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Interleukin-7 receptor signaling
is crucial for enhancer-
dependent TCRd germline
transcription mediated through
STAT5 recruitment
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Jennifer López-Ros1, Carlos Suñé1, Koichi Ikuta2

and Cristina Hernández-Munain1*

1Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council
(IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain, 2Laboratory of Immune
Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University,
Kyoto, Japan
gd T cells play important roles in immune responses by rapidly producing large

quantities of cytokines. Recently, gd T cells have been found to be involved in

tissue homeostatic regulation, playing roles in thermogenesis, bone

regeneration and synaptic plasticity. Nonetheless, the mechanisms involved

in gd T-cell development, especially the regulation of TCRd gene transcription,

have not yet been clarified. Previous studies have established that NOTCH1

signaling plays an important role in the Tcrg and Tcrd germline transcriptional

regulation induced by enhancer activation, which is mediated through the

recruitment of RUNX1 and MYB. In addition, interleukin-7 signaling has been

shown to be required for Tcrg germline transcription, VgJg rearrangement and

gd T-lymphocyte generation as well as for promoting T-cell survival. In this

study, we discovered that interleukin-7 is required for the activation of

enhancer-dependent Tcrd germline transcription during thymocyte

development. These results indicate that the activation of both Tcrg and Tcrd

enhancers during gd T-cell development in the thymus depends on the same

NOTCH1- and interleukin-7-mediated signaling pathways. Understanding the

regulation of the Tcrd enhancer during thymocyte development might lead to

a better understanding of the enhancer-dependent mechanisms involved in

the genomic instability and chromosomal translocations that cause leukemia.
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7, STAT5, gd T cells
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GRAPHICAL ABSTRACT
Introduction

gd T cells constitute a minor T-cell population (1-10% of all

T lymphocytes) compared with canonical ab T cells (1). In

addition to blood and secondary immune organs, where ab T

cells reside, gd T cells accumulate in the gut mucosa, lung, skin,

uterus, adipose tissue, meninges, liver and peritoneal cavity,

playing important roles in the initiation and propagation of

immune responses. During antigen recognition, gd T cells

express a T-cell receptor (TCR), TCRgd, which can specifically

respond to a variety of ligands, including nonpeptidic antigens,

such as phosphoantigens and lipids that are not presented by

major histocompatibility complex molecules, and peptides

presented by the major histocompatibility complex (2, 3). In

addition, gd T-cell immune functions include (i) rapid

production of large quantities of cytokines, (ii) killing of

infected and tumor cells in a manner similar to natural killer

cells, (iii) elimination of bacteria and other particles, and (iv)

antigen presentation (1). Due to their innate and adaptive

properties that enable them to robustly kill a wide range of

tumor or infected cells, ability to present peptide antigens to ab
T cells, and major histocompatibility complex-independent

antigen recognition, increased interest has recently been

directed to their potential use in novel immunotherapies (2).

In addition, important roles played by gd T cells, including their

functions in thermogenesis, bone regeneration, and synaptic

plasticity, have been identified in tissue homeostasis (4–8).

Despite the growing interest in these cells, the mechanism by
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which TCRd gene transcription is regulated during gd T-cell

generation has not yet been clarified.

During development in the thymus, T-cell precursors

transition through a series of stages in which CD4 and CD8

are differentially expressed; these intermediates include CD4-

CD8- double-negative (DN), CD4+CD8+ double-positive (DP),

and CD4+ or CD8+ single-positive (SP) thymocytes (9). Four

DN populations, DN1 to DN4, are distinguished by the

expression of CD25 and CD44; DN2 and DN3 thymocytes can

be further classified into DN2a and DN2b and DN3a and DN3b,

based on the expression of CD117 and CD27, respectively

(9, 10).

Ordered expression of TCRgd and TCRab during thymocyte

development is highly controlled to ensure the correct

development of gd and ab T cells. TCRg and TCRd chains are

simultaneously expressed in DN2b and DN3a thymocytes to

generate TCRgd. The TCRb chain is expressed in DN3a

thymocytes with an invariable pre-Ta chain, resulting in a

TCR precursor known as pre-TCR, which induces cell

proliferation, CD4 and CD8 expression leading to DP

thymocyte generation, and TCRa chain expression. TCRa and

TCRb chains are then simultaneously expressed in DP and SP

thymocytes to form TCRab. Therefore, gd T cells arise from

DN2b and DN3a thymocytes as a result of TCRgd expression,

whereas ab T cells are derived from DP thymocytes as a result of

TCRab expression. Because TCRg , TCRd and TCRb
rearrangements occur in bipotent ab/gd T-cell precursors, the

final outcomes derived from these events have an
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unquestionable impact on the ultimate T-cell fate (ab vs. gd T-

cell), which is regulated by an instructive mechanism based on

the stronger signaling of TCRgd than that mediated by the pre-

TCR (11–13). Interestingly, pre-TCR signaling not only induces

the expression of the TCRa chain but also induces the

termination of TCRg and TCRd chain expression (14–16).

Therefore, the exact control of the expression of these chains

is crucial for the normal assembly of functional TCRs in

thymocytes and the generation of gd and ab T cells (9, 17).

The ordered expression of the different TCR chains during

thymocyte development depends on the specific regulation of

enhancer-dependent germline transcription and V(D)J

recombination at each individual TCR gene (9). These genes

exist in two different conformations, unrearranged and

rearranged, with a correctly rearranged configuration required

for the expression of a functional chain (9). To pass from an

unrearranged to a rearranged configuration, the enhancers

present within the TCR genes play a critical role by triggering

noncoding germline transcription initiated at the D and J gene

segment promoters to promote accessibility of RAG proteins to

the D-J region (18–20). V(D)J recombination-deficient mice,

such as RAG-deficient mice, have a total block at the DN3a stage

due to their inability to rearrange and express any of their TCR

chains, as CD27 expression is dependent on intracellular TCRb
expression (10, 21). After rearrangement, transcription at the

rearranged TCR genes depends on enhancer-dependent

activation of the recombined V gene segment.

Expression of the TCRg and TCRd chains depends on the

activity of their respective transcriptional enhancers, Eg and Ed,
which activate germline transcription of their unrearranged

respective gene and subsequent recombination in DN2b to

DN3a thymocytes (22, 23). Successful VgJg and VdDdJd
rearrangements (Figure S1) permit the expression of TCRgd in

these cells, which drives thymocyte differentiation into gd T

lymphocytes (10). Because Tcrg, Tcrd, and Tcrb germline

transcription and recombination occur before TCRgd or pre-

TCR expression in bipotent ab/gd T-cell precursors, these events
are not directly involved in ab vs. gd T-lineage determination,

which depends on the expression of TCRgd and pre-TCR (11–

13). In DP thymocytes, Tcrg and Tcrd transcription is inactivated

by pre-TCR signaling (14–16, 23).

Signaling mediated through NOTCH1 and interleukin-7

(IL-7) receptor (IL-7R) is essential for the generation of T cells

(24). NOTCH1 signaling is indispensable for T-cell

commitment at the DN2a thymocyte stage, and IL-7R

signaling is required for thymocyte survival, proliferation and

maturation and ultimately the generation of gd T cells (25–28).

Interestingly, the NOTCH1 and IL-7R signaling pathways

constitute part of a transcriptional regulatory axis, in which

IL-7Ra expression depends on NOTCH1 signaling (29–31).

These signals are very strong in thymocytes from DN1 through

the DN3a stages, decreasing abruptly during the transition to

the DN3b thymocyte stage and in DP thymocytes due to
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inhibited NOTCH1 expression and subsequent reduction in

IL-7Ra expression as a consequence of pre-TCR signaling (10,

28, 32).

Previous experiments with DN3a thymocytes demonstrated

that the activity of Eg and Edmeasured by their ability to activate

Tcrg and Tcrd germline transcription is induced by NOTCH1-

dependent recruitment of RUNX1 and MYB (14, 16, 33–37);

these factors are dissociated in DP thymocytes because of pre-

TCR signaling-dependent inhibition of Notch1 expression,

indicating a molecular mechanism of Tcrg and Tcrd silencing

during thymocyte development (14). Hence, NOTCH1 plays an

important role in enhancer-dependent Tcrg and Tcrd germline

transcription and TCRgd expression during thymocyte

development and thus in the generation of gd T cells.

Interestingly, IL-7R signaling is required for Tcrg germline

transcription and VgJg rearrangement (38–43), explaining the

absence of gd T lymphocytes in Il7ra-/- and Il7-/- mice. IL-7R-

dependent recruitment of STAT5 to Tcrg enhancers and

promoters is essential for activating the noncoding germline

transcription that triggers VgJg recombination (16, 44–47).

STAT5 binding to Eg is lost in DP thymocytes because IL-7R

signaling is terminated, constituting an additional mechanism of

Tcrg silencing (16). In mature T cells, IL-7R signaling is also

necessary for transcription of the rearranged Tcrg (48).

Hence, both IL-7R-dependent STAT5 and NOTCH1-

dependent RUNX1 and MYB dissociation from Eg cause Tcrg

silencing in DP thymocytes (14, 16). Based on the parallel

regulation of Eg and Ed by the NOTCH1/RUNX1 and MYB

pathways in the regulation of Tcrg and Tcrd germline

transcription during thymocyte development (14), we

hypothesize that Ed also depends on the IL-7R/STAT5

pathway in DN3a thymocytes, similar to Eg. Our results

demonstrate that IL-7R/STAT5 signaling is crucial for Ed-
dependent Tcrd germline transcription. These data indicate

that Ed and Eg are identically regulated through the same

signaling pathways mediated by NOTCH1/RUNX1 and MYB

and IL-7R/STAT5 in DN3a thymocytes , reveal ing

indistinguishable mechanisms for expressing and silencing

enhancer-dependent Tcrg and Tcrd germline transcripts

during thymocyte development.
Materials and methods

Mice

Rag2-/-and Il7ra-/- mice have been described previously (27, 49).

Three- to eight-week-old Rag2-/-and Rag2-/- x Il7ra-/- mice were

used in this study. The animals were housed under pathogen-free

conditions in the Animal Experimentation Unit at the IPBLN-CSIC

in Granada, Spain, or the Institute for Frontier Life and Medical

Sciences Resources in Kyoto, Japan. All animal work followed

protocols approved by the CSIC and Andalusia Government
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Ethical Committees or the Kyoto University Animal Care and

Use Committee.
Cells and in vitro stimulations, inhibitions
and viral transduction

SCID.adh cells have been previously described (50). The cells

used in this study were from the original parental cells, which are

mostly committed to the T-cell lineage (51, 52). They were

cultured in RPMI 1640 medium with 10% fetal calf serum,

sodium pyruvate, nonessential amino acids, glutamine,

penicillin/streptomycin, and 50 mM 2-mercaptoethanol.

Jurkat-green fluorescent protein (GFP)- and Jurkat-IL7Ra-
GFP-expressing cells have been previously described (53).

These cells were cultured in RPMI 1640 medium with 10%

fetal calf serum, glutamine, and penicillin/streptomycin.

SCID.adh cells (1 x 105 cells/mL) and Jurkat-GFP and Jurkat-

IL7Ra-GFP cells (5 x 105 cells/mL) were stimulated in culture

with 10 ng/mL murine recombinant IL-7 (Peprotech) for 30

minutes to 48 hours, as indicated. SCID.adh cells (1 x 105 cells/

mL) were incubated with 20 ng/mL phorbol acetate myristate

and 0.5 mg/mL ionomycin (Sigma–Aldrich, Merck) or 16 mM g-
secretase inhibitor 7(B-(-(3,5-difluorophenyl)-1-alanyl)-s-

phenyl-glycine t-butyl ester) (DAPT) (Selleckchem) for 24

hours. Viral transduction of SCID.adh cells with MigR

retroviral plasmids was previously described (14, 54).
Quantitative reverse transcription
polymerase chain reaction

To analyze transcription in SCID.adh cells, total RNA was

obtained with peqGOLD TriFast (Peqlab) or Trifast (VWR).

For RT–qPCR and the analysis of enhancer RNA (eRNA)

transcripts in SCID.adh cells, genomic DNA-free RNA was

obtained using Nucleospin plus columns (Macherey Nagel),

and contaminating genomic DNA was eliminated by treatment

with RNAse-free DNaseI (2270A, Takara) in the presence of an

RNase inhibitor (2313A, Takara) for 1 hour at 37°C, followed

by two consecutive phenol/chloroform extraction steps

(Amresco/Merck). The DNase I treatment and extraction

steps were repeated, and RNA was ultimately precipitated by

adding ethanol to a final concentration of 70% with RNase-free

glycogen as the carrier. The presence of genomic DNA

contamination was determined by quantitative PCR (qPCR)

using the Eg4 primers used in quantitative chromatin

immunoprecipitation (qChIP) experiments. cDNA was

obtained from 500 ng of total RNA with PrimeScript RT

master mix (RR036, Takara) and dissolved in 100 mL with

Milli-Q water. qPCRs were performed in 96-well plates (VWR)

with 4 mL of cDNA in 10-mL reactions prepared in duplicate

using TB Green Premix Ex Taq II (RR820, Takara) on a Bio-
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Rad CFX-96 System. The qPCR conditions were 95°C for 7

minutes, 40 cycles of 95°C for 30 seconds, 59.5°C for 45

seconds, and 72°C for 30 seconds, followed by incubation at

95°C for 1 minute. To analyze transcription in mouse

thymocytes, qPCR was performed in 96-well plates using 1

mL of cDNA and 0.24 mL of 50 X ROX in 12 mL reactions in

duplicate using TB Green Premix Ex Taq II (RR820, Takara)

on a StepOnePlus qPCR machine (Applied Biosystems). The

qPCR conditions were 40 cycles of 95°C for 30 seconds and

59.5°C for 30 seconds, followed by incubation at 95°C for 1

minute. Melting curve analyses were performed with 55°C -90°

C ramping in 0.5°C steps and 5-second increments to confirm a

single amplicon for each sample and primer pair analyzed. The

expression of individual genes was calculated using the DCt
method and normalized to Actb transcription. All RT–qPCR

experiments were performed with at least three biological

replicates. The primers for Actb , ACTB , Cg and Cd
transcripts have been previously described (14). The primers

were obtained from Metabion and Integrated DNA

Technologies, and their sequences are listed in Table S1.

Primer sequences for eRNA detection are shown in Table S1

and Figure S2.
Analyses of assays for transposase-
accessible chromatin using sequencing
(ATAC-seq), chromatin
immunoprecipitation using sequencing
(ChIP-seq), and transcriptome (RNA-seq)
databases

Guidelines for the design of primers for detection of eRNAs

based on factor binding detection by ChIP-seq were previously

described (55). To design the primers to detect eRNAs, we

focused our search on the 250-500 bp sequences flanking the

324-bp mouse Ed fragment, based on its homology with the

equivalent human Ed fragment, and the 227-bp mouse Eg4
fragment, where functional transcription factors are known to

bind (44, 56) (Figures S2, S3). To confirm that the designed

primers are specific for detecting Ed and Eg4 transcripts, we

analyzed chromatin profiles, transcript annotation, candidate

cis-regulatory elements (cCREs), factor binding by ChIP-seq and

RNA-seq in a 2.6-kb Ed region and a 2.8-kb Eg4 region using

available databases (Figures S2, S4-S6). ATAC-seq data in DN2b

and DN3 thymocytes and gd T lymphocytes were retrieved from

the Immunological Genome Project databrowsers (www.

immgen.org) (57). Transcript annotation from GENCODE

and the National Center for Biotechnology Information,

cCREs from the ENCODE Registry, and transcription factor

ChIP-seq information from ReMap Atlas of Regulatory Regions

were retrieved using the UCSC Genome Browser. The ENCODE

Registry of cCREs includes DNAseI hypersensitive sites across

ENCODE samples that are supported by eH3K4me3, H3K27ac
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or CTCF binding by ChIP-seq. RNA-seq and H3K27ac ChIP-

seq analyses in DN thymocytes were obtained from data series

GSE80272 (58) and analyzed using Integrative Genomic Viewer

(https://igv.org) (Figure S6).
Electrophoretic mobility shift assays

For use in EMSAs, SCID.adh cell extracts were obtained

from 107 unstimulated and mouse recombinant IL-7-stimulated

cells for 30 minutes at 37°C. After washing with Hank´s

balanced salt solution (Cultek), cells were resuspended in 200

mM NaCl, 50 mM Tris-HCl (pH: 8.0), 0.75 mM spermidine,

0.15 mM spermine, 0.1 mM EDTA, 0.1 mM Na3VO4, 1 mM

DTT, 0.5 mM PMSF, and 1X complete protease inhibitors

(Roche, Merck), lysed by adding Nonidet-40 to a 10% solution

to a final concentration of 0.4% and incubated for 30 minutes on

ice. Lysates were clarified by centrifugation at 12,000 × g for 10

minutes at 4°C, and glycerol was added to a final proportion of

25%. The protein concentration was determined by the Bradford

assay (Bio-Rad). A total of 60,000 cpm of 32P-labeled double-

stranded oligonucleotide was incubated with 12 mg of cell extract
in a 25-mL volume containing 10 mM Tris-HCl (pH 7.5), 50 mM

NaCl, 1 mM EDTA, 2% glycerol, 1 mg of poly(dI-dC), and 1 mg
of bovine serum albumin for 20 minutes on ice. One microgram

of anti-STAT5 antibody (Santa Cruz Biotechnology, sc-835),

which recognizes STAT5a and STAT5b, was added and

incubated for 30 minutes at room temperature to supershift

the specific complex. The binding sites are listed in Table S1.

Native polyacrylamide (4.5%) containing bis-acrylamide/

acrylamide (1:19) containing 0.25X Tris-borate-EDTA

previously run at 200 V for 1 hour was used to separate the

DNA and DNA/protein complexes. The gels were fixed with

30%methanol and 10% acetic acid for 30 minutes and then dried

and exposed to film. The primers of the tested binding sites were

obtained from Metabion, and the sequences are listed in

Table S1.
Quantitative chromatin
immunoprecipitation

qChIP experiments were performed with chromatin from

107 cells incubated with 5 mg of anti-STAT5 (Santa Cruz

Biotechnology, sc-235), trimethylated lysine 4 of histone H3

(H3K4me3) (ab8580, Abcam), acetylated lysine 27 of histone H3

(H3K27ac) (ab4779, Abcam), or control (clone 1-1, Millipore,

Merck or ab46540, Abcam) antibodies as previously described

(14). The primers used for Eg, Ed, the Tcra enhancer (Ea), and
Oct2 exon in the qChIP have been previously described (14, 59).

The primers were obtained from Metabion, and the sequences

are listed in Table S1.
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Luciferase assays

Reporter plasmids containing the firefly luciferase reporter

gene driven only by a human TRDV1 promoter (Vd1p) alone
and a human 370-bp Ed fragment driven by Vd1p were

constructed based on the pXPG plasmid as previously

described (60). Reporter plasmids containing the firefly

luciferase reporter gene driven only by a minimal murine Fos

promoter (cfosp) and by cfosp with murine 410-bp Eg1 were

constructed based on the pGL4.10 plasmid (Promega) as

previously described (14, 44). To introduce a point mutation

in the STAT5-binding site present in the dE6/7 region (dE6/7) of
the Ed370-Vd1p-luciferase plasmid, a Q5 site-directed

mutagenesis kit (E0554, New England Biolabs) was used with

HPLC purified primers designed by the NEBaseChanger

program. The sequences of the primers used are listed in

Table S1. The mutation was confirmed by DraI digestion and

sequencing. For luciferase assays, 5x106 Jurkat-GFP or Jurkat-

IL7Ra cells were transfected by electroporation with 5 mg of the
firefly luciferase reporter plasmid and 10 ng of the pRL-TK

(Promega) Renilla luciferase reporter plasmid. Both

electroporation and measurements of firefly and Renilla

luciferase activities were performed as previously described (14).
Statistical analysis

Statistical analysis was performed with Prism 5.0 software

(GraphPad). At least three independent experiments were

performed in all cases. The number of independent

experiments analyzed (n) is indicated in the figure legends.

Nonparametric unpaired Student´s t tests with the Welch

correction were performed, and significant differences between

the indicated values are indicated by asterisks as follows: p <0.05

(*), p < 0.005 (**), and p<0.0005 (***). The absence of an asterisk

indicates that the change relative to the control was not

statistically significant.
Results

IL-7R signaling activates Tcrd germline
transcription in DN3a thymocytes

Tcrd is flanked by Tcra Va and Ja gene segments and

comprises Vd gene segments interspaced with Va segments

within an ~1 Mb region, followed by a 33.7-kb region that

contains two Dd (Trdd1 and Trdd2) gene segments, two Jd
(Trdj1 and Trdj2) gene segments, Ed, the Tcrd C region (Cd),
and the inverted Trdv5 gene segment in murine chromosome 14

(9) (Figure S1). Tcrg spans 0.2 Mb and comprises three

functional Vg-Jg-Tcrg C region (Cg1, Cg2 or Cg4)-Eg clusters
frontiersin.org

https://igv.org
https://doi.org/10.3389/fimmu.2022.943510
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rodrı́guez-Caparrós et al. 10.3389/fimmu.2022.943510
in murine chromosome 13 (9) (Figure S1). Expression of the

TCRg and TCRd chains results from the activation of enhancer-

dependent germline transcription of their respective

unrearranged genes, which induces long-range chromatin

changes that trigger VgJg and VdDdJd recombination in DN2b

and DN3a thymocytes (Figure S1). These noncoding transcripts

are initiated by promoters associated with the Jg, Dd, and Jd gene
segments that are ultimately spliced into their respective

constant regions (40, 61) (Figure 1). The levels of germline

transcription measured at these constant regions represent the
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sum of all the transcripts that are initiated in the D and/or J gene

segments in their respective gene or gene cluster. To evaluate the

potential role played by IL-7R signaling in the activation of Tcrd

germline transcription, cells of the appropriate developmental

stage that are deficient in V(D)J recombination must be used.

We analyzed the levels of Cd transcripts in untreated and IL-7-

treated SCID.adh cells and compared them with the well-known

regulation of Tcrg germline transcription by measuring IL-7-

dependent activation of Cg transcripts (40, 41) (Figure 2A).

These cells, which were derived from mice carrying an
FIGURE 1

Structure of Tcrd and Tcrg germline transcripts. Transcription and splicing are indicated by blue lines. The position of primers used to detect
specific germline transcripts is indicated: primers used to detect Cd and Cg transcripts are represented in red, and primers to detect Trdd2-Trdj1,
Trdj1-Cd and Trdj2-Cd transcripts are represented in black.
A
B

FIGURE 2

IL-7 activates Tcrg and Tcrd germline transcription. (A) Analysis of Cg and Cd transcription in untreated (-, white bars) and IL-7-treated SCID.adh
cells (IL-7, black bars) after 24 or 48 hours, as indicated, as determined by RT–qPCR. (B) Transcriptional analysis of Cg and Cd in untreated
SCID.adh cells cultured for 24 hours, as determined by RT–qPCR. The results were normalized to those of Actb and represent the mean ±
standard error of the mean (SEM) of duplicate RT–qPCRs based on 8 independent experiments. Nonparametric unpaired Student´s t tests with
the Welch correction were performed, and p values are represented by asterisks as follows: p<0.05 (*), p<0.005 (**), and p<0.0005 (***). The
significance of the difference between values obtained with untreated and IL-7-treated cells is shown.
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inactivating spontaneous point mutation in the catalytic subunit

of DNA-PK, exhibit a DN3a-like phenotype derived from their

complete defect in V(D)J recombination (50, 62). Because their

TCR genes are in a germline unrearranged configuration, these

cells constitute an excellent model with which to study IL-7R-

dependent Tcrg transcription, as well as pre-TCR-induced

silencing of Tcrg and Tcrd and activation of Tcra (14, 16, 44,

45, 60, 63). Due to a deletion at the 5´-end of the Tcrg locus in

these cells, germline transcription of Cg4 (Cg) was analyzed as

representative of the three Vg-Jg-Cg clusters because they share

the same regulation (16) (Figure 1). Although basal Cd
transcription was found to be higher than Cg transcription in

these cells, IL-7 treatment clearly induced both Cg and Cd
transcription (Figures 2A, B).
IL-7R-dependent activation of Tcrg and
Tcrd germline transcription is regulated
by Notch signaling

Regulation of enhancer-dependent Tcrg and Tcrd germline

transcription is regulated by Notch signaling (14). Because IL-
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7Ra is a target of Notch signaling (14, 29–31), we evaluated the

effect of gain and loss of NOTCH1 signaling on Il7ra- and IL-7-

dependent Cg and Cd transcription (Figure 3). As expected (14),

transduction of SCID.adh cells with intracellular NOTCH1

domain (ICN1)-expressing retroviruses induced Il7ra

transcription (Figure 3A). Accordingly, IL-7-dependent

activation of Cg and Cd transcription was induced in

SCID.adh cells that had been transduced with ICN1 + GFP-

expressing retroviruses, and the transcription levels were

compared with those of cells that had been transduced with

retroviruses that expressed only GFP (Figures 3B, C). In

contrast, cell treatment with the g-secretase inhibitor DAPT,

which inhibits proteolytic cleavage and thus prevents the release

of endogenous ICN1, inhibited Il7ra transcription (Figure 3D);

therefore, a decrease in IL-7-dependent activation of Cg and Cd
transcription was detected (Figures 3E, F). These results indicate

that the Notch-dependent effect on Il7ra transcription causes

increased activation of IL-7-dependent Tcrd and Tcrg germline

transcription. These results confirm that the transcriptional

regulatory axis formed by the NOTCH1 and IL-7R pathways

was evident in SCID.adh cells and involved in the regulation of

Tcrg and Tcrd transcription in DN3a thymocytes. Therefore, the
A B

D E F

C

FIGURE 3

Notch-dependent regulation of IL-7R-dependent Tcrg and Tcrd germline transcription. RT–qPCR analysis of (A) Il7ra, (B) Cg, and (C) Cd
transcription (n=8, n=3, and n=3, respectively) in SCID.adh cells transduced with GFP (GFP) or ICN1 + GFP (ICN1) retroviruses and incubated in
the absence (-) or presence of IL-7 (IL-7), as indicated. RT–qPCR analysis of (D) Il7ra, (E) Cg, and (F) Cd transcription (n=3) in untreated or DAPT-
treated SCID.adh cells incubated in the absence (-) or presence (IL-7) of IL-7, as indicated. The results were normalized to those of Actb and
represent the mean ± SEM of duplicate RT–qPCRs in the indicated number (n) of independent experiments. Nonparametric unpaired Student´s
t tests with the Welch correction were performed, and p values are represented by asterisks as follows: p<0.05 (*) and p<0.0005 (***).
Significant differences between the obtained values in cells untreated or treated with IL-7, transduced with GFP or ICN1 + GFP retroviruses or
untreated and DAPT-treated cells as indicated are shown.
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mechanism for the regulation of Tcrg and Tcrd germline

transcription by this regulatory axis is based on the regulation

of IL-7R expression by Notch signaling, which results in

increased responsiveness of the unrearranged Tcrg and Tcrd

genes to IL-7.
IL-7R signaling is essential for Tcrd
germline transcription in vivo

To study TCR germline transcription, thymocytes of the

appropriate developmental stage (such as DN3a in the case of

Tcrg and Tcrd) that are deficient in V(D)J recombination must

be analyzed. Rag2-/- mice show deficient V(D)J recombination;

therefore, thymocyte development is blocked at the DN3a stage

in these mice (21, 49, 64). In fact, these animals constitute a pure

source of DN3a thymocytes, 99.0 ± 0.8% of total thymocytes

(64). The Tcrg and Tcrd in an unrearranged configuration in

these mice allowed us to analyze germline transcription in DN3a

thymocytes. To clearly determine the role played by IL-7R

signaling in vivo, we compared Cg and Cd germline

transcription in Rag2-/- and Rag2-/- Il7ra-/- DN3a thymocytes

by performing RT–qPCR (Figure 4A). Because Rag2-/-

thymocyte blockade occurs earlier during development and

predominates over Il7ra deficiency (28, 49), both Rag2-/- and

Rag2-/-Il7ra-/- mice have an equivalent block at the DN3a stage.
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As expected (40), Cg transcription was abrogated in Rag2-/-

Il7ra-/- DN3a thymocytes. Our analyses of Cd transcription

indicated that Tcrd germline transcription was also strongly

dependent on IL-7R signaling (Figure 4A). Cd transcripts

constitute the sum of Tcrd germline transcripts initiated at the

Trdd2, Trdj1, and Trdj2 promoters (Figure 1). We also analyzed

specific transcripts initiated at each of these promoters. The

transcripts initiated at the Trdj1 and Trdj2 promoters are spliced

to the first exon of Cd, while those initiated at the Trdd2

promoter are first spliced to the Trdj1 gene segment before

splicing to the Cd first exon (Figure 1). The Trdd2-Trdj1, Trdj1-

Cd and Trdj2-Cd transcripts were clearly detected in Rag2-/-

thymocytes (Figure 4B). According to the strong inhibition of Cd
transcription, the aforementioned transcripts were profoundly

inhibited in Rag2-/- Il7ra-/- thymocytes (Figure 4B). These results

indicate that, similar to Tcrg germline transcription, Tcrd

germline transcription depends on IL-7R signaling in

DN3a thymocytes.
STAT5 binds to Ed

IL-7R signaling results in rapid phosphorylation of STAT5,

which is translocated from the cytoplasm to the nucleus to

activate its target genes. Accordingly, IL-7R signaling activates

Cg transcription through the recruitment of STAT5 to Eg (44).
A

B

FIGURE 4

IL-7R signaling is essential for Tcrd germline transcription in vivo. Analysis of (A) Cg and Cd and (B) Trdd2-Trdj1, Trdj1-Cd and Trdj2-Cd
transcripts in Rag2-/- and Rag2-/- Il7ra-/- thymocytes by RT–qPCR. The results were normalized to those of Actb and represent the mean ± SEM
of duplicate RT–qPCRs based on 3 independent experiments. Nonparametric unpaired Student´s t tests with the Welch correction were
performed, and p<0.0005 values based on values obtained with Rag2-/- and Rag2-/-Il7ra-/- thymocytes are represented by asterisks as ***
(p<0.0005).
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We compared STAT5 binding to Eg4 and Ed by qChIP in

unstimulated and IL-7-stimulated SCID.adh cells after a 30-

minute treatment (Figure 5A). We found comparable STAT5

recruitment to both Eg4 and Ed upon IL-7 treatment. To

confirm the recruitment of STAT5 in primary DN3a cells, we

evaluated its binding in Rag2-/- thymocytes (Figure 5B). IL-7

treatment was not necessary to detect STAT5 binding to these

enhancers in ex-vivo Rag2-/- thymocytes, most likely because

these cells were already stimulated in vivo. We found similar

STAT5 binding to both enhancers, confirming the results

obtained with SCID.adh cells. As a negative control in our

qChIP experiments, STAT5 binding to an Oct2 exon sequence

was also analyzed (Figures 5A, B).
IL-7R signaling activates Ed function
through STAT5 binding to the dE6/7 site

eRNAs together with epigenetic activation marks on histone

H3, such as trimethylation of lysine 4 (H3K4me3) and

acetylation of lysine 27 (H3K27ac) are predictors of enhancer

activity (65–68). To evaluate whether IL-7 treatment can directly

activate Ed and Eg activity, we analyzed the effect of IL-7R

signaling on H3K4me3 and H3K27ac on Ed and Eg4 in

unstimulated and IL-7-treated SCID.adh cells (Figures 6A, B).

Consistent with the presence of these chromatin marks on active

enhancers (67, 68), we found that H3K4me3 and H3K27ac

modification was strongly induced at both enhancers, but not
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at a negative control sequence, after IL-7 stimulation of

SCID.adh cells. Detection of eRNAs is the most reliable

indicator of enhancer activity (65, 66). These noncoding

transcripts are unidirectional or bidirectional and have low

abundance due to their instability. Enhancer activation

correlated with IL-7-dependent induction of bidirectional Ed
and Eg4 eRNAs in SCID.adh cells (Figures 6C, D). To examine

the presence of other cis-regulatory regions in the surrounding

enhancer regions, we analyzed chromatin accessibility in DN2b

and DN3 thymocytes, and gd T lymphocytes by ATAC-seq using

the Immunological Genome Project databrowsers (www.

immgen.org) (57), as well as the presence of other enhancers

in the vicinity according to the ENCODE Registry of cCREs

(Figures S2, S4, S5). Although these analyses indicate the

presence of other cis-regulatory elements located in the

vicinity of Ed and Eg4 within a region of less than 2 kb, these

enhancers constitute the sequences with the highest density of

transcription factor binding by ChIP-seq according to ReMap

Atlas of regulatory regions (Figures S4, S5). Interestingly, p300

and STAT5 are specifically recruited to these enhancers (Figures

S4, S5). Taken together, these data clearly demonstrate that Eg
and Ed are both activated by IL-7R signaling.

To directly evaluate the role of IL-7 on Ed function, we

analyzed its effect on enhancer activity using luciferase reporter

constructs in transiently transfected Jurkat cells (Figure 7). These

cells constitute a well-established model for studying TCR

enhancer activity upon cell stimulation (14, 60). Because these

cells express very low levels of IL7Ra, we used two Jurkat clones
A

B

FIGURE 5

IL-7R signaling induces STAT5 recruitment to Eg and Ed in DN3a thymocytes. (A) Binding of STAT5 to Ed, Eg4 and Oct2 sequences in untreated
(-) and IL-7-treated (IL-7) SCID.adh cells determined after 30 minutes by qChIP (n=8). (B) Binding of STAT5 to Ed, Eg4 and Oct2 sequences in
Rag2-/- thymocytes as determined by qChIP (n=4). The data represent the mean ± SEM of duplicate results obtained from n independent qChIP
experiments. Nonparametric unpaired Student´s t tests with the Welch correction were performed as indicated, and p values are represented by
asterisks as follows: p<0.05 (*) and p<0.005 (**). Significance between the values obtained using an anti-STAT5 antibody (STAT5) and control
antibody (C), as indicated, is shown.
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that had been previously obtained through retroviral

transduction and that expressed GFP or IL7Ra + GFP (53). As

shown in Figure 7A, the GFP-expressing cells exhibited very low

levels of IL7RA expression compared with the cells transduced

with GFP + IL7Ra-expressing retroviruses. As expected, Eg
activity was highly activated by IL-7 treatment in the IL7Ra +

GFP-expressing cells but not in the control GFP-expressing cells

(Figure 7B). Similarly, we found that Ed activity was activated by
IL-7 only in the IL7Ra + GFP-expressing cells and not in the

control GFP-expressing cells (Figure 7B). The observed effects

were clearly mediated by the respective enhancer because the

luciferase activity of the constructs with no enhancer in either

clone was unaffected by IL-7 treatment. Of the two conserved

putative STAT5 sites found by comparing murine and human

Ed sequences (Figure S3), we validated by EMSA the STAT5-

binding site that was located between dE6 and dE7, the dE6/7 site
(Figures S7A, B). STAT5 binding to this site is consistent with

recruitment data for this factor to Ed by ChIP-seq in immune

cells and tissues based on ReMap Atlas of Regulatory Regions

(Figure S4). Introduction of a mutation that abolished STAT5

binding to the human dE6/7 site (Figure S7C) abrogated
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enhancer activation by IL-7 treatment in IL7Ra-expressing
transfected Jurkat cells (Figure 7B). Together, our results

demonstrate that, in addition to the regulation of Tcrg

germline transcription and Eg function, IL-7R signaling is

crucial for Ed-dependent Tcrd germline transcription.
Discussion

Eg and Ed are regulated in parallel during b-selection,
activating germline transcription and VgJg and VdDdJd
recombination in DN2b and DN3a thymocytes and gene

silencing in DP thymocytes (15, 69). Pre-TCR signaling causes

dissociation of Eg- and Ed-bound factors in DP thymocytes (14–

16). MYB and RUNX1 dissociate from Eg and Ed during b-
selection as a result of the pre-TCR-dependent downregulation

of Notch1 transcription (14, 32), whereas STAT5 dissociates

from Eg as a result of terminated Il7ra transcription (16). In this

study, we demonstrate that Ed function depends on IL-7R-

dependent STAT5 recruitment, similar to the mechanism of

Eg function induction, demonstrating a parallel regulatory
A

B

DC

FIGURE 6

IL-7R signaling activates Eg and Ed epigenetic marks and eRNA transcription. Analyses of H3K4me3 (A) and H3K27ac (B) histone marks in Eg4, Ed
and Oct2 sequences in untreated (-) and IL-7-treated (IL-7) SCID.adh cells as determined after 24 hours by qChIP. The data represent the mean
± SEM of duplicate results obtained from 4 independent qChIP experiments. Nonparametric unpaired Student´s t tests with the Welch
correction were performed as indicated, and the significance of differences between the values obtained using anti-H3K4me3 or anti-H3K27ac
and control antibodies (C) are shown. Analyses of Eg4 (C) and Ed (D) eRNA transcription in untreated (-) and IL-7-treated (IL-7) SCID.adh cells
after 24 hours by RT–qPCR. The results were normalized to those of Actb and represent the mean ± SEM of duplicate RT–qPCRs from 3
independent experiments. Nonparametric unpaired Student´s t tests with the Welch correction were performed, and the significance of
differences between the values obtained with untreated and IL-7-treated cells is shown. p values are represented by asterisks as follows: p<0.05
(*) and p<0.005 (**).
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mechanism of these enhancer functions in controlling Tcrg and

Tcrd germline transcription. Hence, the activity of Eg and Ed
depends on RUNX1, MYB, and STAT5 recruitment in DN3a

thymocytes, whereas these three aforementioned factors

dissociate from Eg and Ed in DP thymocytes as a consequence

of termination of Notch and IL-7R signaling, revealing the

molecular mechanism by which Tcrg and Tcrd transcription is

regulated in parallel during thymocyte development.

To study the role of the combined effect of IL-7 and Notch

signaling, we analyzed the effect of IL-7 on ICN1-transduced

SCID.adh cells. These cells produce full-length and truncated

Notch1 transcripts, which derive from an intragenic deletion of

approximately 38 kb and consist of exon 1 joined to an 81-kb

noncontiguous intron 1 sequence that it is spliced to a site 12 bp 3´

of the exon 28 splice acceptor site (70). The resulting polypeptide

can insert into the cell membrane due to its hydrophobic N-

terminus, driving ICN1 expression to generate ligand-

independent signals in a DAPT-sensitive fashion. Previous

studies have demonstrated that SCID.adh cells constitutively

express some levels of ICN1 and respond to DAPT by

downregulating ICN1 expression as well as Notch-dependent

genes, such as Cd25, Hes1, Il7ra, Runx1, Tcrd and Tcrg (14, 70,

71). In addition, these cells respond to IL-7 signaling and have

been previously used to analyze its role in regulating Tcrg germline

transcription (14, 44, 45). Therefore, SCID.adh cells constitute an

excellent model to study the combined effect of Notch and IL-7 in

the regulation of Tcrg and Tcrd germline transcription. Consistent

with the induction of Il7ra transcription by Notch, our results

revealed that IL-7-dependent activation of Tcrd and Tcrg germline
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transcription was further activated by ICN1 and inhibited by

DAPT in these cells. These results strongly suggest that the Notch-

dependent effect on Il7ra transcription is responsible for the IL-7-

dependent Tcrd and Tcrg germline transcription observed upon

ICN1 overexpression and DAPT treatment in SCID.adh cells.

To demonstrate the essential role for IL-7 signaling in

activating Ed and Eg4 in SCID.adh cells, we analyzed H3K4me3

and H3K27ac together with the induction of eRNAs as predictors

of enhancer activity (65–68). In fact, enhancer transcription is

considered the best indicator of enhancer activity (65, 66). The

detection of IL-7-induced Eg and Ed transcripts indicates that this
treatment induces an opening in the chromatin structure at the

enhancer regions. Although other open regions that could

function as cis- regulatory elements are present in the vicinity of

Ed and Eg4, as indicated by ATAC-seq and the ENCODE Registry

of cCREs, these enhancers concentrate the highest binding density

of transcription factors, including the specific binding of p300 and

STAT5 (Figures S2, S4, S5). This high density of transcription

factors that bind to Ed and Eg4 is consistent with the absence of

H3K27ac at the core site of these enhancers, with this histone

mark detected in the flanking regions of these enhancers (Figures

S4-S6). These analyses confirm that Ed and Eg4 are the main

regulatory elements present in the regions analyzed. Because

STAT5 specifically binds to Ed and Eg4 and not to other nearby

enhancers as analyzed by ChIP-seq based on ReMap Atlas of

Regulatory Regions, our data indicating that the measured

transcripts are IL-7 responsive strongly support that they

constitute true Ed and Eg4 eRNAs. Although the distal

enhancer EO581865/enhD, located adjacent to Ed at a distance
A

B

FIGURE 7

Ed is activated by IL-7R signaling. (A) Transcriptional analysis of IL7R in GFP- (GFP) and IL7Ra-GFP- (IL7Ra)-expressing Jurkat cells. The results
were normalized to those of ACTB and represent the mean ± SEM of duplicate RT–qPCRs based on 3 independent experiments. The
significance of differences between the values obtained with GFP- and IL7Ra-GFP-expressing Jurkat cells is shown. (B) Transcriptional analysis
of Ed-, Ed-MUT- and Eg1-dependent luciferase constructs transfected into GFP- (GFP)- or IL7Ra-GFP-(IL7Ra)-expressing Jurkat cells that were
untreated (-) or treated with IL-7 (+) for 48 hours. The data represent the mean ± SEM of duplicate results obtained from 6 independent firefly/
Renilla luciferase assays. The significance of differences between the values obtained from untreated and IL-7-treated cells, as indicated, is
shown. Nonparametric unpaired Student´s t tests with the Welch correction were performed, and p values are represented by asterisks as
follows: p<0.05 (*), p<0.005 (**), p<0.0005 (***).
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of approximatelly 100 pb, exhibits some levels of STAT5 binding

based on ReMap data, ATAC-seq experiments indicate that the

EO581865/endD chromatin is not accessible in DN2b and DN3

thymocytes, indicating that Ed is the relevant enhancer at the Tcrd
locus during thymocyte development (Figure S4). The low levels

of transcripts detected in Ed and Eg4 surrounding regions by

RNA-seq in DN thymocytes are consistent with the expected low

abundance of eRNAs (Figure S6). Although the role of eRNAs

remains unresolved, they are thought to be relevant to

maintaining an open chromatin state that is readily accessible

for transcription factors, stabilizing enhancer-promoter looping

interactions, promoting the loading of RNA-polymerase 2 to the

promoter, and/or releasing a paused promoter to an elongating

stage (72–74). Our experiments do not address the potential roles

of these eRNAs on Tcrd and Tcrg transcription, but these

transcripts likely contribute to maintaining the opening of

enhancer chromatin to facilitate access to transcription factors

and cofactors in the activation of their specific promoters.

Previous experiments with Il7ra-/- mice demonstrated a strong

dependence on IL-7R signaling in the regulation of Tcrg germline

transcription and VgJg recombination and little apparent effect on

Tcrd recombination (38–42, 48). Although a partial inhibitory

effect on VdDdJd might be overlooked in these experiments (38),

these results differ from our results, with dramatically reduced

Trdd2, Trdj1 and Trdj2 germline transcription observed in Rag2-/-

Il7ra-/- DN3a thymocytes and IL-7R-dependent regulation of Ed.
Consistent with the important role played by Ed in promoting

chromatin accessibility and activating Trdd2, Trdj1 and Trdj2

germline transcription in a discrete chromatin loop (75), previous

experiments with Ed-/- mice demonstrated that this enhancer is

important for Tcrd germline transcription and VdDdJd
rearrangements in DN3a thymocytes and the generation of gd T

lymphocytes (23). Because Tcrd germline transcription primarily

depends on Ed function (23), our results demonstrate that IL-7R

signaling plays a crucial role in the control of Ed-dependent Tcrd
germline transcription in DN3a cells. Therefore, the VdDdJd
rearrangements detected in Il7ra-/- mice are most likely the

consequence of a very low level of Tcrd germline transcription

in Rag2-/- Il7ra-/- thymocytes; this low level of transcription may

open the locus chromatin to permit accessibility of the

recombinase machinery. Although profoundly reduced

compared to the levels in the control mice, 10-12% thymic and

6-10% splenic gd T lymphocytes were detected in the Ed-/- mice;

the presence of some gd T cells in Ed-/- mice suggested the

implication of additional elements in activating VdDdJd
recombination. Our data indicate that nearly all Tcrd germline

transcripts were abrogated in Rag2-/-Il7ra-/- thymocytes compared

to Rag2-/- thymocytes, including those initiated by the Trdd2

promoter (Figure 4), which had been previously proposed to be a

possible candidate for promoting Tcrd germline transcription and

VdDdJd recombination in Ed-/- mice (61). The detection of only

residual Tcrd transcripts in our analysis of Rag2-/-Il7ra-/-

thymocytes does not support a suggestion of additional IL-7R-
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independent regulatory elements in the activation of VdDdJd
recombination. Since our experiments were focused on the

regulation of Tcrd and Tcrg germline transcription that occur

prior to VdDdJd and VgJg rearrangements and thus TCRgd
expression, these data do not directly address the issue of ab vs.

gd T-cell commitment, which is accepted to be regulated by

differential signaling strength between TCRgd and pre-TCR

expressed on the same T-cell precursors (11–13).

In contrast to its important function in Tcrd germline

transcription and VdDdJd recombination in thymocytes, Ed is

not required for the transcription of a rearranged Tcrd gene in

mature gd T lymphocytes; in fact, Ea is the regulatory element

critical for this transcriptional function (23, 76). IL-7R signaling

does not activate Tcra germline transcription or induce STAT5

binding to Ea in SCID.adh cells (Figures S8A, B). In contrast, IL-

7R signaling has been previously shown to be involved in

preventing premature VaJa recombination in DN4

thymocytes (28). Therefore, IL-7R signaling is probably not

required for rearranged Tcrd transcription in mature gd T

cells. Because Ed is critical for the premature VaJa
rearrangements that have been detected in Ea-/- mice that

result in the detection of Va2+ T lymphocytes in these mice

(76–78), NOTCH1 and IL-7R signaling likely regulate the

induction of Ed-dependent VaJa rearrangements in

DN3a thymocytes.

Comparisons between synthetic and natural enhancers have

revealed that enhancer activity is best explained by occupancy of

specific binding sites regardless of the binding site position (79).

Hence, the combination of multiple transcription factor-binding

sites and not their organization underlies the specificity of

eukaryotic gene expression regulation (80). In addition,

temporal expression of specific transcription factors clearly

regulates T-lineage identity and development (24). In this

regard, the combination of the essential binding sites for

RUNX1, MYB and STAT5 is conserved between Eg and Ed in

both mice and humans; however, these sites are positioned

differently from STAT5-MYB-RUNX1 sites in Eg and

RUNX1-MYB-STAT5 sites in Ed (Figure S7). Therefore, the

recruitment of these factors to differently organized binding sites

within these enhancers could create efficient regulatory

structures that are critical for high Tcrg and Tcrd gene

expression in DN2b and DN3a thymocytes and gene silencing

in DP thymocytes and ab T lymphocytes. We have not directly

addressed the effect of IL-7 on the recruitment of RUNX1 and

MYB to Ed in SCID.adh cells; however previous studies have

shown that IL-7 treatment does not inhibit the recruitment of

RUNX1 and MYB to Eg in these cells (44). The fact that RUNX1,

MYB and STAT5 bind to Eg in IL-7-treated SCID.adh cells (44)

as well as to Eg and Ed in Rag2-/- thymocytes (14, 16) supports

the hypothesis that these factors are simultaneously recruited to

these enhancers in DN3a thymocytes. Furthermore, luciferase

assays indicated that STAT5 binding synergistically augmented

the activity of Eg activity along with RUNX1 and MYB (44), and
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IL-7 treatment increased Ed activity (Figure 7), which is

absolutely dependent on the presence of intact RUNX1 and

MYB binding sites (33–36). Together, these results strongly

suggest that these factors are simultaneously recruited to Ed
and Eg to regulate enhancer function in DN3a thymocytes.

The functional interconnection of the IL-7R and NOTCH1

signaling pathways is essential for normal T-cell development.

When this intersection is defective, lymphopenia can be a result,

whereas excessive signaling can lead to the development of T-cell

acute lymphoblastic leukemia (81). In fact, constitutive

activation of NOTCH1 signaling is the most prominent

oncogenic pathway during T-cell transformation in more than

60% of all human T-cell acute lymphoblastic leukemia cases,

which are mainly caused by different activating mutations (82).

Interestingly, in 70% of the latter, chromosomal translocations

are evident during thymocyte development as a result of

illegitimate TCR gene recombination, with those involving

TCRD predominant in approximately 67% of cases (83, 84)

and Ed being an important element contributing to genomic

instability (85). Our results revealing an important role played

by IL-7R signaling in the regulation of Ed-dependent Tcrd

germline transcription in DN3a thymocytes might contribute

to a better understanding of the causes of this disease.
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ATAC-seq assay for transposase-accessible chromatin using sequencing

cCRE candidate cis-regulatory element

Cd TCRd gene constant region

cfosp Fos promoter

Cg TCRg gene constant region

ChIP-seq chromatin immunoprecipitation using sequencing

DAPT 7(B-(35-difluorophenyl)-1-alanyl)-s-phenyl-glycine t-butyl ester

DN double-negative

DP double-positive

Ed TCRd gene enhancer

Eg TCRg gene enhancer

EMSA electrophoretic mobility shift assay

eRNA enhancer transcripts

H3K4me3 trimethylated lysine 4 of histone H3

H3K27ac acetylated lysine 27 of histone H3

ICN1 intracellular NOTCH1 domain

IL-7 interleukin-7

IL-7R interleukin-7 receptor

qChIP quantitative chromatin immunoprecipitation

qPCR quantitative polymerase chain reaction

RNA-seq transcriptome analysis using sequencing

RT–qPCR quantitative reverse transcription PCR

SEM standard error of the mean

SP single-positive

TCR T-cell receptor

TCRd T-cell receptor d chain

TCRg T-cell receptor g chain

Vd1p TRAV1 promoter
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