by human proteases (furin and transmembrane
protease serine 2 (TMPRSS2) at the respective sites) which
prompt the spike for membrane fusion and viral entry to the
host cell (45, 46).

The SARS-CoV-2 spike subunit S1 has an insertion of four
amino acids, P681RRA684 (PRRA), adjacent to the cleavage site
R685↑S686 at the interface between the S1 and S2 subunits
(Figures 1A, B; magenta) (45). The polybasic segment PRRA is
unique to SARS-CoV-2 and the SARS-like subfamily of b-
coronaviruses (45). Using computational analysis, we found that
the PRRA insert is part of a motif of 25 amino acids, E661-R685,
that has sequence and structure features similar to a segment of the
SAg Staphylococcal enterotoxin B (SEB) (44). In particular, the
fragment T678NSPRRARSV687 in the spike exhibits 30% sequence
identity to the SEB superantigenic motif T150N–KKKATV157, in
addition to sharing a polybasic stretch (spike RRAR685 aligned
against SEB KKKA155). Furthermore, the inverted SEB sequence
Q158VTAKKKNT150 can be structurally aligned against the spike
sequenceQ677TNSPRRAR685, as shown in earlier work (44). Note
that R681 in this segment is susceptible to mutations, e.g. P681H
and P681R found in different SARS-CoV-2 variants. Our
simulations further indicated that this SAg-like motif may bind
to TCRs and MHC Class II (44). It is important to note that this
SAg-like motif is immediately adjacent (sequentially) to the furin-
like cleavage site R685↑S686 (45). The polybasic nature of the furin
cleavage site itself is critically important for recognition of that site
by the acidic epitope of furin, and in fact, viral mutations that
delete the furin cleavage site, which happens to include the SAg-
like motif, have been shown to reduce SARS-CoV-2-induced
Frontiers in Immunology | www.frontiersin.org 3
pathogenesis in mice and hamsters (47, 48). These observations
may perhaps suggest a potential involvement of the SAg-like
motif as well as the furin-binding site in the pathogenesis of
SARS-CoV-2.

Proteolytic cleavage at the S1/S2 junction results in shedding
of S1 subunit, which further exposes the spike SAg-like motif in
the dissociated S1 trimer (Figure 1C). Interestingly, Ogata et al.
detected circulating S1 in the plasma of COVID-19 patients and
showed that higher concentrations of S1 correlated with
COVID-19 severity (49), potentially due to increased exposure
to the SARS-CoV-2 SAg-like motif. Similarly, sustained levels of
circulating shed S1 are detected in the plasma of children with
MIS-C, who were also found to have persistent presence of SARS-
CoV-2 RNA in the gut and increased gut permeability (50).

Taken together, these findings support the hypothesis that the
SAg-like motif in SARS-CoV-2 spike is a critical player in severe
COVID-19 and MIS-C pathogenesis. Specifically, we speculate
that by stimulating a large proportion of T cells and inducing the
release of proinflammatory mediators and cytokines, this motif
may act as a SAg to trigger TSS-like response in patients with
severe COVID-19 and MIS-C (44, 50, 51) (Figure 2).
DISCOVERY THAT AN ANTI-SEB
MONOCLONAL ANTIBODY BLOCKS
SARS-COV-2 CELL ENTRY

SEB is a bacterial toxin secreted by Staphylococcus aureus (S.
aureus), which colonizes the skin and mucosal surfaces in 20 to
30% of the healthy population (52). Although S. aureus is
ubiquitous, development of TSS after infection is a rare event,
with an estimated incidence of 0.8 to 3.4 per 100,000 in the
United States (53). Such low incidence may be accounted by
the presence of detectable levels of antibodies against bacterial
SAgs in up to 80% of individuals 12 years of age and older
(54–56).

Monoclonal antibodies (mAbs) have been developed that
are specific to SEB and exhibit toxin-neutralizing efficacy in
murine models of TSS (57). Among these, 6D3 targets the
SEB fragment that is very similar to the SARS-CoV-2 SAg-
like motif (44, 58). Computational studies predict that 6D3
would bind with high affinity to the PRRA SAg-like insert in
SARS-CoV-2 S1, and consequently may prevent T cell
activation and cytokine storm otherwise triggered by the
SAg-like motif. In addition, the antibody 6D3 was also
predicted to bind to the cleavage site in spike for host cell
proteases, and therefore block viral entry (58). Indeed, in an
in vitro cell culture system, pretreatment with 6D3
significantly inhibited SARS-CoV-2 viral infection in a
concentration-dependent manner (58). We note that 6D3
concentration was relatively high, which suggests that further
modification of 6D3 to increase its affinity or potency might
be required. The mAb 6D3 may block both the binding to the
SARS-CoV2 SAg-like motif to TCR, and thus prevent
inflammation, and block the S1/S2 cleavage site to reduce,
July 2022 | Volume 13 | Article 941009
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if not completely inhibit, viral entry at the same time.
Computational studies further predicted that the mAb 6D3
could bind to the S1 subunit of variants that exhibit
mutations at the receptor binding domain of the spike,
including the Omicron variant (unpublished). Therefore,
humanized versions of this antibody could be of potential
additional therapeutic benefit in MIS-C patients and severe
COVID-19. It is also tempting to speculate that endogenous
circulating anti-SEB Abs may contribute to the age-related
protection against severe COVID disease; titers of antibodies
against SEB are known to decrease after 70 years (59, 60), and
that population is more susceptible to develop severe
COVID-19. Similarly, cross-reactivity to antibodies that
Frontiers in Immunology | www.frontiersin.org 4
neutralize SEB may explain why MIS-C patients have been
shown to respond well to intravenous immunoglobulin
(IVIG) therapy (61, 62).
DISCOVERY OF A SKEWED VΒ TCR
REPERTOIRE IN ADULTS WITH SEVERE
COVID-19 AND CHILDREN WITH MIS-C

Most SAgs activate T cells by cross-linking MHC class II with
TCR b-chains (Vb chains) at their variable domain (63), which
results in Vb skewing, whereby T cells with specific Vb chains
FIGURE 1 | SARS-CoV-2 spike glycoprotein structure, its structural subunits, putative SAg and neurotoxin-like motifs. (A) The SARS-CoV-2 spike trimer in the pre-
fusion state, where one of the protomers is shown in spectral colors from blue (N-terminal domain, NTD) to red (C-terminus), and the other two protomers are shown
in white and gray. Each protomer has a Receptor-Binding Domain (RBD) that can assume up and down conformations in the receptor-bound and unbound states.
(B) Structure of S1 subunit, shown for the spectrally colored protomer, in the same format and perspective as in (A). Pink color showed the “PRRA” insert unique to
SARS-CoV-2. (C) S1 trimer after shedding of the S2 trimer, shown from top. Each protomer is shown in a different color (orange, brick, and gray). The SAg-like
motifs (E661 to R685) in the SARS-CoV-2 spike S1 trimer are shown in van der Waals (VDW) format; white, green, red, and blue represent hydrophobic, hydrophilic,
acidic and basic residues. (D) S2 subunits after cleavage, forming a fusion trimer [same color and format as in (A)]. (E) Neurotoxin motifs on the spike glycoprotein.
Side (left panel) and top (middle panel) views of the spike in the presence of a bound TCR (yellow ribbon) are shown. The spike protomers are colored green, cyan
and magenta in this case, and the neurotoxin motif [residues 299-351; reported in (44)] belonging to the cyan and magenta protomers are displayed in blue and red
spheres, respectively. Note that the portion C336-Y351 (orange spheres on the right panel) is exposed to interact with the host cell receptor or substrates. The
homology model [44] constructed based on the cryo-EM structure resolved by Wrapp et al. (2020) (PDB id: 6vsb) has been used in the ribbon diagrams.
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and diverse antigen specificity dominate the TCR repertoire (63).
Vb skewing with junctional diversity is, therefore, a marker of
SAg involvement (44, 64). In support of our hypothesis, TCR
repertoire sequencing of MIS-C patients and adult COVID-19
patients with severe hyperinflammation identified TCR Vb
skewing, characterized by the expansion of TRBV5-6, TRBV13,
TRBV14, and TRBV24-1 in adults (44) and TRBV11-2 (Vb21.3)
in MIS-C patients (65). Skewing and expansion of TRBV11-2
clonotypes has been subsequently confirmed in four independent
cohorts of MIS-C patients (66–69). This effect is observed in both
CD4+ and CD8+ T cells, appears to be unique to MIS-C, as it is
not detected in TSS or KD patients, and is transient and returns
to baseline weeks after MIS-C resolution (66–69). Expanding
TRBV11-2 CD4+ T cells also express markers of T cell activation,
effector function and apoptosis (68). TRBV11-2 skewing in MIS-
C patients positively correlates with disease severity and
circulating levels of inflammatory markers, including TNF-a,
IFN-g, IL-6, IL-18 and IL-1RA (65, 66). Computational analysis
indicates that TRBV11-2 engages in CDR3-independent
interactions with the polybasic insert PRRA in the SARS-CoV-
2 SAg-like motif (44, 65). Furthermore, TCR repertoire skewing,
and TBRV11-2 expansion and MIS-C severity correlated with
higher levels of circulating shed S1 detected in a cohort of MIS-C
Frontiers in Immunology | www.frontiersin.org 5
patients (50). However, additional functional studies are needed
to confirm that TRBV11-2 clones are responsive to shed S1.
HLA CLASS I ASSOCIATION WITH
SEVERE MIS-C CHILDREN WITH
TRBV11-2 SKEWING

Conventional SAgs interact with both TCR and HLA class II
molecules. Specific polymorphisms in HLA class II molecules
which allow for stronger interactions with SAgs have been found
to be associated with SAg-mediated diseases (70, 71).
Interestingly, several studies have reported an association of
HLA class I, but not class II, alleles with MIS-C. In an
American cohort, a triple combination of three HLA class I
alleles (A02, B35 and C04) was identified in severe MIS-C
patients with TRBV11-2 expansion (4/4 MIS-C patients with
TRBV11-2 expansion genotyped), but not in mild MIS-C
patients without TRBV11-2 expansion (0/3 MIS-C patients
without TRBV11-2 expansion genotyped) (65). In a cohort of
Italian patients, 5/9 MIS-C patients possessed all three HLA class
I alleles, whereas pediatric COVID-19 cases and healthy children
A B

D

E

F

C

FIGURE 2 | Schematic of the proposed hypothesis. (A) SARS-CoV-2 spike (blue) proteins expressed at the surface of SARS-CoV-2 interact with host cell
ACE2 receptor (yellow) and transmembrane protease TMPRSS2 (purple). After SARS-CoV-2 spike proteins bind to ACE2, they are cleaved at the S1/S2
junction by human proteases (TMPRSS2 and furin), which mediate membrane fusion and viral cellular entry. Protease binds the spike trimer near the PRRA
insert unique to SARS-CoV-2 and located in the SAg-like motif adjacent to the S1/S2 cleavage site. Cleavage of S1/S2 separates each subunit of the spike
trimer into 2 subunits, S1 and S2, resulting in the S2 fusion trimer (bound to viral membrane) and the S1 trimer (released to extracellular space). The SAg and
neurotoxin-like motifs are exposed in S1. (B) The neurotoxin-like motif in circulating SARS-CoV-2 S1 crosses the BBB and contributes to the neurological
symptoms associated with MIS-C and individuals recovering from COVID infection. (C) SARS-CoV-2 persists in extra-pulmonary organs, including the GI tract.
(D) Persistent presence of SARS-CoV-2 antigens in the gut results in Zonulin-mediated increased intestinal permeability and leakage of S1 and the SAg-like
motif into the circulation. (E) The SAg-like motif in SARS-CoV-2 S1 activates a large fraction of T cell and leads to TCR skewing. (F) SARS-CoV-2 and the
SAg-like motif in S1 triggers maladapted immune responses and autoimmunity. The SAg-like motif in shed S1 triggers T cells expansion, TCR skewing and
hyperinflammation/cytokine storm, resulting in host tissue damage and autoantigen release. SARS-CoV-2 persistence in tissue reservoirs also activates
autoreactive T and B cells via molecular mimicry. Autoreactive T and B cells may also be activated by either repeated exposure to the SAg-like motif in S1 and
bystander activation. Release of autoantigens and activation of autoreactive lymphocytes leads to the production of autoantibodies that further damage host
tissues. Figure created with BioRender.com.
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did not, however this was independent of disease severity (68). In
another American cohort, 28.6% (6/21 genotyped) of MIS-C
patients possessed all three HLA class I alleles compared to none
of the pediatric controls (0/7) (72). Although another study did
not find such as association (66), the replication in three separate
cohorts strongly indicates that possession of the three HLA class
I alleles in combination confers increased susceptibility to the
development of MIS-C and possibly TRBV11-2 expansion. This
raises the question of whether a non-conventional SAg-like
interaction involving HLA class I rather than HLA class II may
occur in MIS-C. Overall, an association of HLA class I
molecules with MIS-C indicates a genetic component to
disease susceptibility and may explain the rarity of MIS-C and
why the disease appears to disproportionally affect specific
ethnic populations.
VIRAL INFECTIONS AND THE
DEVELOPMENT OF AUTOIMMUNITY

Several COVID-19 manifestations are similar to those observed
in autoimmune disorders. Indeed, longitudinal immune profiling
of SARS-CoV-2 infected patients indicates that severe COVID-
19 is associated with overwhelming immune responses
characterized by not only high levels of proinflammatory
cytokines, interferons and chemokines but also the presence of
autoantibodies known to target pathways involved in anti-viral
responses and tissue-associated autoantigens (73–76). This is
perhaps not surprising, as viral infections have previously been
implicated in the development of autoimmunity. For example,
the acute phase of Chikungunya viral infection is characterized
by fever, rash, arthritis and joint pain, which can persist for years
and appear similar to rheumatoid arthritis (RA) (77). Systemic
lupus erythematosus (SLE) is an autoimmune disorder linked to
infection with EBV, parvovirus B19, retroviruses and
cytomegalovirus (78, 79). Similarly, EBV, which is estimated to
infect 95% of the general population, was recently implicated in
the development of multiple sclerosis (MS) (80). SARS-CoV-2
infection is also associated with the development of lingering
post-infectious and chronic symptoms (81–84). These
manifestations, also called long COVID, appear similar to ones
observed during myalgic encephalomyelitis/chronic fatigue
syndrome (ME/CFS), which is most commonly associated with
viral infections or multiple exposures to viral and bacterial
pathogens (85, 86).

Autoimmune disorders can be induced by infectious agents
through the activation and clonal expansion of autoreactive
lymphocytes (87–89). However, the mechanisms by which viral
infections trigger the onset of autoimmunity are not completely
understood. They might involve molecular mimicry, a process in
which viral antigens appear similar to host self-antigens, and
bystander activation, in which production of proinflammatory
mediators leads to tissue damage, release of self-antigens and
activation of autoreactive T and B cells (90–92).

Since SAgs are able to activate a large fraction of lymphocytes
that express particular Vb segments, including normally
Frontiers in Immunology | www.frontiersin.org 6
quiescent autoreactive T and B cells clones, and induce the
release of pro-inflammatory cytokines and chemokines, SAgs
may initiate autoimmunity or exacerbate already established
autoinflammatory disorders (33, 93). In addition, repeated
exposures to viral SAgs have been associated with the
development of autoimmunity, as discussed in more
detail below.

Dysregulated immune responses have been reported in
patients with post-SARS-CoV-2 hyperinflammatory
syndromes, including MIS-C and adults with long COVID
who experience persistent symptoms weeks to months after
their initial COVID-19 diagnosis (94–96). Clinical data,
computational modeling and transcriptomic data suggest that
the SARS-CoV-2 S1 SAg-like motif may contribute to the
development of hyperinflammatory responses associated with
severe COVID-19 and MIS-C. Specifically, elevated levels of
circulating S1 are reported in MIS-C patients (50). S1
antigenemia correlates with a skewed TCR repertoire and
expansion of TRBV11-2 clones, which is characteristic of
severe MIS-C (50, 65). In addition, SARS-CoV-2 RNA and
viral antigens are detected in the gut (97–99), which becomes
leaky (50, 100), possibly resulting in chronic, repeated exposure
to viral antigens. Indeed, in a recent study, post-acute sequelae of
COVID-19 were reported by the majority of IBD patients with
viral antigen persistence, but not from patients without viral
antigen persistence (101).

Based on these observations, we propose that in the context of
an intense antiviral immune response, inefficient viral clearance
associated with SARS-CoV-2 persistence and repeated viral
exposure may lead to uncontrolled and maladapted immune
responses that cross-react with autoantigens. Thus, the SARS-
CoV2 SAg-like motif may be involved in the development of
COVID-19 hyperinflammatory syndromes, including MIS-C
and autoimmune manifestations associated with long COVID.
This hypothesis provides a mechanism for post-acute COVID
syndromes and links these conditions with persistent presence of
viral antigens, repeated exposures to viral SAgs, and subsequent
development of autoimmunity (Figure 2).
IMMUNE RESPONSES TO REPEATED
SUPERANTIGEN EXPOSURES

In peripheral blood mononuclear cells (PBMCs) collected from
individuals with TSS, ex vivo stimulation with toxic shock
syndrome toxin-1 (TSST-1) results in the expansion of Vb2+ T
cells, whether patients had acute disease or were convalescent
(102). Multiple episodes of menstrual TSS can occur in the same
patient, with each more severe than the previous one, and such
recurrence is usually associated with persistent S. aureus
colonization and lack of toxin-neutralizing antibodies (103,
104). Recurrence of non-menstrual TSS has also been reported
(105, 106). In mice, a single SEB injection induces selective
activation and expansion of Vb8+ T cells and massive production
of cytokines (93, 107, 108). T cells isolated from SEB-pretreated
mice are capable of producing IL-10 and IFN-g upon SEB
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restimulation and are still functional in vivo since SEB-pretreated
mice develop lethal shock upon SEB rechallenge (108, 109).
Taken together, these observations suggest that SAg-reactive T
cells are able to respond to subsequent SAg stimulations (104).

SAgs engage TCRs on T cells and bind with high affinity to
MHC class II molecules, providing activation signals to MHC
class II+ cells, including B cells (110, 111). In mice, even if
repeated administration of SEB does not lead to the development
of a complete autoimmune phenotype, it results in a marked
hyperglobulinemia characterized by elevated levels of circulating
IgG1, IgG2a and IgE, indicative of B cell activation (112).
Furthermore, in mice, chronic exposure to SEB has been
shown to result in systemic inflammation mimicking human
SLE, which is characterized by T cell infiltration of the lungs,
kidneys and liver, as well as production of autoantibodies and
deposition of immune complexes in kidney glomeruli (112, 113).
Thus, SAgs may initiate or accentuate autoimmune disorders by
activating APCs as well as autoreactive T and B cells (33, 93).
THE AUTOIMMUNE SIGNATURES OF
LONG COVID AND MIS-C

Autoantibodies, a hallmark of autoimmune disorders, induce
tissue damage and inflammation by binding to self-antigens and
forming deleterious immune complexes, which further activate
immune cells, deposit in tissues, and trigger the complement
pathway. Autoantibodies might contribute to severe COVID-19
and long COVID (114). Multiple studies have reported elevated
levels of autoantibodies in severely ill COVID-19 patients
targeting nuclear antigens, phospholipids and cytokines (74,
75, 115–119). While the presence of these autoantibodies may
precede COVID-19, a proportion of hospitalized COVID-19
patients develop de novo autoantibodies following SARS-CoV-
2 infection (75).

Further studies are needed to fully understand the
mechanisms leading to autoantibody induction during
COVID-19 and the extent of their pathogenic role in the
development of post-acute sequelae of COVID-19 (PASC),
including long COVID. While most people fully recover from
COVID-19, a large proportion of SARS-CoV-2 infected
individuals experience at least one symptom that persists
months after initial infection (81–84). Common lingering
symptoms are heterogenous and may include shortness of
breath, chest pain, fatigue, palpitations, arthralgia, GI
symptoms, neurological and cognitive disturbances (81, 82, 84,
120, 121). COVID-19 is also associated with increased risk of
developing incident diabetes during the post-acute phase of the
disease (122). A longitudinal multi-omics study performed with
samples collected from COVID-19 patients indicated that the
presence of specific autoantibodies is associated with different
PASC (83). PASC impacting the GI tract are associated with the
expansion of cytotoxic T cells, including SARS-CoV-2 specific
clonotypes, and bystander activation of cytomegalovirus (CMV)-
specific T cells during the convalescence phase (83). These
observations hint that the immune dysregulation of T and B
Frontiers in Immunology | www.frontiersin.org 7
cells and the activation of non-specific T cells associated with
autoantibody production might contribute to the persistence of
these long-term SARS-CoV-2 PASC.

MIS-A and MIS-C are also considered PASC, as these
syndromes develop 2 to 6 weeks after known prior SARS-CoV-2
exposure or infection, and MIS-C patients are seropositive for
SARS-CoV-2 S protein IgG antibodies (9–11, 14, 19, 20, 22, 123).
MIS-C involves dysregulated immune responses, activation of
innate and adaptive immune cells as well as elevated production
of inflammatory cytokines (66, 68, 95, 123, 124). In severe MIS-C
patients there is an enrichment of proteins involved in complement
activation, neutrophil degranulation and dysregulated humoral
responses (125). Immune profiling of MIS-C patients indicates
activation of monocytes, neutrophils, and type 1 dendritic cells,
decreased frequencies of circulating NK cells, and T cell
lymphopenia affecting both CD4+ and CD8+ T cells, which are
more proliferative and activated (95, 124, 126, 127). A subset of
CD8+ T cells expressing the fractalkine receptor CX3CR1, and able
to interact with fractalkine expressing vascular endothelium, are
more activated during MIS-C (95).

Studies have reported skewed B cell responses and increased
frequencies of circulating plasmablasts in adult and pediatric
COVID-19 patients as well as in MIS-C (67, 69, 95, 128),
particularly plasmablasts expressing the transcription factor T-
bet (95). T-bet+ B cells accumulate with age and participate in
antiviral responses (129). These cells are also detected in mice
prone to developing autoimmunity and patients with
autoimmune disorders and contribute to autoantibody
production (130–133). Autoantibodies targeting multiple tissue
self-antigens have been identified in independent cohorts of
MIS-C patients and may contribute to the development of
hyperinflammation (68, 69, 123, 125, 126). The 2–6-week delay
between the initial SARS-CoV-2 infection and the development
of MIS-C symptoms may be the period required to allow B cell
activation, plasmablast induction and autoantibody production.
Compared with febrile controls, MIS-C patients exhibit a
significant increase in IgG autoantibodies targeting not only
ubiquitously expressed antigens, but also tissue-specific
antigens from the GI tract, cardiovascular and brain tissues,
reflecting the systemic nature of MIS-C (125). Greater
autoantibody responses were identified in a subset of patients
with a hyperinflammatory blood transcriptional profile, which
were also associated with disease severity and TRBV11-2
expansion (125). Furthermore, this subset of patients
demonstrated strong imprints of antigenic selection in their
BCR repertoires and increased usage of autoantibody
associated IGHV genes (125). Neutralizing autoantibodies
against interleukin-1 receptor antagonist (IL-1Ra), an anti-
inflammatory protein that binds IL-1 receptor (IL-1R) and
blocks IL-1a and IL-1b signaling, have been detected in a high
proportion of MIS-C patients, but not in healthy controls,
pediatric COVID-19 or KD samples (134). Although in that
study the presence of autoantibodies against IL-1Ra did not
correlate with MIS-C severity, these functional autoantibodies
might exert a pathogenic role by impairing IL-1Ra bioactivity
and promoting hyperinflammation during MIS-C (134).
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Notably, the autoantibody signatures observed in MIS-C patients
cannot be explained by the history of IVIG therapy, as multiple
studies have observed autoantibody enrichment prior to
treatment (125, 126).

While HLA class II molecule expression is restricted to immune
cells, HLA class I molecules are ubiquitously expressed by all cell
types. Therefore, the presentation of SAg by HLA class I rather
than class II may contribute to the multisystem inflammation that
occurs in MIS-C due to widespread T cell-mediated damage of
SAg-presenting cells. T-cell mediated cell damage of SAg-
presenting cells may exacerbate release of damage-associated
molecular pattern (DAMPS) and autoantigens, thus contributing
to systemic inflammation and autoimmune responses against
ubiquitously expressed intracellular autoantigens and tissue-
specific autoantigens identified in MIS-C (68, 69, 123, 125, 126).
For example, MHC class I presentation of SAg by endothelial cells
resulting in subsequent endothelial cell damage may contribute to
endothelial dysfunction and release of autoantigens observed in
MIS-C. Immune profiling of MIS-C has identified enhanced
activation of a subset of vascular patrolling CD8+ T cells (95), as
well as autoantibodies directed against endothelial autoantigens
(68, 69, 123, 125, 126), indicating a breakdown of immune
tolerance against the endothelial compartment.

Autoantibody production to self-antigens arises from
multiple factors, including the defective regulation of
autoreactive B and T cells, as well as excessive antigenic drive
by self-antigens released by cellular apoptosis and damaged
tissue (135). Viral and bacterial infections trigger activation of
autoreactive T and B cells, the transient production of
autoantibodies and the development of autoimmune-like
responses after the infection is cleared (133). SAgs deliver
activation signals to B cells via MHC class II molecules
expressed at their surfaces (110, 111), which may lead to
inappropriate B cell responses and de novo production of
autoantibodies, a phenotype observed in both MIS-C and in
long COVID. The possibility that the SAg-like motif identified in
SARS-CoV-2 S1 acts not only on T cells, but also directly on B
cells to promote dysregulated B cell responses requires
further studies.
INCREASED GUT PERMEABILITY IN MIS-
C RESULTING IN CHRONIC EXPOSURE
TO THE SUPERANTIGEN-LIKE MOTIF

MIS-C patients commonly present with severe GI symptoms,
and viral RNA can be detected in their stools 2 to 6 weeks after
the initial SARS-CoV-2 infection (50). Detection of
autoantibodies targeting GI antigens in the plasma of MIS-C
patients (123, 125) led to the hypothesis that the GI tract may
serve as a persistent source of viral antigen and perhaps viral
reservoirs for continuous exposure to the SARS-CoV-2 SAg-like
motif. Indeed, compared with acute pediatric COVID-19,
biomarkers indicating increased intestinal permeability
(zonulin, LPS-binding protein, and soluble CD14) are elevated
in the plasma of MIS-C patients (50).
Frontiers in Immunology | www.frontiersin.org 8
During cellular entry, SARS-CoV-2 S1 and S2 subunits are
cleaved and the trimeric S1 subunit is shed, allowing the SAg-like
motif in S1 to be more exposed and accessible to interaction with
immune cells (44). Sustained levels of circulating SARS-CoV-2 viral
particles—including nucleocapsid, whole S and S1—are detected in
the plasma of MIS-C patients weeks after the initial infection has
resolved. Furthermore, a strong correlation between S1 antigenemia
and TRBV11-2 skewing, which is characteristic of severe MIS-C,
has been reported (50). In MIS-C patients, persistence of SARS-
CoV-2 in the GI tract might promote the release of zonulin, an
intestinal tight junction modulator, by intestinal epithelial cells, and
lead to intestinal leakage of gut antigens and shed SARS-CoV-2 S1
into the bloodstream (50). Treatment with Larazotide (AT1001), a
zonulin inhibitor capable of correcting impaired intestinal barrier, in
addition to steroids and/or IVIG had favorable outcomes in a small
cohort of MIS-C patients and resulted in faster resolution of GI
symptoms and clearance of circulating spike antigens (50, 136).
Additional studies are required to determine the full biological effect
of shed S1 subunit of SARS-CoV-2 that circulates in the serum of
adult COVID-19 patients (49), as well as MIS-C children (50).
DISCOVERY OF SARS-COV-2
NEUROTOXINS PREDICTED TO BIND
TCRS AND THEIR POTENTIAL ROLE IN
NEUROLOGICAL EFFECTS OF COVID-19

Up to 30% of patients with MIS-C exhibit neurological symptoms,
such as headache, lethargy, and confusion (13, 14, 19, 137).
Neurologic manifestations are also common in adults with
COVID-19 and observed in 80% of hospitalized patients (138).
Loss of smell (anosmia), loss of taste (ageusia), headache,
dysautonomia, neuromuscular complications, cognitive
impairment or “brain fog”, memory problems, anxiety and
depression are also commonly reported following COVID-19, but
the mechanisms underlying these symptoms are poorly understood
(120, 121). Anosmia is reported by a large fraction of COVID-19
patients. Postmortem analysis of olfactory mucosa samples from
COVID-19 patients indicates that SARS-CoV-2 preferentially
infects and replicates in sustentacular cells, which may indirectly
affect olfactory sensory neurons (139). A longitudinal brain imaging
study performed in a large cohort of UK participants scanned before
and after SARS-CoV-2 infection identified impacts of COVID-19
on brain tissue structures (140). Individuals who had been infected
with SARS-CoV-2 showed a consistent pattern of brain
abnormalities, such as greater loss of grey matter and increased
markers of tissue damage in olfactory-related brain regions (140,
141). Long COVID patients experiencing cognitive deficits or “brain
fog” have increased levels of circulating CCL11, a chemokine
associated with age-related cognitive decline and decreased
neurogenesis (142, 143). CCL11 is also detected in the
cerebrospinal fluid of SARS-CoV-2 infected mice up to 7 weeks
post-infection (142). SARS-CoV-2 infection also leads to increased
microglial reactivity in subcortical white matter in both mice and
humans, and in mice myelin loss and depletion of oligodendrocytes
has been shown to persist up to 7 weeks post-infection (142). While
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evidence of SARS-CoV-2 directly infecting neural tissues is scarce
(144), multiple other mechanisms have been proposed to explain
the effects of SARS-CoV-2 in the brain, such as blood-brain barrier
(BBB) breakdown and tissue damage mediated by dysregulated host
immune responses and presence of self-reactive antibodies capable
of reaching the brain (145–148).

The persistent neurological symptoms reported in women
recovered from TSS, including headache, cognitive impairment
and memory loss (36), are remarkably similar to the neuro-
psychiatric and “brain fog” symptoms described by patients
suffering from long COVID. In TSS, the symptoms are believed
to arise due to cytokine storm and hyperinflammation.
Additionally, TSST-1 may have a direct effect on the CNS, as
TSST-1 has been shown to induce cell death in neural cell cultures
and can diffuse across in vitro models of the BBB (149).

Remarkably, the portion (Y674QTQTNSPRRAR685) of the
SAg-like motif (E661-R685) identified in our recent work, which
also includes the PRRA insert (44), is homologous to alpha-
neurotoxin motifs from snake venom (e.g. a-cobratoxin) as well
as neurotoxin-like regions from rabies virus strains (44, 150) with
sequence identities of 18% to 27%. Additionally, inspired by a
previous extensive analysis of superantigenic, toxin and other
bioactive molecules on SARS-CoV carried out by Li and
coworkers (151), we have identified three additional neurotoxin-
like motifs in SARS-CoV-2 spike, including the sequence segment
T299-Y351 on the S1 subunit and N777-P807 on the S2 subunit.
Alignment of these two SARS-CoV-2 sequences against their
counterparts in SARS-CoV showed that these motifs were
highly conserved (75-84% sequence identity) between the two b-
coronaviruses, and they were also predicted in computational
studies to bind TCRs with high affinity (44). Notably, a recent
study with a cohort not exposed to SARS-CoV-2 identified 66
epitopes with significant T cell reactivity on the SARS-CoV-2 spike
(152), inviting attention to possible memory response acquired
upon exposure to human common cold coronaviruses HCoV-
OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E, which
share sequence homology with SARS-CoV-2. The neurotoxin-
like fragment T299-Y351 identified in our analysis was observed
among those highly reactive epitopes, supporting the ability of this
segment to bind TCRs. This suggests that this neurotoxin-like
segment T299 to Y351 deserves attention as a possible source of
CNS disorders observed in COVID-19 patients. Notably, this
motif of 50+ amino acids spans quite a broad region on the
glycoprotein, with its C-terminal portion C336-Y351 (which
showed the highest reactivity in those experiments) being highly
exposed and therefore prone to interactions with host cell
proteins (Figure 1E).

The identification of these neurotoxin motifs in SARS-CoV-2
raises the possibility that spike may also have direct neurotoxic
activity and contribute to the neurological symptoms associated
with MIS-C and long COVID. Studies have demonstrated that
the S1 subunit of SARS-CoV-2 S protein can mediate opening of
the BBB (153, 154), and multiple protease cleavage sites in S1
likely results in smaller fragments (155) that may cross into the
CNS. It is therefore possible that circulating S1 or S1 protein
fragments may cross the BBB and directly impair neurological
Frontiers in Immunology | www.frontiersin.org 9
activity, contributing to neurological symptoms observed in
MIS-C and individuals recovering from COVID infections.
CONCLUSION

The observations described here, derived from computational
analysis of SARS-CoV-2 sequence, structure and interactions, as
well as RNA sequencing, TCR and BCR repertoire analysis,
autoantibody arrays, and proteomics analysis performed on
samples collected from MIS-C and COVID-19 patients, point
towards a role for the SAg-like motif (residues E661-R685) we
identified in SARS-CoV-2 spike in promoting hyperinflammation
and potentially autoimmunity in PASC, including MIS-C and long
COVID. This is of particular importance in view of a recent study
showing that persistence of circulating SARS-CoV-2 Spike may be
associated with post-acute COVID-19 sequelae (156). However,
further studies are still required to validate our hypotheses. In vitro
systems need to be developed to determine how chronic
stimulation by SARS-CoV-2 SAg-like motif impacts T cells and
B cell activation and proliferation, and to assess the neurotoxin
activities of the Y674-R685 portion of this SAg-like motif as well as
another segment (T299-Y351) also identified to possess
neurotoxin-like properties. Improved solutions of the SARS-
CoV-2 Spike structure that represent the native trimeric structure
of the shed S1 subunit will be needed to conduct T and B cell
stimulation experiments, as production of recombinant spike
proteins usually involves deletion the reactive polybasic furin-
cleavage site (PRRA), where the SAg-like motif starts.
Furthermore, development of a murine in vivo model allowing
chronic stimulation by the SAg-like motif is also needed due to the
scarcity of samples from MIS-C individuals. Such a model will
allow deeper mechanistic insights into MIS-C and other PASC
pathogenesis, and should provide information on how chronic
stimulation by the SAg-like motif impacts immune responses, as
well as allow investigation of long-term sequelae and testing of
potential therapeutics.
LIMITATIONS

Since MIS-C is a novel syndrome that emerged during a world-
wide pandemic, studies so far have been limited and the field
lacks an established murine model. Moreover, MIS-C is a rare
complication of COVID-19, so the number of patient samples
available has been small, it has been challenging to achieve
concomitant collection of samples from either healthy,
pediatric COVID-19 or febrile control children, and it was
difficult to obtain samples from patients before they have been
treated, at least in the initial studies. Another limitation is the
nature of biological samples collected, which are mostly
peripheral blood mononuclear cells and RNA isolated from
whole blood, or plasma or sera, which do not allow to
investigate in situ muti-system immune responses. Finally,
there are technical difficulties in directly investigating if the
SARS-CoV2 SAg-like motif binds to TCRs and MHC class II
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proteins and functionally acts as a SAg by activating T and B cells
in an in vitro system. Unlike bacterial SAgs, which are secreted
toxins, the SARS-Cov-2 Spike protein, a glycosylated membrane
bound trimer, exists in many conformations, and undergoes
proteolytic cleavage during cell infection to release the S1 and S2
(fusion) trimers. The complex nature of the spike machinery is
difficult to capture in in vitro systems using recombinant
proteins. Preparation of recombinant viral spike protein with
the endogenous sequence (PRRA) does not allow for correct
folding and/or stable conformational state. Therefore, most
commercially available recombinant S1 spike proteins have this
key PRRA motif mutated as well as have a C-terminal His tag
that is immediately proximal to the SAg-like motif, interfering
with its activity. Addressing these limitations may lead to novel
therapeutic approaches to MIS-C and PASC.
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