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Andalusian Center of Molecular
Biology and Regenerative Medicine

(CSIC), Spain
Celine Gregoire,

University of Liege, Belgium

*Correspondence:
James A. Ankrum

james-ankrum@uiowa.edu
Karen English

karen.english@mu.ie

†These authors share first authorship

Specialty section:
This article was submitted to

Alloimmunity and Transplantation,
a section of the journal

Frontiers in Immunology

Received: 13 May 2022
Accepted: 10 June 2022
Published: 04 July 2022

Citation:
Boland L, Bitterlich LM, Hogan AE,

Ankrum JA and English K (2022)
Translating MSC Therapy in the

Age of Obesity.
Front. Immunol. 13:943333.

doi: 10.3389/fimmu.2022.943333

REVIEW
published: 04 July 2022

doi: 10.3389/fimmu.2022.943333
Translating MSC Therapy in the
Age of Obesity
Lauren Boland1,2†, Laura Melanie Bitterlich3,4†, Andrew E. Hogan3,4,
James A. Ankrum1,2* and Karen English3,4*

1 Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States, 2 Fraternal Order of
Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States, 3 Biology Department, Maynooth
University, Maynooth, Ireland, 4 Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland

Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible
option to treat a number of inflammatory conditions including COVID-19 acute respiratory
distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise
worldwide, increasing proportions of patients treated with MSC therapy will be living with
obesity. The obese environment poses critical challenges for immunomodulatory
therapies that should be accounted for during development and testing of MSCs. In
this review, we look to cancer immunotherapy as a model for the challenges MSCs may
face in obese environments. We then outline current evidence that obesity alters MSC
immunomodulatory function, drastically modifies the host immune system, and therefore
reshapes interactions between MSCs and immune cells. Finally, we argue that obese
environments may alter essential features of allogeneic MSCs and offer potential strategies
for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is
to combine insights from basic research in MSC biology and clinical trials to inform new
strategies to ensure MSC therapy is effective for a broad range of patients.

Keywords: mesenchymal stromal cells (MSCs), disease microenvironment, obesity, immunomodulation,
metabolic disease
INTRODUCTION

The recent SARS-CoV-2 pandemic has prompted an increased interest in mesenchymal stromal cells
(MSCs) as a therapeutic to treat acute respiratory distress syndrome (ARDS) (1–6). In contrast to
unregulated and often predatory “stem cell clinics” that have cast MSC therapy in a bad light, academic
labs, regulatory bodies, professional societies and industry continue to advocate for and adopt rigorous
standards, thoughtfully designed clinical trials, and diligent scientific studies to develop high-quality
cellular products for patients with life-threatening disease (7). Ten MSC cell therapy products have been
approved for use in major indications including graft versus host disease (GvHD), Crohn’s disease, and
myocardial infarction (8). As more MSC based therapies gain approval, it is prudent to look to the
challenges that exist on the horizon as these therapies are applied to a broad, complex, and
heterogeneous patient population. An increasingly common challenge to the translation of other
immunotherapies has been the influence of metabolic disease on a patient’s clinical response (9, 10).
Obesity and other metabolic syndromes alter the immune system and have proven consequential to
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patient responses to immunotherapies, begging the question: how
will MSC therapy perform as an immunomodulatory therapy when
placed within metabolically diseased environments?

With the rising incidence of obesity throughout the world, the
average patient being treated with cellular therapies, including
MSC therapy, will increasingly have comorbid obesity (11–13).
As of 2018, over 40% of Americans are living with obesity and
about 1 in 10 American women are classified in the severe obesity
category (BMI≥40 kg/m2) (14). In Europe, 36% of the population
are considered pre-obese and 17% obese, based on a study in
2019 (15). Obesity is associated with a substantially increased
risk for a number of comorbid diseases, including type 2 diabetes
mellitus (T2DM), hypertension, and coronary artery disease (16–
18). In the clinic, these epidemiological shifts translate to a rise in
complex patients presenting with metabolic comorbidities in
addition to their primary diagnosis, as well as to 42% higher total
healthcare expenditures in patients living with obesity (19).
Unfortunately, the ubiquity and chronicity of obesity often
lulls us into a belief that it is innocuous; however, the
pathological effects of obesity cannot be understated. Patients
living with class 2 or 3 obesity have a ~30% higher risk for all-
cause mortality than their non-obese age- and sex-matched
counterparts (13, 20). Additionally, an umbrella review from
2017 concluded that 11 out of 36 cancer types are positively
associated with obesity (21). As we aim to translate MSC
therapies in the era of obesity, we must take the time to
understand the consequences metabolic disease has on specific
applications of MSC therapy.

Obesity is clinically defined as a body mass index (BMI)
greater than 30 kg/m2 (11). However, underlying cellular and
molecular changes reveal a much more complex story of obesity
than BMI can capture (22–26). Key pathologic features of overt
obesity include ectopic lipid deposition, broad hormonal
disturbances, and a substantially elevated risk of developing
metabolic syndrome (27–29). While a significant focus of
obesity research has been on the function of the liver and
adipose tissue in obesity, systemic ramifications should not be
overlooked (30, 31). Early observations in the 1990s of obesity-
induced increases in systemic pro-inflammatory cytokines were
integral in recontextualizing obesity not solely as a disturbance of
metabolism, but of the immune system, as well (32–34). Since
that time, insight into the degree and specificity of obesity’s
effects on particular immune populations has grown rapidly.
Obesity-induced alterations in the composition, activity,
metabolism, and effector response of the immune system have
lent much needed insight into the potential mechanisms by
which obesity alters disease severity, progression, and response
to therapies for immune-mediated pathologies (35–40). Because
MSC therapy relies on paracrine activity and cell-to-cell
interactions (41, 42), significant questions remain regarding
whether MSCs can appropriately function within this
environment. It remains unknown if patient BMI may affect
responsiveness to MSC therapy. Since the immune system is
grossly altered in patients with comorbid obesity it remains to be
seen whether the recipient immune populations are present,
functional, and responsive to MSC mechanisms of action.
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Additionally, critical features that make allogeneic MSC
therapy possible (43, 44), notably the high hemocompatibility
and low immunogenicity profile of MSCs, may be modified by
exposure to obese environments, thus potentiating the risk for
adverse events (45–49).

There are still notable outstanding questions that remain to be
answered to determine how and if MSC therapy can optimally
function within an obese environment. Questions that remain
unanswered include: do biomarkers within patients with obesity
help predict responsiveness to MSC therapy? and does treating
obesity or T2DM improve MSC immunosuppression? In this
review, we examine emerging data from cancer immunotherapy
as a model for the challenges MSC immunotherapies may face in
obese environments. We then summarize the current evidence that
obesity alters critical features intrinsic to the health and function of
autologousMSCs, drastically modifies the host immune system, and
reshapes crosstalk between MSCs and immune cells. We challenge
the assumption that essential features of allogeneic MSC therapy
(high hemocompatibility and low immunogenicity) will inherently
be maintained in obese environments. Finally, we suggest ways to
re-train MSCs from individuals living with obesity, to restore their
therapeutic efficacy. Our goal is to draw critically needed attention
to the influence of metabolic environments on MSC therapies in
order to guide new clinical and basic research questions that will
ensure that emerging therapeutics are available to all patients
regardless of metabolic health.
LESSONS FROM CANCER
IMMUNOTHERAPY

Cancer immunotherapy has served as a forewarning for the potent
modifying effect of obesity on immunotherapies and provides
insight as to the potential effects that obesity may have on MSC
therapeutic functions that are necessary for other indications. For
some varieties of cancer, immunotherapies have replaced classic
cytoreductive therapies as primary treatment modalities due in part
to lower rates of adverse events and decreases in systemic off-target
effects (50). Cancer immunotherapies harness the immune system
to precipitate an anti-tumour response (51, 52). However, obesity
has been shown to alter the efficacy, tolerance, and toxicity profiles
for multiple cancer immunotherapies (10, 53–56). As a therapeutic
regimen that relies on modulation of the patient’s immune
response, cancer immunotherapy can be used as a proof-of-
concept model for MSC therapy, which relies on interactions with
many of the same players in the adaptive and innate immune
system (57–59).

Obesity has emerged as a potent modifier of the efficacy and
toxicity of a variety of cancer immunotherapies. In three distinct
preclinical murine models of obesity (high-fat diet, aged-related
ad libitum fed, and leptin-receptor deficient db/db mice),
immunostimulatory therapy with anti-CD40 antibodies and
IL-2 resulted in complete lethality in obese mice, while non-
obese mice and calorie-restricted aged mice survived and showed
a positive anti-tumour response (55, 60). Lethality in obese
July 2022 | Volume 13 | Article 943333
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animals was driven by elevated levels of serum inflammatory
cytokines, which is a common driver of immune-related adverse
events in patients treated with immunotherapy. Blocking
macrophage responses with TNFa neutralizing antibodies or
depletion by clodronate liposomes abrogated the toxic effects of
immunostimulatory therapy in obese animals. Therefore,
obesity-induced alterations to specific immune cell populations
can alter the risk of adverse events during treatment with
immunomodulatory therapies.

Intriguingly, immune checkpoint blockade with an anti-
CTLA-4 antibody shows a differential response between obese
mice cohorts (61, 62). In an orthotopic model of renal cell
carcinoma, diet-induced obese (DIO) mice showed no
therapeutic anti-tumour response to anti-CTLA-4 therapy.
However, obese ob/ob mice, which have a genetic deletion of
the satiety hormone leptin, showed effective anti-tumour
responses. DIO mice had serum leptin levels 40-times higher
than ob/ob animals, more closely reflecting obesity in humans.
To determine if leptin contributed to the differential response to
immunotherapy, the researchers neutralized leptin prior to anti-
CTLA-4 therapy, which restored anti-tumour effects in DIO
mice. This work specifically implicated elevated leptin levels as a
modifier of immunotherapy response. Therefore, in addition to
changes in host immune populations, obesity-induced hormonal
changes can modify responsiveness to immunomodulatory
therapies. With a hormone-centric focus, actual fat mass itself
may be a poor predictor of therapeutic responsiveness, while
serum hormone levels may serve as better response predictors
(63–65). Similarly, immunotherapies targeting programmed cell
death protein 1 (PD-1) show decreased success in obese mice
(66), which a different study links to a leptin-dependant increase
in PD-1 expression on CD8+ T cells in humans (10). In the case
of cancer immunotherapy, obesity can alter efficacy and toxicity,
highlighting the need to understand both parameters when
applying these lessons to MSC therapy.

Although obese murine models predicted that obesity in
human patients would result in poorer overall response rates,
emerging clinical data has demonstrated the opposite. In one
retrospective study in patients with metastatic melanoma treated
with anti-PD-L1, men living with obesity were found to have a
significant survival advantage compared to normal-overweight
men (67). An analysis of patients treated with anti-PD-L1
therapies showed a notable beneficial effect of elevated BMI
regardless of sex, with patients living with obesity showing
greater overall survival (10). In this study, obese, otherwise
healthy, patients had increased circulating PD1+ T cells with
low proliferative capacity, suggestive of T cell exhaustion.
Interestingly, obesity was associated with T cell exhaustion
across several species and models and drove faster tumour
growth in murine models; however, immunotherapy in obese
human patients provided a significant survival benefit. A
potential explanation for this surprising finding provided by
the authors was that immune checkpoint blockade may revive an
immune system otherwise exhausted by the chronic
inflammation of obesity, thus potentiating a stronger
immunologic anti-tumour response in patients living with
Frontiers in Immunology | www.frontiersin.org 3
obesity. In opposition to these findings, a more recent study
reported obesity-induced lower PD1 levels in T cells, which
correlated with lower PD-L1 levels in tumour cells of both
mice and humans. However, immunotherapy was still effective
in a mouse model, and human patients who underwent weight
loss experienced tumour regression, suggesting that obesity-
induced defects of T cells are reversible (68). It is important to
note that immune checkpoint blockade, including anti-PD-L1
therapy, is an immunostimulatory therapy, in which a critical
brake on the immune system is released to precipitate an anti-
tumour response (69). In contrast, the main therapeutic aim of
MSC therapy in diseases like GvHD is to dampen hyperactive
immune responses (70). Therefore, it is unclear if MSC therapy
in a similar patient base would show an equivalent benefit or be
at a significant disadvantage in a more inflammatory and
exhausted environment.
IMPACT OF DISEASE
MICROENVIRONMENT ON MSC
EFFICACY

The patient’s microenvironment is a major factor in the efficacy
of MSC therapy in GvHD. If MSCs are administered too early in
pre-clinical models of acute GvHD, they fail to dampen the
GvHD response as levels of the pro-inflammatory cytokine IFN-
g, which is known to activate MSC immunomodulatory function,
are too low (71, 72). Furthermore, interactions between MSCs
and immune cells are of utmost importance in dictating response
to MSC therapy. A small study investigating differences between
responders and non-responders to MSC therapy for GvHD
found that patients with high peripheral blood lymphocyte
counts (CD3+ T cells and CD56+ NK cells) before MSC
therapy responded better (73). In addition strong cytotoxicity
towards MSCs by peripheral blood mononuclear cells (PBMCs)
from GvHD patients (74) was associated with a better response
to MSC therapy. The gut is a key organ in the pathophysiology of
aGvHD and retrospective assessment of gut mucosa biopsies
from a small number of patients (n=16) pre and post MSC
therapy for GvHD has shown that the tissue immune profile of
the gut is distinct in non-responders to MSC therapy (75).
Importantly, obesity can promote (76) and even worsen
aGvHD, leading to decreased survival in both mice and
humans (77). These effects have been partially ascribed to diet-
induced changes in the host gut microbiota (77, 78). Surprisingly,
no study has investigated the impact of the obese
microenvironment on MSCs in GvHD and equally little is
understood about how the host gut microbiota might influence
MSC therapeutic efficacy.

Conversely, obesity seems to reduce mortality in ARDS.
While obesity generally increases the risk for the development
of ARDS (79–81) and can even lead to additional acute kidney
injury (82), patients with moderate obesity experience a lower
mortality from ARDS than lean patients (79–81, 83). This
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Boland et al. Influence of Obesity on MSC Efficacy
“obesity paradox”makes it difficult to predict the efficacy of MSC
therapy in ARDS patients living with obesity, as the
inflammatory response is already impaired due to exhaustion
from the chronic low-grade inflammation of the obese
microenvironment (80), potentially making the patient
unresponsive to further immunosuppression by MSCs.

Determining the effect of comorbid obesity on MSC efficacy
and toxicity is currently difficult to do for two essential reasons.
First, much of the clinical trial data testing MSC therapies
remains unpublished (7, 84) and, second, metabolic parameters
are either not captured or not reported in published MSC clinical
trial data. A search on March 9, 2022 of ClinicalTrials.gov for
“mesenchymal stem cells”, “mesenchymal stromal cells” OR
“mesenchymal precursor cells” returned 1487 clinical trials.
However, pairing “BMI”, “body mass index”, “obesity” OR
“obese” with this search returned only 14 trials. In the primary
literature, however, some insight into the interactions of
metabolic disease and MSCs is beginning to unfold. In two
Mesoblast trials for the treatment of diabetic nephropathy and
T2DM, the average patient’s BMI was obese (85, 86). In another
trial using autologous MSCs to treat diabetes-associated critical
limb ischemia, severe obesity was part of the exclusion criteria
(87). Thus, not only are patients living with comorbid obesity
actively being treated with MSC therapy, but BMI is currently
being used to decide patient “fitness” for treatment. The ultimate
lesson to be learned from the results of cancer immunotherapy is
that the metabolic status of patients can influence therapeutic
efficacy and toxicity and, as such, should not be overlooked in the
design of MSC products and trials.
THE EFFECT OF OBESITY ON
MESENCHYMAL STROMAL CELLS

Efficacy of Therapy With Lean MSC in
Obese Subjects
Nearly all studies investigating the therapeutic efficacy of
healthy MSCs in subjects with obesity are pre-clinical
Frontiers in Immunology | www.frontiersin.org 4
models using high-fat diet (HFD). Application methods,
treatment regimens, and tissue sources vary, but lead to
similar outcomes (Table 1). Mice with diet-induced obesity
that were given human adipose tissue MSCs (atMSCs) via
intraperitoneal (i.p.) injections twice two weeks apart showed
a decrease in fat mass and, more interestingly, a decrease of
atherogenic index of plasma (AIP) levels (88). The AIP is a
logarithmically transformed ratio of molar concentrations of
triglycerides to HDL-cholesterol and serves as a marker of
cardiovascular disease (96).

This suggests that therapy with lean MSCs has a positive effect
on heart health, which is corroborated by a study in which HFD-
fed mice with cardiac arrhythmias were given murine bmMSC,
murine bmMSC conditioned medium (CM), or unconditioned
cell culture medium intravenously multiple times over the course
of a month. At the end of the treatment, the cardiac arrhythmias
were reversed, adiponectin levels were restored to those observed
in lean mice, and TGF-b1 levels were decreased. HFD-fed mice
treated with cell culture medium as a control showed high levels
of heart fibrosis which were much lower in their murine bmMSC
or bmMSC-CM treated counterparts (95). As the AIP is
associated with the concentration of triglycerides which are in
turn correlated with the severity of non-alcoholic fatty liver
disease (97) it would stand to reason that MSC should also be
able to alleviate the symptoms of HFD-induced liver damage.
Indeed, this seems to be the case (98–102). Intraperitoneal
injection of human atMSC every 2 weeks for 10 weeks
decreased both lipotoxicity and fat accumulation in the liver of
HFD mice (89). A single dose of human atMSC that had been
genetically modified with adenovirus constructs to overexpress
one of two antioxidants, either superoxide dismutase 2 (Sod2) or
catalase (Cat), improved hepatic steatosis and systemic
inflammation significantly after just 4 weeks. Fewer fat cells
were found in the liver of both treatment groups compared to the
control, and plasma TNF-a levels were lower (91).

Additional positive effects on the systemic manifestations of
metabolic syndrome have been described. Intramuscular
injection of human atMSCs (90), injection of murine atMSCs
into visceral epididymal adipose tissue (94), and intraperitoneal
TABLE 1 | Therapeutic effect of lean MSCs in obesity.

MSC type Model Therapeutic effect Reference

human atMSCs mice with diet-induced obesity decreased fat mass, decreased AIP levels 88
human atMSCs HFD-fed mice with liver damage decreased lipotoxicity and fat accumulation in liver 89
human atMSCs mice with metabolic syndrome decreased blood glucose, improved insulin sensitivity, decreased

triglyceride levels
90

human atMSCs (overexpressing Sod2
or Cat)

HFD-fed mice with hepatic
steatosis

improved hepatic steatosis and systemic inflammation 91

human amniotic MSC CM mice with metabolic syndrome decreased blood glucose, improved insulin sensitivity, decreased weight
gain

92

human umbilical cord MSCs humans with osteoarthritis improvement of osteoarthritis in both lean patients and patients with
obesity

93

murine atMSCs mice with metabolic syndrome decreased blood glucose, improved insulin sensitivity, decreased
triglyceride levels

94

murine bmMSCs HFD-fed mice with cardiac
arrhythmias

reversal of cardiac arrhythmias, restoration of adiponectin levels 95
July 2022 | Volume 13 | Art
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injection of human amniotic MSC CM (92) all significantly
decreased blood glucose levels and improved insulin sensitivity.
The human and murine atMSCs further caused a significant
drop in serum triglyceride levels (90, 94) which has the potential
of being cardioprotective (96). Human amniotic atMSC CM led
to increased energy expenditure, elevated thermogenesis, and
inhibited adipogenesis by suppressing the expression of genes
required for the differentiation of pre-adipocytes. As a result,
these mice experienced lower weight gain than the control
group (92).

A small human study showed that the administration of
human umbilical cord blood-derived MSCs improves
osteoarthritis of the knee in both lean patients and patients
living with obesity, with patient age being a much more relevant
factor in treatment outcome than body weight (93). In summary,
lean MSCs administered into an obese microenvironment
maintain their therapeutic value and can reduce the negative
effects associated with metabolic syndrome, however, the
therapeutic efficacy of MSCs in pro-inflammatory conditions
such as GvHD and ARDS in the setting of an obese
microenvironment remain to be investigated.

Therapeutic Efficacy of Obese MSCs
Although MSCs isolated from patients with sickle cell disease
(103), GvHD (104), and Crohn’s disease (105) show functional
equivalence to MSCs from healthy donors, a growing body of
evidence demonstrates that MSCs isolated from patients with
metabolic disease are fundamentally altered (106–110) (Tables 2,
3). Under the influence of the obese microenvironment, immune
Frontiers in Immunology | www.frontiersin.org 5
cells become dysregulated in their function and undergo
phenotypic changes (116). Similar effects seem to apply to
obese human atMSCs, as early studies from Kizilay-Mancini
and colleagues demonstrated that atMSCs isolated from patients
with obesity-related comorbidities had a significantly lower
suppressive effect on activated T cells (108), and bmMSCs
isolated from patients with >10 years history of T2D exhibit a
compromised metabolism (117). Notably, while the study by
Kizilay-Mancini et al. showed a drop in immunosuppressive
ability, other studies have actually shown an increase in T-cell
stimulation when using atMSCs from patients with obesity.
Serena et al. found that conditioned media from obese-T2D
atMSCs led to more T cell proliferation in mixed lymphocyte
reactions secondary to NLRP3 inflammasome activation (109).
Additionally, in a study by Ritter et al., obese atMSCs actively
secreted higher levels of IL-6 and TNFa and lower levels of
adiponectin compared to lean controls (113). Moreover, obese
atMSCs can secrete harmful proteins like osteoclast stimulation
factor 1 (Ostf1), which can promote osteoporosis (118), polarise
murine macrophages towards a pro-inflammatory M1 instead of
an anti-inflammatory M2 phenotype (111), and suffer from
increased early senescence (112). This shift between pro- and
anti-inflammatory cytokines could potentially explain the pro-
inflammatory effect of obese atMSCs. It is critical to note that
these findings suggest that obese atMSCs may not simply fail to
appropriately suppress inflammation but may amplify existing
inflammatory processes.

While the previous studies were conducted using in vitro
potency assays, only a few studies have validated the effect of
TABLE 2 | Differences in therapeutic action of lean and obese MSCs in vitro.

MSC
Source

Modulated
cells

Lean MSCs Obese MSCs Cause of difference in therapeutic action Reference

Human
atMSC
CM

Human
PBMCs

suppression of proliferation weak suppression of proliferation inflammasome activation (T2DM > Obese) 109

Human
atMSC
CM

Mouse T cells
(MOG)

suppression of proliferation increased proliferation not clear 110

Human
atMSC
CM

Human THP1
Macrophages

polarisation towards M2
phenotype

weak polarisation towards M2
phenotype

inflammasome activation 109

Human
atMSC
Transwell

Macrophages
(RAW264.7
and SIM-A9
(microglia)

no effect on phenotype strong polarisation towards M1
phenotype

not clear 111

increased migration no effect on migration not clear 111
no effect on phagocytosis decreased phagocytosis not clear 111

Human
atMSC

HUVEC promotion of angiogenesis:
tube formation and
enhanced production of
VEGF in injured HUVEC cells

no promotion of angiogenesis: tube
formation, no production of VEGF in
injured HUVEC cells

not clear, but may be associated with senescence
phenotype in obese human atMSC

112

Human
atMSC

None tested normal cilia and cilia
associated functions in lean
atMSC. Normal
differentiation, motility and
secretion.

shortened and deficient cilia. increased
production of IL-6 and TNF-a and
decreased adiponectin. Impaired
differentiation, motility and secretion.

Obesity (hypoxia, TNF-a, IL6) induced expression of
Aurora A and its downstream target HDAC6.
Inhibition of Aurora A or HDAC6 rescues cilium
length and function of obese atMSC

113

Human
atMSC

Human CD4+
T cells

suppression of proliferation weak suppression of proliferation oxidative stress due to mitochondrial dysfunction 106, 108
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obese atMSCs in in vivo model systems. In one study of
experimental autoimmune encephalitis, only lean atMSCs
could effectively lower clinical score (110). When obese
MSCs were administered at the onset of disease there was a
higher total lesion area in the spinal cord compared to vehicle
treated controls. In addition, lean MSCs but not obese MSCs
protected against ischemic injury, reducing renal atrophy and
alleviating renovascular hypertension in mouse models of
renal artery stenosis (94, 114, 115). Therefore, both in vitro
and in vivo analyses of immunomodulatory behaviour in
MSCs isolated from patients with metabolic disease support
a compromised immunomodulatory phenotype (Tables 2, 3).
However, it remains to be determined which factors present in
obesity alter MSC immunomodulation.

One possible reason for this dysfunction of obese MSCs is
metabolic reprogramming, which leads to changes in the
cellular metabolism resulting in altered functions. Obesity
can lead to metabolic reprogramming in immune cells
including natural killer (NK) cells, which become blunted in
their ability to reduce tumour growth (37) and experience
exhaustion when challenged with the pro-inflammatory
cytokines IL-15 and IL-2 (119). A switch to glycolysis is
required for NK cells to produce cytokines and exhibit
cytotoxic effects on tumour cells, but is impaired in obese
NK cells (37).

In MSCs, glycolysis is of similar importance for
immunomodulation. When glycolysis of MSCs is impaired
through silencing of hypoxia-inducible factor 1-alpha (HIF-
1a), expression of ICAM, IL-6, and NO2 is reduced, resulting
in a decreased ability to suppress T cell proliferation (120).
Correspondingly, boosted glycolysis promotes stronger T cell
suppression (121, 122) and an overexpression of HIF-1a is
associated with the recruitment of anti-inflammatory
monocytes and a higher resistance of MSCs against lysis by
NK cells (123).

Current gaps in knowledge regarding how components of the
obese environment individually and collectively affect MSC
phenotype will need to be addressed if we are to understand
how best to use MSCs to treat patients with comorbid
metabolic disease.
Frontiers in Immunology | www.frontiersin.org 6
CONSEQUENCES OF OBESITY-INDUCED
ALTERATIONS TO THE IMMUNE SYSTEM
FOR MSC THERAPY

The breadth of alterations to immune cell populations in obesity is
staggering (31, 39, 40). In the treatment of immune-mediated
pathologies, MSCs directly or indirectly interact with immune
cells to promote an immunosuppressive state (41, 42). Therefore,
alterations in the basal immune system in the setting of obesity, may
have critical consequences for MSC therapeutic efficacy. In this
review, we focus on how obesity affects three immune cell
populations; T cells, monocytes/macrophages, and NK cells,
because of the extensive interactions of MSCs with these
cells (Figure 1).
T Lymphocytes
T lymphocytes are essential players in the adaptive immune
system that can initiate, maintain, suppress, and/or amplify
inflammation and tissue damage in autoimmunity and
hyperactive immune responses (124). As such, the ability of
MSCs to modify T cell response has been a major focus in
understanding MSC immunomodulation within diseases like
GvHD and multiple sclerosis, wherein T cells drive pathology
(72, 125, 126). Early work identifying the immunosuppressive
mechanism of MSCs showed that MSC infusion correlated with
increased numbers of T regulatory cells (TREG), a potent
regulatory population that aids in the maintenance of
peripheral tolerance (125). This finding has subsequently been
corroborated by several groups in both in vitro and in vivo
analyses (127–129). The production of indoleamine-2,3-
dioxygenase (IDO) appears to be critical for MSC induction of
TREG (130–133). In patients with multiple sclerosis, the total
number of circulating TREG is decreased, which has been
suggested to play a role in the breakdown of self-tolerance
(134). Additionally, during allogeneic hematopoietic stem cell
transplant, increasing TREG has been shown to decrease GvHD
severity (135). Therefore, the MSC-TREG axis is of crucial
importance in the treatment of autoimmune disease and post-
transplant tolerance (136–139).
TABLE 3 | Studies comparing lean versus obese MSC therapeutic efficacy in disease models.

MSC Source Disease Model Lean MSC Obese MSC Cause of difference in
therapeutic action

Reference

Human atMSC
(1x10^6 i.p.)

Mouse
Experimental
autoimmune
encephalitis

improved clinical score (inflammation, lesion size,
preserved myelin) in mice with experimental
autoimmune encephalitis

no improvement in mice with
experimental autoimmune
encephalitis

increased expression of pro-
inflammatory cytokines

110

Human atMSC
(5x10^5 intra-
aorta)

Mouse Renal
stenosis

normalisation of ischemic kidney cortical perfusion
in stenotic mouse kidneys

no effect on ischemic kidney
cortical perfusion in stenotic
mouse kidneys

increased cellular senescence 114

Human atMSC
(5x10^5 intra-
aorta)

Mouse model of
renal artery
stenosis

normalisation of renovascular hypertension partial alleviation of
renovascular hypertension

not clear 115

Human atMSC
(5x10^5 intra-
aorta)

Mouse model of
renal artery
stenosis (RAS)

small improvement in renal atrophy. decreased
M1 macrophages, M1/M2 ratio and inflammation
in RAS kidneys

no improvement in renal
atrophy. M1 macrophages
remained high

obese MSC had a pro-
inflammatory phenotype
releasing more TNF-a
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In the setting of metabolic disease, TREG show a number of
alterations that could impact interactions with MSCs. In human
visceral adipose tissue, there is a negative correlation between
FOXP3 transcripts (a marker of TREG) and BMI, indicating a
lower regulatory profile in patients living with obesity (140). In
addition, human studies have found a negative correlation between
circulating TREG numbers and BMI, as well as, markers of systemic
inflammation (141, 142). Although correlations have been
identified, the mechanistic underpinning as to why TREG are
altered in metabolic disease is still an evolving research area (124).
To date, specific components elevated in the obese serum
environment have been shown to modify TREG behaviour. Leptin,
which tends to be elevated in the serum of patients with obesity
(143), has been shown to suppress TREG proliferation, while leptin
deficiency is associated with a higher frequency of TREG (144, 145).
When exposed to high insulin levels, IL10 secretion bymurine TREG
is attenuated, thereby reducing their ability to block TNFa
production from LPS-stimulated macrophages (146).
Hyperinsulinemia appears, therefore, to compromise the
immunosuppressive potential of TREG. If MSCs rely on TREG to
facilitate long-term immunosuppression, this finding could indicate
that hyperinsulinemic environments may compromise MSC
mediated immunosuppression. Notably, in patients with multiple
sclerosis and metabolic syndrome, treatment with metformin, a
commonly prescribed first-line treatment for T2DM, significantly
enhanced the number and potency of circulating TREG (147).
Therefore, treating underlying metabolic disease can positively
affect comorbid immune-mediated pathologies through
modulation of TREG function.

While the MSC-TREG axis is clearly a major player in the
setting of autoimmune disease, the ability of MSCs to dampen
pro-inflammatory Th1/Th17 populations is also essential (70). In
vitro studies of MSC immunomodulatory potency have routinely
Frontiers in Immunology | www.frontiersin.org 7
demonstrated that MSCs suppress the proliferation and activity
of allogeneic Th1 cells (41). In a humanized mouse model of
GvHD, the ability of MSCs to decrease mortality was
independent of TREG induction, but was, rather, due to
suppression of CD4+ T effector cell expansion and TNFa
production (72, 148). An essential pathway by which MSCs
control Th1 responses is through expression and secretion of
PD-L1, a ligand for PD1 (57, 58). A less comprehensive picture
exists for MSCs ability to modulate Th17 responses. Several early
studies showed that MSCs could inhibit Th17 differentiation and
cytokine production. However, nearly all of these studies were
conducted with murine MSCs, which have distinct
immunomodulatory programs compared to human (149, 150).
Conversely, in a study of human bone marrow MSCs, in vitro
incubation with MSCs resulted in higher Th17 cytokine secretion
from activated PBMCs, due to MSC production of PGE2 (151).
However, patients treated with MSC infusion for acute GvHD
show either a modest suppression of or no difference in Th17
numbers (125, 152). Th17 and TREG both differentiate from naïve
T cells via TGFb signalling (153). Therefore, one mechanism by
which MSCs modulate Th17 cells may be through preferential
induction of TREG. However, further analysis of human MSCs
and Th17 cells is critically needed to better understand their
potential interaction in vivo.

Patients with metabolic disease have significant changes in
Th1/Th17 immune cell populations. Within the visceral adipose
of patients with metabolic disease, Th1 numbers and function are
increased, which is integral to initiation and maintenance of
meta-inflammation (31, 154). Additionally, both adults and
children with obesity have elevations in Th17 cytokines, which
is associated with T2DM and an IL-17 mediated disturbance of
insulin signalling (35, 38, 155, 156). This increased Th17
cytokine production appears to be linked to obesity-associated
FIGURE 1 | Mechanisms of MSC Immunosuppression and Alterations to Immune Populations in Obesity. Created with BioRender.com.
July 2022 | Volume 13 | Article 943333

https://BioRender.com.
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Boland et al. Influence of Obesity on MSC Efficacy
mitochondrial dysfunction in T cells (157). Given the poorly
understood interaction between MSCs and Th17 cells, the
dominance of this Th17 profile within patients living with
obesity and T2DM is concerning. Interestingly, in a study of
patients living with obesity but no metabolic disease, higher
numbers of circulating T lymphocytes, but fewer naïve T cells
were reported (158). Additionally, the percentage of CD4+

effector memory T cells was higher in patients living with
obesity. A murine model of high fat diet recapitulated this
elevation in CD4+ effector memory cells and showed that these
cells infiltrated non-lymphoid tissues at higher rates compared to
animals fed standard diet. Interestingly, this finding indicates
that high-fat conditioning alone can influence the migration and
activation state of CD4+ T cells. Furthermore, Wang et al.
showed higher rates of circulating T cells with an exhausted
profile (PD1+ with low proliferative rate) in obese, otherwise
healthy patients (10). While intratumoural CD8+ T cells from
patients living with obesity have impaired function, expression of
PD1 remains unchanged. This functional impairment is
associated with alterations in CD8+ T cell metabolism with
decreased glutamine production which is required for normal
cell function (68). Additionally, increased consumption of free
fatty acids by tumour cells deprives CD8+ T cells of this
metabolite further impairing their activity (159).

While immunostimulatory therapies are effective at bolstering
anti-tumour effects in the setting of obesity (10, 67), it is unclear
how an immunosuppressive mechanism, like PD-L1 expression by
MSCs, might behave in the same environment. It remains to be
determined if MSCs are able to suppress activation of obese or
T2DM T cells. What is clear is that particular T effector cell
populations are sensitive to obese environments, supporting the
idea that the obese “basal” immune system is unique and should be
considered as such when designing and evaluating MSC therapies.

Monocytes/Macrophages
Given their broad and encompassing participation in many
autoimmune and inflammatory disorders, monocytes and
macrophages have been of keen interest in defining MSC
immunomodulation (160–162). Monocytes and macrophages
exist on a phenotypic spectrum that can broadly be defined as
inflammatory (M1) or anti-inflammatory (M2) (163). However,
the phenotype of monocytes and macrophages is highly plastic
and, as such, can display a spectrum of intermediate and
complex phenotypes (164). With that caveat in mind,
incubation with MSCs or MSC conditioned media tends to
cause a decreased inflammatory and increased anti-
inflammatory profile in monocytes/macrophages (59, 165–168).

The ability of MSCs to modulate the balance between
inflammatory and anti-inflammatory phenotypes in monocytes
and macrophages has been linked to their production of PGE2
(169, 170, p. 14), TSG6 (171), IL6 (172), and HGF (173). PGE2
fromMSCs modifies monocyte costimulatory ability and inhibits
the maturation of monocyte subtypes (170, 174, 175). For
bmMSCs, secretion of PGE2 is necessary to reprogram host
macrophages toward an anti-inflammatory IL10-secreting
profile (176). Additionally, Rozenberg et al. found that when
Frontiers in Immunology | www.frontiersin.org 8
CD14+ cells were depleted from mixed PBMC cultures, MSC
conditioned media could no longer dampen IFNg production,
indicating that MSCs effects on monocytes can influence
subsequent T cell cytokine production (151). In vivo, a number
of independent research groups have confirmed that secretome-
based crosstalk between macrophages and MSC is essential in
models of inflammatory and autoimmune diseases, including
sepsis (176–178), allergic asthma (179, 180), peritonitis (181),
colitis (182, 183), GvHD (184), and rheumatoid arthritis (185,
186). Although a unidirectional focus of MSC secreted factors to
monocytes has been documented, a bidirectional crosstalk
whereby secreted factors from either cell population can
influence the other is likely more accurate. To this point,
studies have shown that secretion of IL1b from CD14+ cells
was integral to initiating MSCs and MSC like cells -multipotent
adult progenitor cells (MAPCs) immunosuppressive potency
toward T cells (187, 188). Therefore, a bidirectional crosstalk
of secreted factors both from and between monocytes and MSCs
influences downstream immunosuppressive effects.

Interestingly, several secretome independent modes of MSC-
myeloid cell interactions have recently been described. These
emerg ing mechani sms inc lude d irec t cy top lasmic
communication through processing bodies (189), tunnelling
nanotubules (190–192), transfer of extracellular vesicles and
miRNAs (193, 194), and the uptake of apoptotic MSCs by host
phagocytes (i.e. efferocytosis) (74, 195, 196). In a model of acute
respiratory distress, Jackson et al. demonstrated that MSCs pass
healthy mitochondria to stressed alveolar macrophages via
tunnelling nanotubules (191). In addition, MSCs can release
extracellular vesicles ranging in size and cargo. After uptake of
MSC vesicles, macrophages show decreased sensitivity to
mitochondrial damage by silica particles and attenuated
inflammatory cytokine production (197). Finally, efferocytosis
has emerged as an intriguing pathway by which MSCs leave a
lasting impression on the host immune system. De Witte et al.
found that by 24-72 hours after infusion the vast majority of
MSCs were within circulating blood monocytes or resident
macrophage populations (59). Additionally, Galleu et al.
demonstrated that killing of MSCs by host cytotoxic T cells
was predictive of the therapeutic response of patients treated
with MSCs for acute GvHD (74). In a follow-up study, this group
demonstrated that incubation with apoptotic MSCs increased
immunosuppressive gene expression in macrophages, as well as
secretion of IL10 and PGE2 (195). Overall, the unique feature of
macrophages as professional phagocytes enables a broad range of
MSC mechanisms of action that are still actively being
uncovered. To date, no study has investigated if MSC
efferocytosis is a functioning mechanism of obese
monocytes/macrophages.

In obesity and metabolic disease, monocytes and
macrophages are integral players in the initiation and
sustained inflammation that drives systemic and adipose-
specific physiological alterations (32, 33, 38–40, 198). A
number of intrinsic features of monocytes and macrophages
are compromised in patients living with obesity. Crown-like
structures of macrophages within the adipose tissue are thought
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to form to clear apoptotic adipocytes that die due to hypoxic,
hypertrophic growth (28, 199). In murine models of diet induced
obesity, clearance of apoptotic adipocytes was decreased in the
absence of mannose-binding lectin, a protein that facilitates
macrophage phagocytosis (200). As antigen-presenting cells
within adipose, macrophages show higher levels of MHC class
I and II expression and increased antigen-presentation to T cells
in obesity (201). Adipose-tissue macrophages in HFD-fed
animals also show increased costimulatory profiles, leading to
higher overall T cell activation (202). In addition, in patients with
asthma and comorbid obesity, airway macrophages and
peripheral blood monocytes show a significant reduction in
efferocytic index (40% and 36% decrease compared to non-
obese asthmatic patients, respectively), suggesting that obesity
dampens the efferocytic response of critical macrophage
populations (203). If efferocytosis is a major mechanism by
which MSCs exert long-term immunosuppressive effects (84),
alterations in the basal efferocytic capacity of host phagocytes
could lead to lower MSC therapeutic efficacy.
NK Cells
The primary role of NK cells is the killing of tumour cells or cells
infected by a virus (204). A blunted NK cell function is associated
with a worsened outcome of Covid19 (205), and a higher percentage
of NK cells is associated with a longer survival of sepsis patients
(206). However, the role of NK cells in autoimmune diseases like
multiple sclerosis, lupus erythematosus, and arthritis is debated.
There are indications for NK cells being both protective from and
promoting the effects of autoimmune diseases (207–209).

Interactions between MSCs and NK cells happen in both
directions. Activated NK cells lyse allogeneic MSCs, reducing the
time during which they can exhibit their therapeutic efficacy
(210, 211). At the same time, IFN-g produced by NK cells
promotes the production of monocyte chemoattractant protein
1 (MCP-1) in MSCs (212), which is associated with an anti-
inflammatory polarisation of macrophages (213). Interestingly,
IFN-g- stimulated MSCs have been reported to reduce IFN-g
production by NK cells (214) and NK cell proliferation, at least
partially through the production of PGE2 (215). Conversely,
MSCs have also been shown to promote NK cell expansion (216)
and increasing their IFN-g production through both soluble
factors and cell-cell interaction, at least partially by triggering
the IL-12/STAT4 pathway of the NK cells (212, 217). These
conflicting results likely arise due to several factors. Ratios of
MSCs to NK cells range from 1:1 (216) to 1:8 (211), experiments
were carried out in vivo (215) and in vitro (217), and MSCs were
either pre-stimulated (214) or naïve MSCs (212). Additionally,
while MSCs are able to successfully suppress IL-2 induced
proliferation of resting NK cells, already proliferating NK cells
are not as effectively suppressed (211). Some of the effects of
MSCs on NK cells seem to also be time-dependant, as poly(I:C)
activated MSCs initially promote NK cell function, followed by
TGF-b and IL-6 induced cell death (218). Considering this
delicate balance of interaction, a disturbance of NK cell
function due to obesity could lead to impaired MSC
therapeutic efficacy.
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In the setting of metabolic disease numerous studies have
detailed defective NK cells, with reduced peripheral frequencies
and a loss of effector functions (119, 219–224) such as cytokine
production and tumour cytotoxicity. Using murine models of
cancer, Michelet and colleagues demonstrated that NK cells with
an obese phenotype fail to control tumour growth highlighting
the potential consequences of defective NK cell responses in
people with obesity (37). The same study identified increased
expression of PPAR controlled lipid uptake as the underlying
mechanism of defect. Increased lipid uptake limited NK cell
metabolic activity, which is critical for their effector functions
(225). Leptin has also been identified as an important NK cell
regulator, with reduced NK cell frequencies (peripheral, liver and
spleen) and activity in leptin receptor deficient mice (db/db)
(226, 227). Collectively these studies suggest the obese
microenvironment underpins the dysregulation of NK cells in
obesity. Further evidence for this comes from the reversibility of
NK cell defects with weight loss, either via exercise or metabolic
surgery (228–230). The unanswered question is whether or not
obese NK cells are equally affected by MSC co-cultures as non-
obese NK cells.

Another facet of NK cell biology impacted by obesity is their
regulation of macrophages in adipose tissue. In 2014, O’Rourke and
colleagues demonstrated that NK cells could regulate adipose tissue
macrophage infiltration, with systemic ablation of NK cells reducing
macrophage numbers in obese adipose tissue (231). In a subsequent
study, Wensveen and colleagues provided detailed evidence for NK
cell regulation of macrophages. The authors demonstrated that NK
cells are activated by obesity induced adipose tissue stress, which
leads to the rapid production of IFN-g, which promoted the
recruitment of macrophages into adipose tissue (232). In 2016,
Boulenouar and colleagues showed that NK cells could regulate
adipose tissue macrophages via their ability to kill inflammatory
macrophages, but with the onset of obesity, NK cells lost their ability
to kill macrophages and increased their production of IFN-g which
promoted the recruitment of inflammatory macrophages,
promoting obesity related metabolic defects (233). Based on these
findings, the ratio of MSCs to NK cells, or insufficient priming of
MSCs, may exacerbate IFN-g production by obese NK cells, and
result in a pro-inflammatory effect.
IMMUNOGENICITY AND
HEMOCOMPATIBILITY OF MSC IN OBESE
ENVIRONMENTS

While alterations in the immune system critically shape the in vivo
environment of patients with obesity, changes within the
composition of the serum environment are also evident (27, 234).
Obesity presents a unique challenge to MSC therapy due to
increased immunogenic and prothrombotic risks. Increased
immunogenicity within obesity has been well-documented within
the organ transplant field. Molinero et al. demonstrated that in
murine cardiac allograft, allo-sensitization and subsequent rejection
were higher in HFD-fed animals due to increased frequency and co-
stimulatory profile in host antigen-presenting cells (235).
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Additionally, Okamoto et al. found that adiponectin ablation led to
higher rates of cardiac allograft rejection (236). Adiponectin,
therefore, appears to be protective against allo-sensitization and is,
notably, decreased in patients with obesity (237). Leptin, on the
other hand, tends to positively correlate with BMI (143) and is
associated with a higher risk of allograft rejection (238, 239). In
murine skin allograft, an increased rate of rejection in HFD-fed
mice was due to the direct effect of CD4+ T cell exposure to elevated
palmitate (158). Obesity also appears to be associated with increased
graft failure in solid organ transplants in humans. In a study of
patients receiving kidney allograft, all obesity classes were associated
with an elevated risk of graft failure (240). In an additional study,
patients with obesity and comorbid diabetes had a significantly
higher number of donor-reactive T cells, poorer graft function, and
the highest rates of graft-failure (241). Therefore, the absence and
excess of specific molecules within the obese environment can have
crucial consequences for immunogenicity within allogeneic
transplant scenarios. This highlights the need to investigate the
impact of the obese environment on relative immunogenicity of
MSC products.

In addition to increased risk of immunogenicity, obesity is a
pro-thrombotic state (45). Due to elevated coagulability,
patients with obesity are at increased risk of life-threatening
thrombotic events including myocardial infarction, stroke, and
pulmonary embolism (46). This raises the question: is
hemocompatibility of MSCs affected by exposure to obese
environments? Intravascular delivery of MSCs into a
hypercoagulable obese environment could have severe
consequences for adverse thrombotic and/or ischemic events
(46, 47). In addition, both infection and inflammation can
increase coagulability through direct effects on coagulation
factors, platelet activation state, and vascular endothelium
(48, 49); therefore, many patients treated with MSC therapy
for immune-based pathologies may be pro-coagulant at time of
infusion. The additive nature of these pro-coagulant risks,
obesity and disease-specific inflammation, could have a
detrimental impact not solely on MSC therapeutic efficacy,
but safety, as well. As a more diverse and increasingly obese
patient base is treated with MSC therapy, the need to
understand how to maintain efficacy and decrease adverse
thrombotic events within this environment will be critical to
the broad scalability and generalizability of MSC therapy (242).

As the breadth of MSC products has expanded, transitive
application of properties between tissue sources cannot be
assumed to hold true (44). While bmMSCs show low levels of
pro-coagulant tissue factor, both adipose and perinatal sources
have relatively high levels of tissue factor expression (44, 243). In
a clinical trial for critical limb ischemia using autologous
atMSCs, adverse thrombi occurred only in diabetic patients,
suggesting an intrinsic decline in the hemocompatibility of
diabetic atMSCs (87). Diabetic atMSCs had decreased secretion
of antithrombotic tPA and increased secretion of the pro-
coagulant factor, PAI1, leading to less overall fibrinolytic
activity. Interestingly, in the same study, healthy atMSCs
appeared to have a differential response to being grown in
either healthy or diabetic serum; however, this comparison was
not the major focus of the study and therefore explicit
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quantification and statistical comparisons were not expressly
reported. Follow-up studies showed that the atMSCs from
diabetic patients who developed distal microthrombi exhibited
high levels of tissue factor, linking changes in tissue factor
expression with increased incidence of adverse thrombotic
events (244). A better understanding of how the balance
between pro- and anti-thrombotic factors is altered by intrinsic
donor characteristics like comorbid metabolic disease will be
critical to ensuring safety and efficacy for patients treated with
MSC therapy.
RETRAINING OBESE MSCS TO RESTORE
THERAPEUTIC EFFICACY

Due to the strong correlation of metabolic phenotype and
immunomodulatory capacity in MSC (120), targeting the
metabolism of obese MSC could lead to a restoration of their
therapeutic efficacy. It is already known that culture conditions
during in vitro expansion of MSC can considerably affect their
therapeutic potential (245, 246). The metabolism of healthy MSC in
early passages after isolation is typically highly glycolytic, but
switches to OXPHOS over time due to a greater availability of
oxygen compared to their niche in the body (247, 248). Expanding
MSC in a hypoxic environment could counteract this switch.
Similar to NK cells, which experience an impairment of their
glycolytic function under obese conditions (37, 119), obese MSCs
may suffer metabolic impairments. Human umbilical cord MSCs
(ucMSCs) from mothers with obesity exhibit significant lower
glycolytic capacity than ucMSCs from lean mothers (249). Pre-
licensing obese MSCs to rescue or even amplify a glycolytic
phenotype might rescue their immunosuppressive potential,
however, this remains to be determined.

Pre-licensing human bmMSC with interferon g (IFN-g) has
been shown to activate the protein kinase B (Akt)/mTor
pathway, leading to increased glycolysis and increased
expression of hexokinase isoform 2 (HK2), a key gene for
glycolysis (250). Given that mTOR activation induces
expression of HIF-1a (251), the involvement for the IFN-g/
Akt/mTOR/HIF-1a pathway can be theorised in this case. IFN-g
licensing also increases indolamine-2,3-dioxygenase (IDO) and
prostaglandin E2 (PGE2) production which are both important
for MSC immunomodulation (250, 252).

TNF-a has also been shown to activate HIF-1a. Human
fibroblasts, which share similarities with MSCs (253), experience
an upregulation of reactive oxygen species (ROS) upon exposure
to TNF-a, resulting in a hypoxia-independent expression of
HIF-1a (254, 255). Similarly, exposing human fibroblasts to
lactate also results in a HIF-1a mediated switch to glycolysis
and an increase of c-Myc (256), a multifunctional transcription
factor that regulates, among other things, cell proliferation and
glycolysis (257, 258).

Confirming the beneficial effects of inflammatory pre-licensing
on MSC metabolism, Mendt et al, showed that human ucMSC pre-
licensed with a mix of IL-17, IL-1b, TNF-a, and IFN- g resulted in
an increase in glycolysis which promoted the production of
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immunomodulatory factors. In vitro, these pre-licensed human
ucMSC were able to disrupt the glycolytic upregulation in T cells,
causing those T cells to differentiate into a regulatory instead of an
inflammatory phenotype improving the outcome of a murine graft
versus host disease model (259).

Pre-licensing MSCs with both IFN- g and TNF-a has been
shown to prevent MSCs exposed to palmitate from taking on a
pro-inflammatory phenotype, instead remaining strongly
immunosuppressive toward activated PBMCs (260). Aside
from shifting the MSC metabolism to a more hypoxic
phenotype (Figure 2), simply culturing them in medium free
from FFAs may also help to restore their immunosuppressive
function. Following chronic exposure of human MSCs to
palmitate, and subsequent loss of immunosuppressive potency,
it is possible for the MSCs to recover upon removal of
palmitate (260).

More research is needed to fully understand the role of altered
metabolism in MSCs, the ways in which this might be best
achieved and the functionality of licensed MSCs in inflammatory
disease with an underlying obese environment.
FUTURE DIRECTIONS/CONCLUSION

For the use of immunomodulatory therapies, like MSCs, a careful
and comprehensive understanding of how patient comorbidities
affect the underlying immune system is pivotal to optimizing
therapeutic performance. A one size fits all approach to MSC
therapy is not scientifically justified and may compromise both
patient safety and therapeutic efficacy (7, 84, 242). The expansion of
patients treated with MSCs and the breadth of emerging MSC
products warrants a more complete understanding of the
interaction between characteristics of different in vivo transplant
environments and intrinsic properties of the cell product. In patients
living with obesity, the immune system and serum environment are
Frontiers in Immunology | www.frontiersin.org 11
fundamentally altered compared to metabolically healthy
individuals (9, 10, 12). By not recognizing and identifying obesity
as a unique transplant environment, we fail to tailor MSC therapies
for the context in which they will perform. Moving forward,
improved reporting of metabolic health in clinical trial data to the
research community would allow for the evaluation of the function
and health of MSCs within obese environments. Obesity and
metabolic disease need not be exclusion criteria for the use of
MSC therapy, as long as we understand how MSCs behave within
these environments and the mechanisms of potential adverse
events. In the future, both the patient and/or the cell therapy
could be conditioned to reduce risk of adverse events, while
maintaining therapeutic efficacy within obese environments. For
example, given the pro-thrombotic nature of obesity, intravascular
delivery of MSCs within patients with obesity could be paired with
anti-thrombotic prophylaxis, thereby mitigating potential
thromboembolic complications without excluding patients with
obesity from vital therapeutic options. In addition, MSCs from
donors with obesity could be licensed to regain their
immunomodulatory potential. New immunomodulatory therapies
should be available to all patients regardless of metabolic health, but
for this to be true, critical gaps in our current knowledge regarding
the interaction betweenMSC therapy and metabolic disease need to
be filled.
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