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Interferons (IFN) are antiviral cytokines with critical roles in regulating

pathogens at epithelial barriers, but their capacity to restrict human enteric

viruses has been incompletely characterized in part due to challenges in

cultivating some viruses in vitro, particularly human norovirus. Accordingly,

advancements in the development of antiviral therapies and vaccine strategies

for enteric viral infections have been similarly constrained. Currently emerging

is the use of human intestinal enteroids (HIEs) to investigate mechanisms of

human enteric viral pathogenesis. HIEs provide a unique opportunity to

investigate host-virus interactions using an in vitro system that recapitulates

the cellular complexity of the in vivo gastrointestinal epithelium. This approach

permits the exploration of intestinal epithelial cell interactions with enteric

viruses as well as the innate immune responses mediated by IFNs and IFN-

stimulated genes. Here, we describe recent findings related to the production,

signaling, and function of IFNs in the response to enteric viral infections, which

will ultimately help to reveal important aspects of pathogenesis and facilitate

the future development of therapeutics and vaccines.
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Introduction

Despite the substantial progress made in reducing the global burden of diarrheal

illness, diarrhea remains a significant public health challenge. Diarrhea is a leading cause

of global mortality and is the fifth leading cause of death among children, with an

associated mortality of 70.6 deaths per 100,000 (1). As a result, global initiatives to

address the prevention of morbidities and mortality associated with diarrheal illness have
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focused on the young pediatric population (1). Several virus

families have been identified as major etiologies of viral

gastroenteritis, including norovirus, sapovirus (both single-

stranded positive-sense RNA viruses in the Caliciviridae

family), rotavirus (double-stranded RNA virus in the

Reoviridae family), astrovirus (single-stranded RNA virus in

the Astroviridae family), and adenovirus (double-stranded

DNA virus in the Adenoviridae family) (2, 3). Despite the

long-standing recognition of these pathogens as important

drivers of pediatric illness, many aspects of their in vivo

activity, such as cellular tropism and innate immune

regulation, have remained obscure. Thus, there remains a need

for suitable experimental models that recapitulate the dynamic

and complex features of the viral interactions with human

intestinal epithelium. The emergence of ex vivo intestinal

epithelial cultures, or “mini-intestines,” have guided

investigations of host-enteric pathogen interactions. While

these “mini-intestines” were first applied to model host-

bacterial dynamics and interactions between the intestinal

epithelium and organisms such as Escherichia coli, Clostridium

difficile, and Salmonella typhi, this model system has also been

utilized to reveal novel and interesting aspects of host-virus

interactions and features of replication and pathogenesis for

enteric viruses (4).

Ex vivo intestinal epithelial cultures are achieved by isolation

of intestinal crypts from surgically resected intestinal tissue,

which contains human stem cells, or from human embryonic

or inducible pluripotent stem cells (iPSCs) (Figure 1). Primary

cultures derived from isolated crypts or stem cells are classified

as enteroids (from the small intestine) or colonoids (from the

colon), whereas those from iPSCs are termed organoids (5). The

derived stem cells are embedded in a basement membrane-like

matrix (BME), such as Matrigel, and cultured as self-

perpetuating three-dimensional (3D) cultures in media
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enriched with critical growth factors including Wnt3a,

R-spondin, and Noggin (5–7). This approach produces 3D

enteroids with the basolateral membrane in contact with the

Matrigel and media and the apical membrane within the luminal

s u r f a c e ( 7 ) . Th e s e e n t e r o i d s d e v e l o p c omp l e x

microenvironments with differentiation of intestinal epithelial

cell (IEC) subtypes and the formation of villus-like structures

(8). Human intestinal enteroids (HIEs) can recapitulate the stem

cell lineage as well as the differentiated cell type heterogeneity,

including enterocytes, goblet cells, and enteroendocrine cells, of

the in vivo tissue of origin, permitting HIEs to be used in the

study of the intestinal cellular landscape (6). These

heterogeneous cell populations can recapitulate in vivo

intestinal tissues in vitro , providing a more faithful

experimental model than immortalized and transformed cells

(6, 8–10). Further, differentiation methods to enrich for specific

cell types, particularly tuft cells, Paneth cells, and microfold (M)

cells which are typically rare or absent in organoids, can allow

for further study of the role of these cell types in human biology

and disease (6, 11).

A longstanding challenge in using 3D models has been the

difficulty in accessing the apical surface for the study of epithelial

interactions with luminal factors such as pathogens or nutrients

(8, 12, 13). While microinjection into the organoid luminal space

has been used to overcome this limitation, it remains a labor-

intensive and technically challenging technique (12, 13). After

enzymatic dissociation, tissue- or iPSC-derived organoids can be

reseeded as two-dimensional (2D) Transwell monolayer

cultures, which facilitates exposure and access to the apical

epithelium. However, 2D cultures can only be used short-term,

whereas 3D organoids can be readily passaged and are better

suited for long-term use (8). A recent innovation has been a

reversed-polarity apical-out model, in which the enteroids

are suspended in media rather than embedded in BME and
FIGURE 1

Human intestinal enteroid (HIE) derivation and culture for host-pathogen and disease modeling. HIEs are derived from the intestinal crypts and
directly embedded into basement membrane-like matrix (BME) to generate epithelial enteroid cultures with differentiated cell types to model
host-virus interactions. Figure created with BioRender.com.
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have an outward-facing apical surface readily accessible

to experimental agents in the culture media (6–10, 14).

These apical-out models may serve to facilitate the study of

host-pathogen interactions within the intestinal epithelium.

The ability to expand and maintain these primary epithelial

cells in a near-native state as self-organizing organotypic

cultures has significantly contributed to the exploration of

human enteric virus pathogenesis (6, 8, 9). Notably, HIEs have

proven useful in the investigation of the production, signaling,

and function of innate immune cytokines interferons (IFNs) in

response to human enteric viruses. One of the first lines of

defense against viral infection is the host innate immune

response, with the outcome of infection defined by the

interaction between the virus and these responses. IFN-

mediated signaling pathways are critical aspects of this innate

response and are particularly important for host antiviral

activity. IFNs are classified into three types (I, II, and III), and

the induction of canonical type I and III IFN signaling is key to

viral control and immune responses at the gut mucosal interface

(15–17). The distinct effects of IFNs in mediating viral control

and regulating IFN-stimulated genes (ISGs) have been

thoroughly detailed in the context of host infection and

immune response (15, 17–20). Briefly, IFNs secreted from

virus-infected cells engage cognate IFN receptors on the

surface of neighboring cells for the activation of Janus kinases

(JAK) and phosphorylation of transcription factors STAT1 and

STAT2, enabling the transcription of ISGs, which encode

effectors of the antiviral response and antagonize virus

replication (15, 20). In the context of enteric viral infections, a

current paradigm is that type I IFNs are produced from and act

to regulate viral infection of immune cells, thereby limiting

systemic dissemination from the intestine, but may also be

derived from and act on IECs in some contexts. In contrast,

type III IFNs are predominantly produced from and act more

specifically on IECs to limit local viral replication within the

intestine, secondary to more limited expression of the type III

IFN receptor (15, 20). While mouse models have implicated

IFNs as critical for the regulation of murine enteric viruses such

as murine norovirus, murine rotavirus, and murine astrovirus,

the roles of IFNs in the regulation of human enteric viruses have

been less carefully explored (21–27). A recent comparison of

RNA-sequencing datasets identified shared transcriptional

changes involving the innate immune response upon infection

of HIEs with multiple human enteric viruses, including genes

associated with Toll-like receptors, IFN receptors (IFNAR,

IFNGR, IFNLR), IFN-stimulated genes, and IFN-associated

chemokines (28). Virus-specific transcriptional changes were

also observed. For example, IFNE was detectable in the

datasets generated from astrovirus-infected duodenal HIEs and

norovirus-infected ileal HIEs, whereas a type III IFN response

was detected in response to rotavirus, with differential
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expression of IFNL1 , IFNL2 , and IFNL3 (28). These

observations suggest HIEs as an important model to

investigate IFNs as a shared biological response to multiple

human enteric viruses, but also highlight that different viruses

stimulate distinct antiviral defenses and IFN signaling

mechanisms in the intestinal epithelium during infection.

Here, we will review what is known for IFN-mediated

immune responses to enteric viral infections using HIE

models. We will also highlight future research directions of

interest for IFN-associated immune responses in acute viral

gastroenteritis that may contribute to a greater understanding

of the pathogenesis and treatment of enteric viral infections.
Human norovirus

Although human noroviruses (HNoVs) are the leading cause

of viral gastroenteritis worldwide, there are no approved

vaccines or antiviral drugs available to counter this pathogen.

NoVs are single-stranded positive-sense RNA viruses in the

Caliciviridae family. The NoV genus is classified into ten

genogroups, GI through GX, which are further divided into 49

capsid genotypes (29). Of these, human infections are primarily

induced by GI and GII viruses, whereas genogroup GV includes

murine NoV strains that naturally infect mice (30, 31).

Phenotype and severity of infection vary by individual strain,

with genotype GII.4 responsible for the majority of HNoV

infections (30, 31). A thorough understanding of both the

HNoV life cycle and how viral replication is affected by host

restrictions are needed but have been limited due to the lack of a

reproducible and robust in vitro cultivation system (10).
HNoV cultivation and IFN responses
in HIEs

Recent efforts have resulted in two HNoV culture systems,

the first using immortalized B cells and the second using patient-

derived HIEs (32–34). The prior lack of a robust in vitro culture

system for HNoV was largely driven by limited knowledge of the

cell types that are permissive to HNoV replication (35).

Cultivation of a single strain of HNoV in B cells in one study

required the use of unfiltered inoculum and commensal bacteria

as cofactors for replication (32, 33). However, HNoV can also

infect patients deficient in B cells, implicating other cell types as

permissive for HNoV replication (36). Analysis of intestinal

biopsy samples from immunocompromised patients infected

with HNoV revealed the presence of HNoV major capsid

protein (VP1) and non-structural proteins (RdRp and VPg) in

a variety of intestinal cells, predominantly epithelial enterocytes,

thereby suggesting IECs as another likely permissive cell type for
frontiersin.org
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HNoV replication (35). A recent report similarly identified

negative-sense viral RNA, a marker for active viral replication,

in enteroendocrine cells of immunocompromised pediatric

patients with HNoV gastroenteritis (37).

The capacity for HIEs to support HNoV replication in IECs,

specifically enterocytes, was subsequently confirmed for both GI

and GII strains (34), and HIEs have since been used to evaluate

virus inactivation methods (38), neutralizing capacity of human

monoclonal antibodies (39), and levels of serum neutralizing

antibodies (40) among other applications. However, this system

has exhibited a variable capacity to permit replication of viral

strains. To address this issue, different components of the

intestinal milieu have been assessed, and improvements, such

as streamlined use of media containing bile, have been identified

to enhance replication of various HNoV strains (10).

Building on these prior studies, to identify pathways that

may restrict HNoV replication in HIEs, roles for IFNs in

controlling viral replication, at times by strain-specific

mechanisms, have been investigated (41). Transcription factor

enrichment analysis of HNoV GII.4-infected HIEs identified

STAT1 and STAT2 binding sites as highly enriched in the

promoter regions of genes whose levels of expression were

significantly upregulated following infection (41). Similarly,

HNoV GII.4 infection of HIEs stimulates a robust innate

response involving predominately a type III IFN response and

the induction of ISGs including ISG15 and ISG45 (28, 42).

Targeted profiling of immunological genes associated with

HNoV replication in HIEs suggests that the two most

upregulated immune-related genes with viral replication are
Frontiers in Immunology 04
ISGs CXCL10 and IFI44L (43–45). Together, these results

suggest that IFN-JAK-STAT signaling pathways are strongly

activated in the transcriptomic response to HNoV infection (41).
IFN regulation of HNoV in HIEs

The effects of IFN signaling and exogenous IFN treatment

on HNoV infection have been recently explored using HIEs and

primary human B cells. Treatment of primary splenic B cells

with IFN-b significantly reduces replication of HNoV genotype

GII.4 or GII.6 whereas pretreatment of B cells with neutralizing

antibodies against IFNs including IFN-a, IFN-b, and IFN-b2
enhances HNoV infection (46). Additionally, in HIEs, enhanced

replication of HNoV strains GII.3 and GII.4 occurs following

treatment with ruxolitinib, a JAK1/JAK2 inhibitor that blocks

type I and III IFN signaling (41). Similar effects are shown

following lentivirus-mediated expression of viral innate immune

antagonists bovine viral diarrhea virus protein and parainfluenza

virus type 5 protein to create organoid lines in which IFN

production is suppressed (41). GII.3 replication is also

significantly enhanced in STAT1-/- HIEs, which lack all IFN

signaling, though intriguingly, GII.4 replication is not

(Figure 2A) (44). Additionally, treatment with exogenous type

I or III IFNs reduces replication of both GII.4 and GII.3 virus

strains in HIEs (Figure 2A) (41, 44). These studies are broadly

concordant with findings in the murine norovirus model,

wherein both endogenous type I and III IFN signaling have

been shown to limit infection (24, 47, 48), and for which type III
FIGURE 2

Human intestinal enteroids (HIEs) support the discovery of interferon (IFN) responses to enteric viruses. (A) STAT1-/- HIEs, which lack IFN
signaling, demonstrate enhanced norovirus GII.3 replication whereas exogenous type I and III IFN reduce replication of both GII.4 and GII.3 in
wild-type HIEs. (B) Human rotavirus (HRV) infection of HIEs induces type III IFNs, while pretreatment of HIEs with exogenous but not
endogenous type I and III IFNs can inhibit HRV replication. (C) Treatment with exogenous type I and III IFNs prior to human astrovirus (HAstV)
infection reduces viral replication while treatment with ruxolitinib, a JAK1/JAK2 inhibitor, increases HAstV replication. HAstV induces both type I
and III IFN responses. (D) Type I or III IFN treatment of HIE monolayers inhibits replication of adenovirus HAdV-41p. Figure created with
BioRender.com.
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IFN is a potent in vivo antiviral (23, 24). Overall, there is an

important role for IFNs in regulating HNoV replication in HIEs

and their potential use as therapeutics against HNoV remains an

open possibility. Further investigation is required to better

elucidate the mechanisms by which specific antiviral ISGs

limit HNoV replication.
Human rotavirus and reovirus

Human rotavirus (HRV) and mammalian reovirus (MRV)

are non-enveloped double-stranded RNA viruses in the

Reoviridae family. HRV is the leading cause of mortality

related to diarrhea in children younger than 5 years of age

especially in low- and middle-income countries (1, 49).

Advances in the understanding of HRV infection and

pathogenesis and the development of oral RV vaccines have

dramatically reduced HRV-associated severe gastroenteritis and

mortality. Though clinical signs are rare after respiratory or

gastrointestinal infection with MRV, infection has been linked to

the triggering of immune responses to dietary gluten that

underlie celiac disease (49–51). Despite the known

gastrointestinal pathology associated with HRV and MRV

infections, there remain no approved therapeutics against

these pathogens, which continue to remain a public health

burden in global regions without safe access to water and

sanitation (1, 49).
HIE susceptibility to RV infection

The modulation of host immune responses to RV infection

remains an important area of focus in RV antiviral discovery. RV

has evolved numerous mechanisms to evade host immune

responses via antagonism of IFN signaling (52). Thus, the

development of effective therapeutics may hinge on targeting

cellular responses that could override these viral evasion

strategies. The use of 3D HIEs has proven to be a useful

model of RV-host interactions, as they are highly permissive

to HRVs, such as the Rotarix RV1 G1P[8] vaccine and Ito G3P

[8] strains, and recapitulate numerous aspects of HRV infection

such as tropism for enterocytes and enteroendocrine cells ex vivo

(53). HIE morphology also changes following HRV infection,

with an increased number of detached cells (53). Additionally,

both human patient-derived HIEs and murine intestinal

enteroids can be inoculated with the rhesus RV SA11

laboratory strain to explore differences in both the species-

specific and human interindividual responses to RV infection

(54). The study of the heterogeneous responses to infection of

HIEs from different donors with different strains of HRV has

important potential for identifying both viral and host factors

that restrict RV activity. Collectively, the susceptibility of HIEs to
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HRV infection provides an opportunity to investigate host

immune responses and antiviral defenses in the effort to

address the unmet need to create effective therapeutics.
RV induces and is sensitive to IFN
signaling in HIEs

Active RV infection occurs in host small intestinal

enterocytes and enterochromaffin cells and depends upon the

antagonism of type I and III IFNs and NF-kB signaling by viral

proteins including NSP1 (55–60). Importantly, RV strains differ

in their ability to antagonize IFN immune responses depending

upon their host species of origin. Homologous murine (EW-RV

strain) and heterologous (non-murine) simian (RRV)

rotaviruses can both induce similar type I IFN levels and ISGs

in the murine small intestine (61). However, EW-RV replication

is unaffected by the presence of IFNs, as detected by nearly

identical viral fecal shedding of EW-RV in mice lacking

receptors for either or both type I or III IFN (61). In contrast,

RRV replicates to significantly higher titers in mice lacking

either or both type I or type III IFN receptors (61). These

findings are concordant with other studies that show that RV

infection induces activation of type I and III IFNs and antiviral

responses are greatly diminished when receptors for both IFN

types are lacking in murine models (26, 27, 61). Murine RV-

infected murine IECs exhibit enhanced type III IFN expression

and predominantly type III IFN-dependent ISG expression,

supporting that type III IFN signaling is a central IEC-

autonomous antiviral defense pathway against RV (26, 62).

These murine models of RV infection have been highly

concordant with recent reports examining the interactions

between human IECs and HRV (19, 54).

Transcriptional responses of HRV-infected HIE cultures

obtained from different patients reveal that the pathways most

dramatically modulated by HRV involve IFN signaling.

Specifically, of the 63 genes upregulated during HRV infection

of HIEs, 55 are ISGs and 3 are type III IFNs, suggesting a

predominantly type III IFN-driven signature (Figure 2B) (19). A

decrease in ISGs upon treatment of HRV-infected HIEs with

type III IFN receptor-blocking antibody confirms this ISG

response is type III IFN-mediated. Collectively, these analyses

establish that endogenous type III IFN signaling is largely

regulating ISG induction in response to RV infection in

HIEs (19).

Other investigations have revealed similar findings, as a

significant upregulation of ISGs, most notably IFIT2 and

IFITM3, was observed during a transcriptomic analysis of RV-

exposed biliary fetal liver organoids (52), and infection of HIEs

with RV strain SA11 similarly induces a swath of ISGs in murine

and human organoids, including IRF1, IRF7, IRF9, and IFITM1

(54). ISG expression with anti-RV activity is observed in HIEs
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treated with type I IFN (54), and a hyperactive type III IFN

response secondary to genetic alterations causes RV resistance in

both HIEs and mice (63, 64). Interestingly, despite the important

role of endogenous type III IFN signaling in the transcriptional

response to RV infection, this pathway does not restrict HRV

replication in HIEs. In contrast, exogenous treatment with type I

or III IFNs does restrict HRV, with type I IFN demonstrating

greater efficacy (Figure 2B) (19). Importantly, variability in HRV

replication and sensitivity to IFN in HIEs have been observed

between HRVs derived from different patients, with distinct

antiviral activity of IFN-a and ribavirin observed for different

viruses (54). Collectively, these findings suggest that HIEs can

serve as a powerful model to both explore IFN-HRV interactions

and to anticipate the sensitivity of individual HRV strains

to treatment.
Mammalian reovirus-infected HIEs have
similar responsiveness to IFNs

Similar findings have been observed in organoids inoculated

with MRV. Apical/basolateral-specific immune responses have

been investigated, wherein for both 2D Transwell cultures and

micro-injected 3D organoids, it was determined that basolateral

infection with MRV resulted in stronger type III IFN production

(65). MRV infection of colonoids is associated with an

upregulation of type III and, to a lesser extent, type I IFN, as

well as an upregulation of ISGs Viperin and IFIT1 (66). Further,

exogenous treatment with type I or III IFN results in a significant

reduction in the number of MRV-infected cells and higher

expression of ISGs in a dose-dependent manner (66). Overall,

results stemming from HIE modeling of MRV infection support

IFNs as effective at limiting a spectrum of viruses in the

Reoviridae family.

These results collectively support the value of HIEs as

physiologically relevant models that can recapitulate findings

observed in murine models of infection, similarly revealing IFN-

ISG signaling as a dominant pathway induced by HRV and

MRV infection. Further, studies thus far support the promise of

HIEs toward a personalized medicine-based approach to the

development of anti-HRV therapeutics.
Human astrovirus

Human astroviruses (HAstV) are single-stranded RNA

viruses in the family Astroviridae that contribute significantly

to the global burden of pediatric acute gastroenteritis (67–69).

Specifically, HAstV serotypes 1-8 are important causes of

gastroenteritis in pediatric and elderly patients as well as in

immunocompromised populations. The epidemiologic

characteristics of other more recently-discovered groups of
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HAstV, including non-classic HAstV-MLB (Melbourne)

(MLB1-3) and HAstV-VA/HMO (Virginia/Human-Mink-

Ovine-like) (VA1-5) remain poorly defined (70). The

understanding of HAstV pathogenesis has evolved with the

development of relevant models for replication in cell lines

(21, 70–72). Additionally, the recent identification of murine

astrovirus (muAstV) as an endemic virus in mouse facilities (71)

and HIE culturing methods for HAstVs have resulted in

important advancements in HAstV pathobiology (21, 28, 73).

MuAstV preferentially replicates in the small intestine and

chronically infects immunocompromised mice (21, 22, 71),

and some strains have been found to induce chronic antiviral

signaling via type III IFN, supporting important interactions

between AstVs and IFN signaling.
HAstV can be cultivated in enteroids

While some HAstV strains can replicate in immortalized cell

lines, such as Caco-2, HT-29, and MA104 cells, there is not an

existing conventional mammalian cell culture system for the

non-classical HAstV-MLB and HAstV-VA/HMO strains (72).

HIE model systems have been more recently leveraged as a

physiologically relevant model for HAstV infection. Notably, 2D

monolayer HIEs are susceptible to HAstV infection, with

analyses of replication kinetics indicating that maximal viral

titers occur by three days post-infection. VA1-infected HIEs

reveal a multicellular viral tropism for human IEC types

including progenitor cells, absorptive enterocytes, and goblet

cells, consistent with observations in HAstV1-infected 2D HIEs

(11, 73). Enteroid cultures have also provided insights into AstV

infectivity in the gastrointestinal tract. 3D HIEs inoculated with

classical human strain HAstV1 demonstrate up to a 30-fold

increase in viral genomes by 24 hours post-infection, suggesting

that HAstVs may infect via apical or basolateral entry (21). In

contrast, muAstV can only be cultivated in 2D but not 3D

murine enteroids, suggesting the importance of apical viral entry

for muAstV (21). Collectively, these ex vivo approaches reveal

that HAstV strains display robust viral replication in HIE model

systems and suggest HIEs as a helpful model to further

investigate immune responses and regulation of infection by

IECs during HAstV infection.
HAstV-infected HIEs show IFN responses

AstV infection of enteroids has been shown to induce

antiviral IFN responses that may be strain- or species-specific.

HAstV1-infected 3D HIEs exhibit a significant transcriptional

increases in type I and III IFNs and multiple ISGs, including

IFNB1, IFNL2/3, OAS2, MX1, and IFI44 (11, 21, 28). Similarly,

the majority of upregulated genes in HIEs at 24 hours post-
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infection with VA1 are involved in type I and III IFN signaling,

including IFNL1, IFNA1 , and IFNB1 , and numerous

downstream ISGs (73) (Figure 2C). While a strong antiviral

IFN response occurs in VA1-infected HIEs, this response is not

observed in VA1-infected Caco-2 cells, emphasizing potential

differences in innate immune signaling between immortalized

cells and HIEs after viral infection (73). In contrast, murine 2D

air-liquid interface cultures exclusively exhibit type III IFN and

ISG induction after muAstV infection, most likely originating

from goblet cells and enterocytes (21). Single cell RNA-

sequencing of HIEs infected with HAstV1 infection indicates

cell-type-specific transcriptional patterns of ISG expression,

present both prior to infection and differentially induced

following infection, emphasizing the value of analyzing viral

infection in the heterogeneous mixture of cell types that make up

HIEs (11).

HAstV exhibits sensitivity to both exogenous and

endogenous IFN signaling. With regard to endogenous IFNs,

treatment of HIEs with ruxolitinib to block STAT1 activation

and inhibit ISG induction facilitates replication of HAstV1,

VA1, and MLB1 as well as a clinical HAstV isolate, though

notably with differences in response across distinct HIE lines,

indicating variation among donor genotypes in HAstV-

mediated IFN regulation (Figure 2C) (73). Collectively, these

studies have begun to address gaps in our understanding of host

responses to AstV infection, but raise important questions

related to the individual variation in immune response

requiring further investigation in the translational approach to

understanding HAstV-impact on the host immune landscape.
Human adenovirus

Human adenoviruses (HAdV), double-stranded DNA

viruses in the Adenoviridae family, display a broad tissue and

organ tropism, causing acute gastroenteritis as well as

respiratory infections, conjunctivitis, and cystitis (74). Children

and immunocompromised individuals are at risk of developing

serious and prolonged complications fromHAdV infection, with

HAdV accounting for more than 10% of hospitalizations for

severe childhood gastroenteritis (75). In patients with HAdV

viremia, particularly allogenic stem cell transplant recipients,

HAdV can be detected in stool samples even prior to detection in

the peripheral blood (76), with invasive HAdV infections often

occurring secondary to viral reactivation (74). HAdV-F

serotypes (HAdV-40 and HAdV-41) have been established as

the most common agents of pediatric gastroenteritis, with non-

type 40/41 adenoviruses such as species B, type 3 (B/3), C/2, and

A/31 types also commonly detected in HAdV gastroenteritis

(77). As for other viral causes of gastroenteritis, there remains a

lack of effective antiviral therapeutics and an unmet need to

better characterize the mechanisms of HAdV infection in

the intestine.
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and restricted by IFNs

HAdVs have proven challenging to cultivate in cell lines due

to their fastidious nature and undetermined cytopathic effect

(78). Immortalized cell lines including a 293 line expressing

cytomegalovirus IE1 protein, A549 and Hep2 cells have been

used to cultivate HAdVs including from stool isolates (78–80),

but these systems are imperfect models for interactions between

HAdV and the gastrointestinal tract. HAdV is detectable along

the entire intestinal tract in biopsy samples, with the highest

levels in the terminal ileum (81). In situ hybridization for HAdV

in intestinal biopsy specimens from patients with HAdV

reactivation suggests that HAdV may replicate in mucosal

lymphoid cells as well as epithelial cells (81). Consistent with

this reported tropism for IECs, enteric and nonenteric HAdVs,

including prototype HAdV strains and clinical HAdV isolates,

have been shown to productively replicate in HIEs, with

undifferentiated HIEs supporting replication of HAdV-5p,

HAdV-16p, and HAdV-41p, and differentiated HIEs

supporting replication of HAdV-41p (80). HIE modeling of

HAdV infection has also revealed a tropism of HAdV-5p, but

not HAdV-41p, for goblet cells (80). Further, undifferentiated

HIEs inoculated with four different HAdV-41 clinical isolates

also support viral replication (80). Though limited studies have

been conducted in HIEs to study IFN regulation, findings to date

indicate that IFN treatment of HIEs can attenuate HAdV

replication (Figure 2D) (80). No induction of ISGs occurred in

HIEs in the absence of IFN pretreatment, though monolayers

derived from differentiated HIEs pretreated with IFN-b or IFN-

l3 demonstrate attenuated replication of both HAdV-5p and

HAdV-41p (80). Therefore, while HIE modeling of HAdV

infection is still in the early stages, it clearly represents a new

opportunity to define targets and develop immunotherapeutics

against this pathogen.
Emerging HIE models of enteric and
non-enteric viruses

Evolving methods for human sapovirus
cell culture

Although HIE models have been established for many

enteric viruses, robust HIE systems are not yet available for

some, such as human sapovirus (HuSaV). HuSaV, a genus in the

Caliciviridae family with HNoV, is a major cause of

gastroenteritis in all age groups with children under age five

experiencing the highest burden of disease (82, 83). HuSaV is the

third greatest cause of diarrhea of all enteric pathogens in

children under 12 months, and the second-highest attributable

cause among children ages 12-24 months (82, 83). Molecular
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epidemiologic analyses have identified 19 genogroups of HuSaV,

with GI and GII among the most commonly detected (84).

Currently, among SaV genogroups, efficient cell culture systems

have been established for the porcine SaV Cowden (GIII) strain

using porcine kidney cell lines but no animal model is available

(83, 85). However, propagation of HuSaV in cell culture has been

lacking. HIEs and immortalized cell lines inoculated with

HuSaV have been used for quantification of RNA levels over

time, but no substantial HuSaV replication was observed among

these cell lines, even when co-cultured with bacteria (85). More

recently, bile acids, particularly sodium glycocholate and sodium

glycochenodeoxycholate, have been reported as necessary for

efficient GI.1 and GII.3 HuSaV growth in human duodenal cell

line HuTu80 (86). Detection of double-stranded RNA, structural

and nonstructural viral proteins, and viral particles support

HuSaV replication in the presence of bile acids in these

immortalized cells (86). Future investigations refining HIE

cultivation methods using relevant co-factors such as bile acids

will be needed to further explore the host cell factors and innate

immune responses associated with HuSaV infection.
HIE modeling of IFN responses during
human enterovirus infection

HIE modeling has also been implemented for investigation

of viruses that can infect via the gastrointestinal tract but are not

classical causes of acute gastroenteritis, such as human

enteroviruses. Human enteroviruses (EVs) are positive-

stranded RNA viruses belonging to the family Picornaviridae

and include coxsackieviruses, echoviruses, and poliovirus. These

viruses cause a broad spectrum of illnesses in humans targeting a

variety of tissues including both the airway and gastrointestinal

tracts, and can be spread via the fecal-oral route or respiratory

secretions (25). HIEs were recently found to be susceptible to

infection by diverse EVs including echovirus 11 (E11),

coxsackievirus B (CVB), and enterovirus 71 (EV71) (87–89).

While HIEs grown in Matrigel do not support robust replication

of EV-D68, infection of basal and apical compartments of HIEs

in Transwells supports high titer replication (25, 89). Contrary to

infection of immortalized Caco-2 cells, infection of HIEs

stimulates virus-specific antiviral and inflammatory signaling

pathways, with RNA sequencing analysis revealing that E11, but

not CVB, potently induces cytokines including type III IFNs,

chemokines, and ISGs in HIEs (87). EV-D68 infection of HIEs

does not induce detectable changes in any of the cytokines

tested, including IFNs, in contrast to infection of primary

human bronchial epithelial (HBE) cells, which results in the

induction of type III IFNs (25). In the context of apical infection,

type III IFNs and ISGs are robustly induced after EV71 infection

(87–89). The importance of induction of endogenous IFNs in

regulation of EV has been shown via treatment of HIEs with
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JAK1/2 signaling inhibitor ruxolitinib, which limits ISG

induction by EV71 and permits enhanced viral replication

(89). Intriguingly, treatment of HIEs with recombinant type I

and III IFNs restricts EV replication in a virus-specific manner,

with type I IFN most effective at limiting E11 and type III IFNs

preferentially restricting EV71 (89). In sum, studies to date

suggest that HIEs are a powerful model to look at virus-

specific interactions of EVs with the host epithelium, and

support that IFNs can serve as critical regulators of these

pathogens in intestinal tissues.
Exploration of intestinal infection by
SARS-CoV-2 using HIEs

HIE modeling has also proven useful in the investigation of

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

the cause of coronavirus disease 2019 (COVID-19) and the

current global pandemic (90). SARS-CoV-2, a single-stranded

positive-sense enveloped RNA virus of the Coronaviridae family,

is best known for causing an influenza-like illness with

respiratory transmission (90), but substantial clinical evidence

supports that SARS-CoV-2 can also replicate in the

gastrointestinal tract, causing symptoms such as diarrhea and

vomiting as well as prolonged fecal shedding of viral genomes

even after virus is undetectable in oropharyngeal swabs (91, 92).

Differentiated HIEs can be readily infected by SARS-CoV-2 and

support robust viral replication (93–96). HIE modeling has

revealed enterocytes and proliferating cells as the primary

target cell types for SARS-CoV-2, with findings suggesting that

the virus is primarily secreted from the apical surface of

enterocytes, as supernatants of lysed HIEs contain higher

levels of SARS-CoV-2 (93). Analysis of gene expression

changes indicate that SARS-CoV-2-infected HIEs exhibit

robust induction of type I and III IFNs as well as numerous

ISGs (93, 97, 98), and SARS-CoV-2 colonoids exhibit a

particularly dramatic upregulation of type III IFN (94). SARS-

CoV-2 replication in colonoids is additionally sensitive to type I

or III IFN treatment, with related studies in immortalized colon

carcinoma T84 cells suggesting that type III IFNs may yield

more effective antiviral control of SARS-CoV-2 (94, 99). As

SARS-CoV-2 is the third emerging highly pathogenic

coronavirus and remains a major global health threat, these

findings importantly suggest that HIEs and colonoids can

represent useful models for advancing insights into

coronavirus biology in the context of enteric infection.
Conclusions and future directions

Though a critical role for IFNs in broadly regulating viral

replication and dissemination at mucosal surfaces has been well-
frontiersin.org

https://doi.org/10.3389/fimmu.2022.943334
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nolan and Baldridge 10.3389/fimmu.2022.943334
established in murine models, many of the specific aspects of

IFN interactions with human enteric viruses have remained

obscure due to an absence of physiologically-relevant culture

systems. Here, we have focused on recent reports of IFN-

mediated immune responses to enteric viral infection using

emerging HIE systems. HIEs are powerful tools for

recapitulating the human intestinal epithelial interface, and

their use for the study of human enteric viruses has permitted

early interrogations of innate antiviral defenses, with

overlapping but distinct IFN pathways and genes elicited by

different viral stimuli. Why do some enteric viruses induce both

type I and III IFNs while others are specific for type III IFN

induction? What sensors and pathways govern the detection of

viruses by IECs to drive antiviral signaling? Further, HIEs

demonstrate donor-specific characteristics to these responses,

suggesting HIEs may recapitulate the range of potential human

responses. Further exploration of these host- and virus strain-

dependent differences is thus highly warranted (28).

Consideration of the characteristics of the HIE systems

employed for the study of enteric virus responses will also be

important for future studies. While 2D and 3DHIE systems have

been leveraged, the emerging approach of apical-out or “inside-

out” enteroids may facilitate the study of host-virus responses, as

viral host entry predominantly occurs on the apical surface of

HIEs. Additionally, several limitations for HIEs as fully

representative models of the human gastrointestinal tract still

remain, including the absence of a microbiota and the lack of

immune cells that interact intimately with IECs. The ongoing

evolution of HIE platforms to incorporate these components will

permit deeper interrogation of the pathogenesis and the innate

immune responses to enteric viral infections. Finally, continued

exploration of the role of viral antagonists in regulating IFN

signaling during infection will be important. While some viruses

are sensitive to endogenous IFN regulation, others have already

evolved mechanisms to limit host control, and HIEs are likely to

be critical systems for exploring these distinctions. Overall,

further exploration of the interplay between viral and host

factors at the human intestinal epithelium using HIEs is likely

to be a key step in the development of antiviral therapies and
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vaccines for vulnerable populations impacted by these highly

infectious viruses.
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