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A novel tumor mutational
burden-based risk model
predicts prognosis and
correlates with immune
infiltration in ovarian cancer

Haoyu Wang †, Jingchun Liu †, Jiang Yang, Zhi Wang,
Zihui Zhang, Jiaxin Peng, Ying Wang and Li Hong*

Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
Tumor mutational burden (TMB) has been reported to determine the response

to immunotherapy, thus affecting the patient’s prognosis in many cancers.

However, it is unclear whether TMB or TMB-related signature could be used as

prognostic indicators for ovarian cancer (OC), as its potential association with

immune infiltration remains poorly understood. Therefore, this study aimed to

develop a novel TMB-related risk model (TMBrisk) to predict the prognosis of

OC patients on the basis of exploring TMB-related genes, and to explore the

potential association between TMB/TMBrisk and immune infiltration. The

mutational landscape, TMB scores, and correlations between TMB and

clinical characteristics and immune infiltration were investigated in The

Cancer Genome Atlas (TCGA)-OV cohort. Differentially expressed gene

(DEG) analyses and weighted gene co-expression network analysis (WGCNA)

were performed to derive TMB-related genes. TMBrisk was constructed by Cox

regression and further validated in Gene Expression Omnibus (GEO) datasets.

The mRNA and protein expression levels and biological functions of TMBrisk

hub genes were verified through Gene Expression Profiling Interactive Analysis

(GEPIA), GSCA Lite, the Human Protein Atlas (HPA) database, and RT-qPCR.

TMBrisk-related biological phenotypes were analyzed in function enrichment

and tumor immune infiltration signature. Potential therapeutic regimens were

inferred utilizing the Genomics of Drug Sensitivity in Cancer (GDSC) database

and connectivity map (CMap). According to our results, higher TMB was

associated with better survival and higher CD8+ T cell, regulatory T cell, and

NK cell infiltration. TMBrisk was developed based on CBWD1, ST7L, RFX5-AS1,

C3orf38, LRFN1, LEMD1, and HMGB1. High TMBrisk was identified as a poor

factor for prognosis in TCGA and GEO datasets; the high-TMBrisk group

comprised more higher-grade (G2 and G3) and advanced clinical stage

(stage III/IV) tumors. Meanwhile, higher TMBrisk was associated with an

immunosuppressive phenotype, with less infiltration of a majority of

immunocytes and less expression of several genes of the human leukocyte

antigen (HLA) family. Moreover, a nomogram containing TMBrisk showed a

strong predictive ability demonstrated by time-dependent ROC analysis.

Overall, this novel TMB-related risk model (TMBrisk) could predict prognosis,
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evaluate immune infiltration, and discover new therapeutic regimens in OC,

which is very promising in clinical promotion.
KEYWORDS

weighted gene correlation network analysis, risk model, ovarian cancer, gene
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Introduction

Ovarian cancer (OC) is themost lethal gynecological malignancy,

with 5-year survival rates below 45%. According to theWorld Health

Organization, it is estimated that the global incidence of OC will be

225,500 cases and 140,200 patients will succumb to this disease each

year, making it the seventh most common cancer and the eighth

most predominant cause of cancer-related death among women (1,

2). Owing to its insidious outset, rapid development and lack of

obvious symptoms, most OC patients are detected at an advanced

stage (3). Although the level of diagnosis and treatment has

continuously improved, OC remains a serious threat to women’s

lives and a salient public concern (4). At present, the International

Federation of Gynecology and Obstetrics (FIGO) stage system (3)

and some common serum biomarkers, such as carbohydrate antigen

125 (CA125) (5), human epididymis protein 4 (HE4) (6), and breast

cancer gene1 (BRAC1) (7), are currently used as diagnostic tools for

OC. However, these markers are not proven ideal to evaluate the

prognosis and curative effect of each patient precisely (8). There is an

obvious need to develop novel and reliable predictive tools for

accurate individual evaluation, as well as preselection of

suitable treatments.

Human tumors harbor a different number of somatic

mutations collectively known as tumor mutational burden

(TMB) (9), which is defined as the total number of somatic

coding mutations, base substitutions, and insertion–deletion

errors per million bases. In recent years, emerging evidence

has suggested that TMB can determine the response to

immunotherapy, thus affecting the patient’s prognosis (10, 11).

One of the primary explanations is that tumor types with high

TMB correspond to increased degree of tumor-specific

neoantigen generation and presentation, which impacts the

strength of immune response (9, 12). Fortunately, OC has

been considered one of the most “immunogenic tumors” (13).

Immunotherapies have attracted substantial attention and

shown promising potential in OC therapy (14). For example,

immune checkpoint blockade (ICB) therapy, which inhibits

negative regulatory immune checkpoints through various

immune checkpoint inhibitors (ICIs), has shown great promise

for the treatment of OC (15–17). Due to the promising future of

immunotherapy in the treatment of OC and the crucial role of
02
TMB in predicting immunotherapy effect, evaluation of TMB

status may be an effective way to predict the prognosis and

therapeutic benefit for patients, individually.

However, the TMB cutpoints associated with improved

curative effect and survival varied markedly between cancer

types, and there may not be one universal definition of low/

high TMB (11). In addition, determination of TMB is related

to whole exome sequencing (WES) of the selected target panel,

which increases the difficulty of TMB detection. Coordination

and calibration are also required to achieve optimal utility and

alignment of all platforms currently in international use (18).

Although some studies have established prognostic models

based on TMB, the process of screening TMB-related genes

can be further optimized (19, 20). Therefore, in the current

study, based on the data from The Cancer Genome Atlas

(TCGA), Gene Expression Omnibus (GEO), and Genotype-

Tissue Expression (GTEx) databases, we screened TMB-

related genes by Weighted gene co-expression network

analysis (WGCNA) and developed a simplified and practical

TMB-related risk model (TMBrisk) to predict survival and

immune infiltration in OC patients, which may have higher

clinical value. Figure 1 presents an overview of approach in

this study.
Materials and methods

Data acquisition and processing

We collected transcriptome profiles (Workflow type: HTseq-

Counts), somatic mutation data (Data type: Masked Somatic

Mutation; Workflow type:VarScan2) (21), and clinical data of OC

patients from Genomic Data Commons Data Portal (https://portal.

gdc.cancer.gov/). Due to the absence of matched normal samples in

the TCGAdatabase, gene expression data for normal ovarian tissues

were downloaded from GTEx portal (http://www.gtexportal.org/

home/). For transcriptome profiles, Entrez ID was transformed to

the corresponding official gene name with Perl language, and genes

with zero expression in more than 50% samples were removed. For

mutation analysis, the somatic mutation data in Mutation

Annotation Format (MAF) was analyzed and visualized using the
frontiersin.org
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“matfools” R package, which offered a number of analysis and

visualization modules commonly used in cancer genomic research

(22). For clinical data, corresponding information was extracted,

including age, histological grade (G1, G2, and G3), FIGO stage

(stage I–IV), cancer status (tumor free/with tumor), residual disease

largest nodule (no macroscopic disease, 1–10 mm, 11–20 mm, and

>20 mm), anatomic neoplasm subdivision (unilateral/bilateral),

venous invasion (yes/no), lymphatic invasion (yes/no), Karnofsky

performance score, and survival data. Moreover, we selected three

validation datasets (GSE18520, GSE26193, and GSE63885) from

the GEO database (http://www.ncbi.nlm.nih.gov/geo/) and

obtained their normalized microarray gene expression data and

clinical data.
Frontiers in Immunology 03
TMB calculation, prognostic analysis,
clinical correlation analysis, and immune
and stromal scores analysis

In our study, the somatic mutation information was

extracted with a Perl script (23), and the TMB score of each

sample was calculated through dividing the number of variants

by exon length (38 million). For prognostic analysis and clinical

correlation analysis, R was utilized to merge the patients’ TMB

scores with corresponding clinical information. Kaplan–Meier

(K-M) analysis was conducted to compare the difference in

overall survival (OS), progression-free survival (PFS), and

cancer-specific survival (CSS) with the log-rank test for
FIGURE 1

Flowchart of the study.
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statistical significance. Wilcoxon rank-sum test was employed to

compare clinical traits between two groups, while Kruskal–

Wallis test was used among multiple groups. Immune scores,

stromal scores, and tumor purity were calculated using

the ESTIMATE algorithm (24), which was provided in

the “estimate” R package. The correlation between TMB

and immune/stromal scores was evaluated using the

Pearson method.
Analysis of immune infiltration for TMB

CIBERSORT, a deconvolution algorithm, can quantify the

abundance of any of 22 types of immune cells based on bulk

transcriptome profiles (25). We normalized the transcriptome

data of OC patients with the “limma” R package (26) and

uploaded the prepared data to the CIBERSORT algorithm (R

script v1.03) to evaluate the distribution of different immune

cells in each sample. The Tumor Immune Estimation Resource

(TIMER) database (http://timer.comp-genomics.org/) (27)

includes 10,897 samples from 32 cancer types in TCGA and

pre-calculates the infiltration levels of six types of immune cells.

In the current study, to explore the prognostic value of immune

cells, we used the “Survival”module to output tumor-infiltrating

immune cell (TIIC)-related K-M plots (27). Furthermore, the

“Somatic Copy Number Alterations (SCNA)” module was used

to assess the relationship between different SCNAs of genes and

immune infiltration. The SCNAs were defined by GISTIC 2.0,

including deep deletion, arm-level deletion, diploid/normal,

arm-level gain, and high amplification (28).
Differentially expressed gene screening

We utilized the “limma” R package (26) to identify DEGs

between OC and normal samples with the criteria of fold change

(FC) > 2 and false discovery rate (FDR) < 0.05. Since the tumor

sample size (n = 379) was much larger than that of the normal

sample (n = 80), we implemented a subset-based strategy to

balance the sample size in order to make the screening result

more objective and accurate (29). In detail, five random

samplings were performed. For each random sampling, a

subset of 100 patients were selected from the tumor group

without repetition. DEGs were identified by analyzing

differences in transcriptome profiles between each tumor

subset (n = 100) and normal samples (n = 80). The

intersection of DEGs obtained from five independent analyses

was selected as the final DEGs between the two groups. Volcano

plots of five analyses were drawn by the “ggplot2” R package.

Venn diagrams were plotted by the “VennDiagram” R package

to exhibit the common DEGs.
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Weighted gene co-expression
network construction

In the current study, a scale-free gene co-expression

network was constructed using the “WGCNA” in R software

to recognize co-expressed gene modules closely related to TMB

(30). First, to ensure the reliability of network construction,

sample clustering was carried out to distinguish and remove

outlier samples. By calculating the corresponding scale

independence (R²) and mean connectivity when the soft

threshold ranged from 1 to 20, the optimal value of soft

threshold was determined. Based on Pearson’s coefficients of

pairwise gene correlations and the chosen soft threshold value, a

weighted adjacency matrix was constructed and subsequently

transformed into a topological overlap matrix (TOM) (31). Next,

the corresponding dissimilarity matrix (1-TOM) was used to

establish a hierarchically gene clustering tree. Genes in the same

branch of the dendrogram were highly correlated and clustered

into the same co-expression module using the dynamic tree cut

method, with a minimum module size cutoff of 50 and a

deepSplit value of 2. Highly similar modules were screened

and merged together with the height cutoff of 0.25. In

addition, the relationship between each module and clinical

parameters was analyzed by Pearson correlation analysis and

visualized by a heatmap. Gene modules of |correlation

coefficient| > 0.2 and p value < 0.05 were considered as strong

TMB-correlated modules.
Functional enrichment analysis for
co-expressed gene modules

To explore the biological functions and pathways of

modules, we obtained the Entrez ID of each gene via the

“org.Hs.eg.db” R package and conducted Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses using the “clusterProfiler,” “enrichplot,” “ggplot2”,

and “Goplot” R packages (32).
Identification of TMB-related
immune genes

We downloaded a list of 2,483 immune-related genes from the

Immunology Database and Analysis Portal (Immport) (https://

www.immport.org/shared/genelists/) (33, 34), and selected genes

that overlapped with DEGs in the green module as TMB-related

immune genes. The result was visualized using the “VennDiagram”

R package. Then, batch survival analysis was performed via a “for

cycle” R script to screen candidate genes associated with survival

outcomes for further investigation.
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Development of TMB-related risk model

As a preprocessing step, expression values of genes were log2

transformed after adding a pseudo-count of 1. Univariate Cox

regression analyses, least absolute shrinkage and selector

operation (LASSO) regression analyses, multivariate Cox

regression analyses, and Akaike information criterion (AIC)-

based stepwise Cox regression analyses were successively used to

screen prognostic genes for constructing the risk model. LASSO

is a regularization and descending dimension method that can

be used in conjunction with Cox models for biomarker screening

(35). The model with minimal AIC value was determined as the

final model, established by multiplying mRNA levels of each

gene by respective multivariate Cox regression coefficient.
Validation of expression patterns and
identification of signaling pathways of
hub genes

The mRNA expression patterns of the TMBrisk hub genes

were verified by Gene Expression Profiling Interactive Analysis

(GEPIA) (http://gepia.cancer-pku.cn/) (36). The protein

expression of the hub genes between OC and normal tissues was

determined using immunohistochemistry (IHC) from the Human

Protein Atlas (HPA) (https://www.proteinatlas.org/), which is a

valuable database providing extensive transcriptome and

proteomic data for specific human tissues and cells. GSCA Lite

database (http://bioinfo.life.hust.edu.cn/web/GSCA Lite/) (37), a

web-based platform for Gene Set Cancer Analysis, was employed

for statistics of deletion/amplification of hetero/homozygous copy

number variation (CNV) and identification of OC-related signaling

pathways of hub genes. Due to the lack of RFX5-AS1 in GEPIA,

HPA, and GSCA Lite, RFX5 was used as a substitute for analysis.
Development of the nomogram

We performed the nomogramwith the independent prognostic

factors screened by multivariate Cox analysis via the “rms” R

package. To evaluate the prediction accuracy of the nomogram,

the “survival” R package was used to calculate Harrell’s

Concordance index (C-index) to quantify its discrimination

performance. The calibration curves of survival probability for

different years were plotted using the Hosmer–Lemeshow test.
Functional enrichment analysis
for TMBrisk

In order to explore TMBrisk-related pathways without the

restriction of DEGs, gene set enrichment analysis (GSEA) was
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implemented with GSEA software 4.2.2 (https://www.gsea-msigdb.

org/gsea/index.jsp) (38). We used TMBrisk as the phenotype;

“c5.go.mf.v7.5.1.symbols.gmt”, “c5.go.bp.v7.5.1.symbols.gmt”, and

“c2.cp.kegg.v7.5.1.symbols.gmt” as the reference gene set, which

were obtained from the Molecular Signatures Database (MSigDB)

(http://software.broadinstitute.org/gsea/msigdb/) (39). The

significant pathways were defined as those whose |normalized

enriched score (NES)| > 1 and FDR < 0.05.
Analysis of tumor immune signatures
for TMBrisk

On the one hand, we evaluated the expression of the human

leukocyte antigen (HLA) gene family and the immune

checkpoints (40, 41). On the other hand, the levels of

infiltrating immune cells and stromal cells were calculated by

seven algorithms ]TIMER (27), CIBERSORT (25), xCell (42),

CIBERSORT-ABS (43), QUANTISEQ (44), MCPCOUNTER

(45), and EPIC (46)]. The results are available on the

TIMER database.
Prediction of treatment sensitivity and
small molecule drugs

Chemotherapeutic response in OC patients was assessed

utilizing the Genomics of Drug Sensitivity in Cancer (GDSC)

database (https://www.cancerrxgene.org) (47). The 50%

inhibiting concentration (IC50) value of the 138 drugs in

GDSC was inferred using the pRRophetic algorithm. Possible

small-molecule drugs for OC were forecasted using the

Connectivity map (CMap) (https://www.broadinstitute.org/

connectivity-map-cmap) (48), which was premised on DEGs

between low- and high-TMBrisk groups with |FC| > 2 and FDR

< 0.05.
Cell lines and cell culture

OC cells A2780, SKOV3, and OVCAR3, and normal ovarian

surface epithelium cells IOSE80 were purchased from the Cell

Storage Center of Wuhan University (Wuhan, China). A2780,

SKOV3, and OVCAR3 cells belong to the human epithelial OC

cell line, and IOSE80 cells as normal control were also from

ovarian surface epithelium. A2780, IOSE80, and OVCAR3 were

grown in RPMI-1640 medium (Hyclone) supplemented with

10%, 10%, and 20% fetal bovine serum, respectively. SKOV3

were grown in McCoy’s 5A medium (Biological Industries)

supplemented with 10% fetal bovine serum. Cells were

incubated with 5% CO2 atmosphere at 37°C.
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Quantification of gene expression by
real-time quantitative PCR

Total mRNA was purified using TRIzol reagent (TaKaRa)

according to the manufacturer’s instructions. To generate cDNA,

2 mg of RNA was subjected to reverse transcription using the

Hifair®II1st Strand cDNA Synthesis SuperMix (YEASEN). Real-

time quantitative polymerase chain reaction (RT-qPCR) was

performed with Hieff® qPCR SYBR Green Master Mix

(YEASEN), using a CFX Connect Real-Time Cycler (Bio-Rad).

GAPDH was set as an internal control for gene quantification.

Technical and biological replicates of each gene were performed

at least three times during RT-qPCR analysis. Supplementary

Table 1 contains the RNA molecules evaluated on cell lines and

their corresponding primers.
Survival and other statistical analysis

K-M survival analyses were tested by log rank. Receiver

operating characteristic (ROC) curves were plotted by the

“survivalROC” R package to evaluate the accuracy of TMBrisk

and nomogram. Decision curve analysis (DCA) was conducted

using “ggDCA” R package to assess the clinical outcomes of

different decision strategies (49). All statistical analyses were

completed by R software (version 3.6.3). R packages used in our

study are mentioned above. Benjamini–Hochberg for multiple

testing and false discovery rate (FDR) were used to correct the

p-value. The Spearman method was used to calculate the

correlation coefficient and p-value in the correlation analysis

of TMBrisk and other variables. Wilcoxon rank-sum test

and Kruskal–Wallis test were used for subgroup differential

analyses. Two-tailed tests and p values < 0.05 for significance

were used.
Results

Landscape of mutation profiles in
OC samples

Mutation data of 436 OC patients were downloaded from

the TCGA database and the “maftools” R package was

implemented to analyze and visualize the landscape of

mutation profiles. The different genetic mutations in each

sample were shown in the waterfall plot, with various color

annotations representing different mutation types (Figure 2A).

The mutations were further classified into different categories.

By comparison, missense mutations accounted for the largest

fraction (Figure 2B), single-nucleotide polymorphisms (SNPs)

were more frequent than insertions or deletions (Figure 2C), and

C>T represented the most common type of single-nucleotide

variant (SNV) (Figure 2D). Moreover, counting the number of
Frontiers in Immunology 06
altered bases per patient, we found that the median and

maximum number of mutations were 49.5 and 724,

respectively (Figure 2E). For each variant classification, the

number of occurrences is shown in the box plot (Figure 2F).

Furthermore, taking into consideration the total number of

mutations and counting the multiple hits alone, we

recalculated the top 10 mutated genes (Figure 2G), which were

slightly different from the previous ones (Figure 2A). Finally, the

co-occurrence and exclusive associations across mutated genes

were investigated. Significant co-occurrences were observed

among mutations of COL6A3 and DNAH3, APOB and

MUC16, etc. (Supplementary Figure 1).
Calculation of TMB and its correlation
with prognosis and clinical traits

A total of 436 OC patients in the TCGA database were

included in our study to calculate TMB scores. The range of

TMB spanned from 0.026 to 29.289 (Supplementary Table 2).

For an improved accuracy of the analysis, one statistical outlier

(TMB = 29.289) was removed. To assess the relationship

between TMB and prognosis, patients were divided into low-

and high-TMB groups with the median score as the cutoff value.

According to the K-M analysis, the high-TMB group

showed a trend toward better OS, PFS, and CSS than the low-

TMB group (Figures 3A–C). For clinical characteristics, TMB

had a significant distinct distribution in the patients presented

with bilateral/unilateral tumors (Figure 3D) and patients with

tumor or tumor-free patients (Figure 3E). Significant

correlations also existed between TMB and histological grades

(G1 vs. G2, p < 0.01; G1 vs. G3, p < 0.01) (Figure 3F), FIGO

stages (SI vs. SIII, p = 0.018; SI vs. SIV, p = 0.022; SII vs. SIII, p =

0.048; SII; vs. SIV, p = 0.038) (Figure 3G), and residual disease

(NO vs. 1–10 mm, p < 0.01; NO vs. >20 mm, p = 0.044)

(Figure 3H), which indicated that higher TMB was associated

with higher histological grades, lower clinical stages, and smaller

residual tumor sizes. However, no significant association was

found between TMB and age, Karnofsky performance score, or

venous/lymphatic invasion (Figures 3I–L). Furthermore, TMB

significantly correlated with immune scores and tumor purity

inferred by ESTIMATE algorithms with positive and negative

dependencies, respectively (Figures 3M, N), but there was no

significant association with stromal scores (Figure 3O).
Evaluation of immune infiltration in the
low- and high-TMB groups

In order to better understand the potential effects of TMB on

immune activity and response, we compared immune

infiltration between the low- and high-TMB groups. Based on

the CIBERSORT algorithm, we estimated the proportion of
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B C D

E F G

A

FIGURE 2

Landscape of mutation profiles in OC samples. (A) Mutation information of each gene in each sample was shown in the waterfall plot, with
various color annotations to distinguish different mutation types. The barplot above the legend exhibited the mutation burden, and the other
barplot on the right showed the distribution of mutation types among the top 30 genes. (B–D) According to different classification categories,
missense mutation, SNP, and C > T mutation accounted for a larger proportion. (E) Mutation burden in each sample. (F) The summary of the
occurrence of each variant classification. (G) Top 10 mutated genes in ovarian cancer. SNP, single-nucleotide polymorphism; SNV, single-
nucleotide variant.
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22 types of immune cells in each sample (Supplementary

Table 3). After the filtration of samples with p < 0.05, the

distribution of infiltrating immune cells in 192 samples was

shown in a barplot (Supplementary Figure 2). Then, we analyzed

the difference in the proportion of each type of immune cell

between two TMB groups. Wilcoxon rank-sum test revealed that

compared with the low-TMB group, CD8+ T cells (p = 0.043),

regulatory T cells (Tregs) (p = 0.012), and activated natural killer

(NK) cells (p = 0.011) exhibited lower infiltrating levels in the

high-TMB group. However, samples in the high-TMB group had

a significant increase in the fraction of macrophages M1 (p =

0.02) and macrophages M2 (p = 0.004) (Figure 4A).
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Reportedly, immune infiltration could affect the prognosis of

patients. Therefore, we performed K-M analysis on the six types

of immune cells and found that high infiltration levels of CD4+ T

cell and dendritic cell were associated with a favorable prognosis,

while the situation was reversed in macrophage (Figure 4B).
Construction of co-expression modules
by WGCNA

The high gene mutation rate in OC prompted us to

explore the key genes that significantly influenced the overall
B C D

E F G H

I J K L

M N O

A

FIGURE 3

Association of TMB with prognosis and clinical traits. (A–C) Lower TMB indicated a better OS, PFS, and CSS with p = 0.034, p = 0.007, and p =
0.022, respectively. (D, E) Unilateral subdivision and tumor-free status correlated with higher TMB level. (F–H) Higher TMB level was associated
with higher histological grades, lower FIGO stages, and smaller residual tumor sizes. (I–L) No significant differences were observed with age,
Karnofsky performance score, or venous/lymphatic invasion. (M–O) TMB significantly correlated with immune scores and tumor purity but not
with stromal scores. TMB, tumor mutational burden; OS, overall survival; PFS, progression-free survival; CSS, cancer-specific survival; FIGO,
International Federation of Gynecology and Obstetrics.
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mutational load. Through a subset-based method, differential

gene expression analyses were repeated five times

(Supplementary Figure 3A). The Venn diagrams showed the

intersection of DEGs obtained from five analyses (Figure 5A).

Between the normal and OC samples, a total of 5,120 DEGs were

identified, including 2,337 upregulated genes and 2,783

downregulated genes. These DEGs were used for WGCNA. In

WGCNA, no outlier samples were removed according to the

sample clustering result, and the trait heatmap showed the
Frontiers in Immunology 09
distribution of samples according to their corresponding

clinical characteristics (Supplementary Figure 3B). The optimal

soft threshold value of 5 was chosen to guarantee the scale-free

distribution (Supplementary Figure 3C). According to WGCNA

results, 11 co-expression modules were recognized (except the

gray module containing genes that were not co-expressed)

(Figure 5B), and the hierarchical clustering plot revealed

module eigengenes (MEs) (Figure 5C). The green module had

the strongest correlation with TMB (|Cor| > 0.2, p < 0.001)
B

A

FIGURE 4

Evaluation of immune infiltration in the low- and high-TMB groups. (A) Comparison of abundance of 22 infiltrating immune cells between low-
and high-TMB groups. (B) K-M analysis revealed that high infiltration levels of CD4+ T cells and dendritic cells and low infiltration levels of
macrophage were associated with better survival outcomes. TMB, tumor mutational burden.
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(Figure 5D), which was also demonstrated by the scatter

plot showing a significant correlation between module

membe r s h i p (MM) and g en e s i gn ifi c an c e (GS )

(Supplementary Figure 3D).

GO and KEGG enrichment analyses were conducted to

uncover the potential biological functions of genes in the green

module. According to GO enrichment results, the genes played
Frontiers in Immunology 10
important roles in cell proliferation-related pathways, such as

organelle fission, nuclear division, and chromosome segregation

(Figure 5E, Supplementary Table 4). KEGG analysis revealed 15

significant signaling pathways, including cell cycle, oocyte

meiosis, and cellular senescence (Figure 5F, Supplementary

Table 5). These results implied that mutations in these genes

may be potentially critical for tumorigenesis.
B
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A

FIGURE 5

DEGs analysis and construction of co-expression modules. (A) Venn diagrams showing the common upregulated genes and common
downregulated genes from five subset-based analyses. (B) Clustering dendrograms of DEGs using the dissimilarity measure (1-TOM), with
assigned module colors. (C) Visualizing MEs with the hierarchical clustering plot. (D) Correlation between gene modules and clinical traits. Each
row corresponded to a module eigengene, and each column to a trait. (E) GO and (F) KEGG enrichment analysis of the green module. DEGs,
differentially expressed genes; TOM, topological overlap matrix; MEs, module eigengenes; CS, cancer status; RD, residual disease; VI, venous
invasion; LI, lymphatic invasion; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto
Encyclopedia of Genes and Genomes.
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Furthermore, we sought to gain a deeper insight into TMB-

related immune genes. Four immune genes (HDGF, NRAS,

PSMD6, and NR1D1), which were significantly correlated with

survival, were identified between the intersection of the immune

gene set obtained from Immport and the green module

(Supplementary Figure 4A). K-M curves showed that the high

expression level of HDGF, NRAS, and PSMD6 was associated

with an improved prognosis, while the opposite happened for

NR1D1 (Supplementary Figure 4B). RT-qPCR indicated that

HDGF and NRAS were overexpressed in OC, while NR1D1 and

PSMD6 were underexpressed (Supplementary Figure 4C). We

also used the HPA database to explore the differences in protein

levels of the four immune genes between normal and tumor

tissues (Supplementary Figure 4D). More importantly, the

impact of copy number alteration of the four genes on

immune infiltration in OC patients was evaluated. In brief,

compared to patients with diploid/normal expression of

HDGF, NR1D1, and NRAS, patients with high copy number

amplification of HDGF or copy number deletion of NR1D1/

NRAS had a lower level of immune infiltration, including CD8+

T cells, CD4+ T cells, and neutrophils. On the other hand,

decreased CNV of PSMD6 upregulated immune infiltration,

especially of macrophages (Supplementary Figure 5).
Establishment and validation of the
TMBrisk model

Given the significant correlation between TMB and

prognosis and the limitations of TMB, we considered to

establish a novel risk model based on TMB-related DEGs. The

496 genes in the green module were first inputted into univariate

Cox regression analysis, which identified 17 genes with p < 0.01

(Figure 6A); then, they were further screened by LASSO Cox

regression (Figure 6A). The remaining 14 genes were finally

enrolled in multivariate Cox analysis with stepwise regression.

The model consisting of CBWD1, ST7L, RFX5-AS1, C3orf38,

LRFN1, LEMD1, and HMGB3 had a minimal AIC value (AIC =

2,277.02) (Figure 6A). Therefore, the TMB-related risk model

(TMBrisk) was established as follows: TMBrisk = (−0.3585) *

CBWD1 + (−0.5693) * ST7L + (−0.1593) * RFX5-AS1 +

(−0.2473) * C3orf38 + (0.1461) * LRFN1 + (−0.1178) *

LEMD1 + (−0.2224) * HMGB3.

To elucidate the underlying role of TMBrisk in the

development of OC, we investigated the distribution of

TMBrisk in patients with different clinical characteristics. We

found that tumor-bearing patients and patients with higher

histological grades, advanced FIGO stages, venous invasion, or

lymphatic invasion had a higher TMBrisk score (Figure 6B).

Then, univariate and multivariate Cox regression analyses were

conducted utilizing TCGA and three GEO datasets (GSE18520,

GSE26193, and GSE63885) to examine the significance of the

impact of TMBrisk on prognosis. The outcomes illustrated that
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in the four datasets, a higher TMBrisk score indicated poorer OS,

and TMBrisk was identified as an independent prognostic factor

after adjusting other clinical factors (Figure 6C). ROC curves of

OS prediction in the four datasets showed that TMBrisk had a

strong predictive value with the area under the curve (AUC) >

0.7 (Figure 6D, Supplementary Figures 6A–C). For 2-year OS

prediction in TCGA, the AUC of TMBrisk was also significantly

higher than that of other independent prognostic predictors

(Figure 6E). Meanwhile, the DCA for 10-year OS prediction

showed that TMBrisk had the highest net benefit (Figure 6F).

Subsequently, patients in TCGA and three validation datasets

were divided into low- and high-TMBrisk groups based on the

median score, respectively. K-M curves showed that patients in

the low-TMBrisk group exhibited improved OS, PFS, and CSS

than those in the corresponding high-TMBrisk group

(Figure 6G, Supplementary Figures 6D–H). The result of

stratified analysis revealed significant differences in OS

between low- and high-TMBrisk for subgroups with different

age, FIGO stage, histological grade, residual disease, venous

invasion, lymphatic invasion, and anatomic subdivision

(Supplementary Figure 7). Taken together, the above results

indicated that the risk model had excellent predictive ability,

robust performance and potential clinical application value.
Validation of the expression of TMBrisk
hub genes

To verify the reliability of the seven hub genes that made up

the TMBrisk model, we validated the expression patterns of these

genes through databases and RT-qPCR. According to GEPIA,

mRNA expression levels of LRFN1, LEMD1, and HMGB3 were

significantly higher in OC than in normal samples. The mRNA

expression levels of CBWD1, ST7L, RFX5, and C3orf38 were

decreased in OC, although not significantly (Figure 7A). RT-

qPCR demonstrated that OC cells had higher mRNA expression

of LRFN1, LEMD1, and HMGB3, and lower mRNA expression

of the other five genes compared with control cells, which was

consistent with the results of GEPIA (Figure 7B). In addition,

according to HPA, the protein expression levels of the five genes

(data for LRFN1 and LEMD1 were lacking and therefore not

presented) were significantly higher in tumor samples than in

normal samples (Figure 7G). Finally, we analyzed the signaling

pathways and CNV of these genes in GSCA Lite. ST7L was found

to be activated and inhibited in DNA damage response pathway

and EMT pathway of OC, respectively. In the cell cycle pathway,

RFX5, CBWD1, and HMGB3 were activated, while LEMD1 was

inhibited. As for hormone-related pathways, ST7L was activated

in the hormone AR/ER pathways, and HMGB3 was inhibited in

the hormone ER pathway (Figure 7C). These pathways played

vital roles in oncogenesis, suggesting that the hub genes may

participate in OC progression. Furthermore, HMGB3 and

LRFN1 had a high proportion of both heterozygous
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amplification and heterozygous deletion, suggesting that

HMGB3 and LRFN1 may be the characteristic genes of OC.

RFX5 and LEMD1 were characterized by high heterozygous

amplification, while CBWD1 harbored more heterozygous

deletion (Figures 7D–F).
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Construction and validation of
nomogram for survival prediction

Multivariate Cox regression analysis performed in the

TCGA dataset screened the TMBrisk, age, residual disease,
B

C
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FIGURE 6

Establishment and validation of the TMBrisk model. (A) Cox regression analyses for selecting gene signatures. The first forest plot showing genes
with p < 0.01 in univariate Cox analysis. These genes were further inputted into LASSO analysis. The y-axis showed LASSO coefficients and the
x-axis was –log (lambda). Dotted vertical lines represented 1 standard error values of lambda. The genes selected at 1 standard error values of
lambda were finally used for multivariate Cox analysis, with the second forest plot showing the best signature. (B) Difference analysis of the
distribution of TMBrisk in different clinical characteristics. (C) Forest plot of Cox analysis in TCGA and GEO datasets. (1) For multivariate Cox
regression analysis, HR value of TMBrisk was adjusted by age, FIGO stage, histological grade, residual disease, cancer status, venous invasion,
and lymphatic invasion. (2) The multivariate analysis was not performed in GSE18520 because of missing clinical information. (3) For multivariate
Cox regression analysis, HR value of TMBrisk was adjusted by FIGO stage and histological grade. (4) For multivariate Cox regression analysis, HR
value of TMBrisk was adjusted by residual tumor size, FIGO stage, and histological grade. (D) ROC curves of TMBrisk for 1-, 5-, and 10-year
survival prediction in TCGA. (E) ROC curves of TMBrisk and other prognostic predictors for 2-year survival prediction in TCGA. (F) DCA for
TMBrisk and other prognostic predictors. The y-axis represented net benefit and the x-axis represented risk threshold. The black line
represented the hypothesis that all patients had OC. The gray line represented the hypothesis that no patient had OC. (G) High-TMBrisk group
correlated with poor survival outcome in TCGA, with p < 0.0001. TMB, tumor mutational burden; LASSO, Least Absolute Shrinkage and
Selection Operator; FIGO, International Federation of Gynecology and Obstetrics; ROC, receiver operating characteristic curve; RD, residual
disease; VI, venous invasion; LI, lymphatic invasion; DCA, decision curve analysis; HR, hazard ratio; 95% CI, 95% confidence interval.
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venous invasion, and lymphatic invasion as independent

prognostic factors (Figure 6D, Table 1). To strengthen

predictive power, we constructed a nomogram based on the

above prognostic factors (Figure 8A). The calibration curves for

the survival possibility at 1, 3, and 5 years exhibited accurate

prediction ability of the nomogram (Figure 8B). Time-
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dependent AUC suggested that in comparison to the TMBrisk,

the nomogram further enhanced the prediction ability

(Figure 8C). DCA showed that the nomogram and TMBrisk

provided better net benefit over different threshold probability

ranges, respectively, suggesting that both might have potential

applications in different contexts (Figure 8D). Taken together,
B C
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FIGURE 7

Expression pattern validation and relevant biological functions of hub genes in OC. (A) Expression pattern of CBWD1, ST7L, RFX5, C3orf38,
LRFN1, LEMD1, and HMGB3 in OC and normal samples from the GEPIA database. (B) RT-QPCR analysis of CBWD1, ST7L, RFX5-AS1, C3orf38,
LRFN1, LEMD1, and HMGB3. (C) Related signaling pathways of ST7L, RFX5, LEMD1, HMGB3, and CBWD1 in OC. (D–F) CNV of CBWD1, ST7L,
RFX5, C3orf38, LRFN1, LEMD1, and HMGB3 in OC from the GSCA Lite database, including heterozygous (E) and homozygous (F) CNV. (G)
Immunohistochemistry of CBWD1, ST7L, RFX5, C3orf38, and HMGB3 in OC and normal samples from the HPA database. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001. CNV, copy number variation.
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the above results indicated that the nomogram had enhanced

predict ion efficiency, as wel l as potentia l c l inica l

application value.
Association of TMBrisk with OC
immune signature

Given that TMB has become an evolving biomarker in the

field of immuno-oncology9, further exploration of the

association of TMBrisk with OC immune signature

is warranted. First, to determine the underlying mechanisms

leading to the different outcomes between the low- and high-

TMBrisk groups, we performed GSEA with annotations of GO

(Supplementary Tables 6, 7) and KEGG gene sets

(Supplementary Table 8). Figure 9A showed that cell cycle,

DNA repair, purine and pyrimidine metabolism, and

biosynthesis of unsaturated fatty acids were significantly

enriched in the high-TMB group, while those related to

immune cell migration and immune response, such as

NOTCH signaling pathway, integrin binding, laminin binding,

endothelial cell chemotaxis, and phosphatidylinositol signals,

were enriched in the low-TMBrisk group. In addition, immune

scores were significantly lower in the high-TMBrisk group, while

stromal scores and tumor purity were higher (Figure 9B).

We also evaluated gene expression of the 48 immune

checkpoints and 24 HLA family genes between the low- and

high-TMBrisk groups. Our analysis showed that three immune

checkpoints and eight HLA family genes were significantly

modulated in the high-TMBrisk group (Figure 9C). The

distribution of infiltrating immune cells between the low- and

high-TMBrisk groups inferred by seven databases demonstrated

that a majority of immunocytes decreased in the high-TMBrisk

group, such as macrophages, NK cells, CD4+ T cells, and

endothelial cells (Figure 10). However, neutrophils, and

monocytes infi l t ra ted more in the h igh-TMBri sk

group (Figure 10).
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TMBrisk predicts new therapeutic
regimens

To find new drugs that could be incorporated into OC

treatment, we estimated the IC50 value of 138 drugs in

TCGA-OV patients. We found that patients in the low-

TMBrisk group tended to be more sensitive to docetaxel,

mitomycin C, BMS.708163, etc., while patients in the high-

TMB group tended to be more sensitive to BIBW2992,

camptothecin, metformin, etc. (Supplementary Figure 8A).

Digging deeper, the DEGs between the low- and high-

TMBrisk groups were identified, and subsequently imported

into CMap. In total, 20 negatively related molecular agents

(enrichment < 0 and p < 0.05) for anti-OC were identified,

and 21 mechanisms of action (MOA) were shared among them

(Supplementary Figure 8B). We found that a majority of drug-

target MOA belong to the inhibition class. For example,

indirubin and purvalanol-a shared the mechanism of CDK

inhibitor; olaparib and veliparib shared the mechanism of

PARP inhibitor. In summary, our study screened drugs

targeting the TMBrisk-related genes. These small molecules

might potentially inhibit the occurrence of OC and need to be

further studied.
Discussion

Although immunotherapy is gaining prominence in the

treatment of cancers, including OC, only a small percentage of

patients respond to it. TMB is emerging as a potential biomarker

of immune response and is linked with prognosis (18, 50). Its

predictive performance has been verified in a variety of cancers,

such as lung cancer (51), head and neck cancer (52), and

melanoma (53). With regard to OC, the effect of TMB as a

potential predictor and its relationship with immunotherapy

responsiveness and immune infiltration still need to be further

explored. In the current study, we evaluated the correlation
TABLE 1 Univariate and multivariate Cox regression analyses of clinical features and TMBrisk with OS in TCGA.

Variables Univariate analysis Multivariate analysis

HR 95% CI of HR p-value HR 95% CI of HR p-value

Age 1.022 1.009–1.034 <0.001 1.015 1.002–1.028 0.026

Histological grade 1.217 0.813–1.822 0.340 1.052 0.695–1.593 0.809

FIGO stage 1.237 0.924–1.657 0.154 1.089 0.797–1.487 0.593

Residual disease 1.334 1.180–1.507 <0.0001 1.263 1.108–1.440 <0.001

Venous invasion 0.690 0.455–1.047 0.081 0.463 0.261–0.820 0.008

Lymphatic invasion 1.104 0.795–1.533 0.555 1.749 1.109–2.759 0.016

Anatomic subdivision 1.082 0.811–1.443 0.594 1.118 0.825–1.513 0.472

TMBrisk 1.942 1.611–2.343 <0.0001 1.879 1.528–2.310 <0.0001
fronti
HR, hazard ratio; CI, confidence interval.
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between TMB and OC clinical traits as well as immune

infiltration, screened TMB-related DEGs (including immune

genes), developed a risk scoring system (TMBrisk) based on

the TMB-related gene module and validated its performance

externally, explored TMBrisk in respect of its immune signature,

and finally predicted potential therapeutic regimens for OC.

By analyzing the somatic mutation profiles, we identified the

two most frequently mutated genes in OC: TP53 (90%) and TTN

(21%). As a tumor suppressor, TP53 is sufficient to regulate

multiple cell cycle control networks, the loss of which will lead to

dramatic gene expression changes (54). Consistent with our

study, Costa et al. discovered that OC was characterized by great

genomic instability with universal TP53 mutations (55). TTN,

whose mutations are frequently identified in solid tumors, is

associated with increased TMB, and patients with mutated TTN
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have improved outcomes in response to ICBs (56). We also

found that SNP, which could explain a significant proportion of

the heritable risk of cancer (57), is the main variant type in OC.

The relationship between some types of SNPs and the

occurrence, progression, and treatment of OC has been

elucidated, such as the ALDH2∗2 polymorphism (rs671) (58),

the most common SNP in Asia, but further study is

still necessary.

Consistent with previous research of cutaneous melanoma

(59), we discovered that OC patients in the high-TMB group had

superior survival outcomes, and a higher TMB correlated with

lower clinical stages. Interestingly, these findings were different

from those in head and neck squamous cell carcinoma (52) and

clear cell renal cell carcinoma (60), indicating that TMB may

have distinct prognostic value and stage correlation in different
B C D

A

FIGURE 8

Construction and validation of nomogram. (A) Nomogram constructed based on TMBrisk, age, residual disease, venous invasion, and lymphatic
invasion as predictive factors to predict 1-, 3-, and 5-year survival probability. (B) Calibration curves for the survival probability at 1, 3, and 5
years. (C) Time-dependent AUC value of the nomogram and TMBrisk in TCGA. (D) DCA curves to evaluate the clinical utility of different decision
strategies. *p < 0.05; **p < 0.01; ***p < 0.001. TMB, tumor mutational burden; RD, residual disease; VI, venous invasion; LI, lymphatic invasion;
AUC (t), time-dependent AUC; DCA, decision curve analysis.
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tumor types. Thus, a pan-cancer analysis may be required to

elucidate its role comprehensively. Furthermore, our research

founded a positive correlation between TMB and immune score

and a negative correlation between TMB and tumor purity,

suggesting that patients with higher TMB presented more active

immune activity, which may be because higher TMB results in

more neo-ant igens , increas ing chances for T-ce l l

recognition (61).

The relationship between TMB and immune infiltration was

further explored. We demonstrated that Tregs and CD8+ T cells

were downregulated, while macrophages M1 and M2 were

upregulated in the high-TMB group. Tregs maintain immune

homeostasis via suppressing excessive immune responses, but

Tregs also infiltrate in the tumor microenvironment (TME) and

inhibit antitumor immune activities (62). It is believed that Tregs

are relevant to poor prognosis (63). As a result, some novel
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immunotherapies that deplete tumor-infiltrating Tregs can

enhance antitumor effects (64, 65). These results partly explain

why the high-TMB group, which possessed lower proportions of

Tregs infiltration, had better OS and PFS. However, in OC, some

studies have shown that higher CD8+ T-cell infiltration

correlated with improved clinical outcomes (66, 67).

Therefore, the mechanisms by which TMB and immune cell

phenotypes influence the prognosis of OC patients may require

more evidence and discussion. The M1/M2 macrophage

paradigm plays a key role in tumor progression: M1 as pro-

inflammation and antitumoral, and M2 as anti-inflammation,

immunosuppression, and pro-tumoral (68–70). Thus, the M1/

M2 ratio is critical for TME homeostasis and immune function.

Studies have demonstrated that a high M1/M2 ratio status is

associated with favorable prognosis for most solid tumors,

including OC (69, 71, 72). In the context of increased M1 and
B
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FIGURE 9

Function enrichment analysis for TMBrisk and correlation between TMBrisk and the expression of HLA family genes/immune checkpoints. (A)
GO and KEGG enrichment of TMBrisk. In GSEA, patients were categorized into low- and high-TMBrisk groups. (B) Correlation between immune
score, stromal score, tumor purity, and TMBrisk and their distribution in the low- and high-TMBrisk groups. (C) Analyses of the expression of
immune checkpoints and HLA family genes in different TMBrisk groups. *p < 0.05; **p < 0.01; ***p < 0.001. TMB, tumor mutational burden; GO,
gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.
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M2 in the high-TMB group, it is necessary to further compare

the M1/M2 ratio of the two groups in future studies, so as to

better clarify the relationship between TMB and immune

function of OC patients.

WGCNA harbors predominant advantages over other

bioinformatics methods. Its clustering results (co-expression

gene modules) have high biological significance and reliability.

More importantly, WGCNA can quantify the correlation

between co-expression modules and clinical features, so it can

be used to search for gene modules of interest (73). Various

studies (74–76) have applied WGCNA to cancer research and

demonstrated its effectiveness. In this study, we identified the

TMB-related gene module by WGCNA. The functional

enrichment analysis revealed that genes in this module were

mainly associated with cell cycle-related pathways. Cell cycle

dysregulation is a hallmark of tumor progression, and the
Frontiers in Immunology 17
process of immune response is also dependent on the cell

cycle (77). Recent studies have shown that cell cycle activity of

both cancer and immune cells in TME could modulate immune

function (78, 79).

From the green module, we screened four TMB-related

immune genes significantly associated with the prognosis of

OC patients. HDGF plays a vital role in the transformation,

apoptosis, angiogenesis, and metastasis of cancer cells (80).

Recent studies in OC showed that HDGF was passively

released by necrotic and apoptotic cells; extracellular HDGF

acted as a messenger of cellular condition and further enhanced

cellular migration (81). In addition, higher HDGF expression

was closely associated to poorer OS (82). NRAS, along with

KRAS and HRAS, constitutes the RAS family, which is the most

frequently mutated gene family in cancer (83). Similarly, OC has

a high incidence of somatic mutations in MAPK pathway genes,
FIGURE 10

Landscape of immune and stromal cell infiltrations in the low- and high-TMBrisk groups. Heatmap showing the normalized scores of immune
and stromal cell infiltrations. The statistical difference between the two groups was compared by the Wilcoxon test. *p < 0.05; **p < 0.01; ***p <
0.001. The clinical features of the patients were also described as annotations.
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the most common of which include NRAS, and MAPK

inhibitors have shown efficacy for the treatment of NRAS-

mutant OC (84). NR1D1 was reported to be a tumor

suppressor in OC, which retarded the growth of cancer cells

by abrogating the JAK/STAT3 signaling pathway (85). Other

studies have shown that NR1D1 can also interact with PARP1

and BRCA1 to inhibit their associated DNA repair pathways,

leading to the lethality of OC cells (86). The protein encoded by

PSMD6 is a subunit of the 26S proteasome, which is co-located

with DNA damage foci and involved in DNA damage response

(DDR). The deficiency of PSMD6 delays DNA repair and leads

to a decline in cell survival, which may offer new therapeutic

approaches for cancer (87). Few studies on PSMD6 in OC

suggest that PSMD6 may be a potential research target.

Nevertheless, TMB is an imperfect biomarker, partly because

(1) it is costly to get bulk gene expression to calculate TMB scores,

and results from different platforms require complex coordination

and calibration (18), and (2) high TMB cannot be used as a

biomarker in all solid cancer types and further tumor-type specific

studies are warranted (88). Therefore, we constructed a prognostic

model using only seven genes selected from the green module.

Among the seven genes, except C3orf38, which was associated

with a high TMBrisk, the remaining six (ST7L, LRFN1, LEMD1,

HMGB3, CBWD1, and RFX5-AS1) genes were protective factors.

These genes represented positive or negative regulation of TMB

and immune activity. For instance, one study showed that

C3orf38 was contained in a candidate tumor suppressor gene

(TSG) locus of OC and may serve as a TSG (89). Similar to the

ST7 tumor suppressor gene, ST7L can inhibit the proliferation,

migration, and invasion of cancer cells (90). Yang et al. proved

that the downregulated ST7L in OC activated the WNT/MAPK

pathway, thereby promoting tumorigenic activity (91). As for

LRFN1, a number of LRFN1-based prognostic models have been

shown to be effective in a variety of cancers, including prostate

cancer (92), kidney renal clear cell carcinoma (93), and OC (94).

LEMD1 belongs to the CTA family, which is a useful target of

immunotherapy (95). Guo et al. have demonstrated that LEMD1

antisense RNA 1 (LEMD1-AS1) can suppress OC progression and

can be used as a biomarker to predict survival (96). HMGB

proteins are closely related to DNA damage repair, among which

HMGB3 is often overexpressed up to 20 times in cancer cells (97).

Mukherjee et al. indicated that targeted elimination of HMGB3

reduced cisplatin resistance in OC cells, increasing tumor cell

sensitivity to chemotherapy (98). However, the remaining hub

genes, CBWD1 and RFX5-AS1, are poorly investigated in OC,

which could be topics for further study.

The advantage of this study is that it fully evaluates the

robustness of the TMBrisk model, as it has been validated on

three independent datasets. ROC curves and DCA showed that

TMBrisk had good accuracy in predicting OS, better than other

independent predictors. Currently, FIGO staging is the most

widely used system for predicting the malignancy and

progression of OC. However, the weakness of this system is
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that it mainly considers distant metastasis, lymph node invasion,

tumor size and location, ignoring the heterogeneity of other

clinical features (3, 99). In this study, based on TMBrisk, by

incorporating other independent prognostic factors, we

developed a nomogram with higher net benefit and better

predictive accuracy, which can complement the FIGO system

to exert a more profound clinical value.

Regarding the relationship between TMBrisk and immune

status of OC patients, our study found that high TMBrisk tended

to predict an immune-suppressed status. Lower immune

activities were revealed in the high-TMBrisk group, including

reduced immune cell infiltration and downregulation of some

HLA family genes. For example, NK cells and CD4+ T cells

showed low infiltration in the high-TMB group. NK cells have

unique properties, in that they can swiftly kill tumor cells and

enhance antibody as well as T-cell response, which support its

role as anticancer agents (100). In OC, boosting NK cell

expansion and functionality has emerged as an attractive

therapeutic approach and has been extensively investigated

(101, 102). CD4+ T cells play a critical role in the immune

system and make great contribution to the antitumor response

(103). It is reported that OC patients with dense infiltration of

CD4+ T cells experience favorable OS and PFS (104). In

addition, three immune checkpoint genes (VSIR, TNFRSF25,

and CD160) were upregulated in the high TMB group,

suggesting that these immune checkpoints may be potential

therapeutic targets for OC similar to PD-1/PD-L1.

Finally, we identified some untraditional antitumor

compounds, such as BMS.708163, metformin, and BIBW2992,

with potential advantages for patients who might not gain

improvement from conventional drugs. The efficacy of these

drugs for OC is expected for further investigation.

Although our model proved to be valuable in determining

prognosis and guiding treatment in OC patients, it should be

prospectively confirmed by large-sample clinical studies. This

study is a combination of bioinformatics analysis and a small

number of in vitro experiments. Consequently, more experiments

are warranted to explore and verify the relationship and molecular

mechanisms between TMB/TMBrisk and immune infiltration. In

addition, restrained by the lack of data of OC patients undergoing

immunotherapy, unfortunately, it was not possible to assess

whether patients with different TMBrisk benefited differently from

immunotherapy. In our further work, studies should be conducted

to compare TMBrisk with current biomarkers and explore the

relationship between TMBrisk and immunotherapy in OC patients.
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