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The pursuit to improve the TB control program comprising one approved vaccine, M.
bovis Bacille Calmette-Guerin (BCG) has directed researchers to explore progressive
approaches to halt the eternal TB pandemic.Mycobacterium tuberculosis (M.tb) was first
identified as the causative agent of TB in 1882 by Dr. Robert Koch. However, TB has
plagued living beings since ancient times and continues to endure as an eternal scourge
ravaging even with existing chemoprophylaxis and preventive therapy. We have
scientifically come a long way since then, but despite accessibility to the standard
antimycobacterial antibiotics and prophylactic vaccine, almost one-fourth of humankind
is infected latently withM.tb. Existing therapeutics fail to control TB, due to the upsurge of
drug-resistant strains and increasing incidents of co-infections in immune-compromised
individuals. Unresponsiveness to established antibiotics leaves patients with no
therapeutic possibilities. Hence the search for an efficacious TB immunization strategy
is a global health priority. Researchers are paving the course for efficient vaccination
strategies with the radically advanced operation of core principles of protective immune
responses against M.tb. In this review; we have reassessed the progression of the TB
vaccination program comprising BCG immunization in children and potential stratagems
to reinforce BCG-induced protection in adults.

Keywords: adjunct vaccination strategies against tuberculosis, vaccine, BCG, host directed therapy,
immunotherapy, memory T cells
INTRODUCTION

Tuberculosis (TB) is caused by the facultative intracellular pathogen Mycobacterium tuberculosis
(M.tb). Since the 1800s, TB was the leading cause of health menace worldwide. Despite being
declared a global health emergency in 1993 byWorld Health Organization (WHO), TB continues to
be the leading cause of morbidity and mortality amongst bacterial infections (1). The majority of
individuals remain asymptomatically and latently infected with M.tb owing to confiscation of the
pathogen by immune cell populations and this does not lead to disease. Upon serious
immunosuppression, around 10% of latently infected individuals develop active TB. Owing to
the indefinability of the disease, explosive TB epidemics are hardly encountered which results in
underestimated harm caused by M.tb worldwide (2). The host immune responses can restrict the
pathogen but fail to accomplish complete bacterial sterility. The overwhelming progression of the
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development of new therapeutics and the emergence of resistant
pathogenic strains can be prevented by the enhancement of
population-wide immunity against M.tb (3).

M.tb was originally identified in 1882 by Dr. Robert Koch as
the causative agent of TB however, it has lurked among living
beings since ancient times. 139 years post-discovery of this
pathogen, it still endures as an eternal scourge ravaging
globally. Current strategies fail to control TB, due to the
upsurge of multidrug-resistant strains, increasing incidents of
co-infections in immune-compromised individuals, and the
emergence of TB-IRIS (Immune Responsive Inflammatory
Syndrome). Globally in 2020, approximately 10 million people
were disease-ridden with TB and an aggregate of 1.3 million lives
were lost (together with 208000 people with HIV). Furthermore,
almost one-fourth of humankind is infected asymptomatically
(latently) withM.tb, with a 5-15% risk of progressing into clinical
manifestations (1). An effective vaccine is indispensable to
enhance population-wide immune protection and reduce
disease burden. Vaccines operate by stimulating a cascade of
immunological responses and ensuing the institution of immune
memory against subsequent infections (4). Immune memory was
originally described by the Greek historian Thucydides while
observing survivors of the plague of Athens and comprehended
that survivors have conferred life-long resistance to disease.
Hence, he stated that “this disease never took any man the
second time” (5). This feature of the immune system is a requisite
evolutionary trait. Since historic eras for infectious diseases like
smallpox, it is distinctly demonstrated that while initial
infections had a fatality rate of 20% to 60% subsequently
affected individuals were eternally immune to infection.
Edward Jenner was the first to employ this hallmark feature of
immunity to treat smallpox and provided a foundation for the
development of vaccines (6). Secondary immune responses are
refined protective responses mounted by sub-populations of
memory cells on subsequent encounters which impart
endurance to combat recurrent infections caused by pathogens
in the environment. A series of events following primary
exposure establishes a pool of long-lasting antigen-specific
immune cells that mount quantitatively and/or qualitatively
improved immune response upon reinfection. Documented
from the times of ancient Greeks but still, many components
of immune memory are still debatable (5). Immune memory is
the cardinal property of the adaptive immune system and
exclusively lymphocytes were known to mediate these
responses. However, organisms that lack T and B lymphocytes
similarly possess heightened proficiency to combat recurring
Frontiers in Immunology | www.frontiersin.org 2
infections caused by the same pathogen, demonstrating the
existence of innate immune memory (7). Numerous studies in
simpler living beings have reported that cells of the innate
immune system can mount heightened secondary responses
upon reinfection. Thus, the conventional characterization of
immunological memory is continuously advancing (8). Better
insights into the generation of immunological memory are
fundamental to foster progressive vaccination strategies.

Despite pre-exposure vaccination with BCG, a large extent of
latent TB infections urges the need for an efficacious
complementary TB control strategy. It is evident that the most
extensively used vaccine, Bacille Calmette-Guerin (BCG) which
has existed for 100 years fails to impart long-term immunity and
has limited efficacy against adult pulmonary TB (9). BCG
immunization has a limited impact on M.tb transmission since
it cannot inhibit primary infection or recrudescence of latent TB
(10). Failure to develop a significantly effective vaccine has
constrained the phasedown of the global TB burden (9).
Furthermore, safety concerns regarding BCG immunization in
immune-compromised individuals including HIV-TB coinfected
individuals necessitate a vaccine that is safer and more efficient
than BCG and can ameliorate infections (11). The efficacy of
BCG against pulmonary TB is even more disappointing in
tropical regions with a high TB burden (12). Escalating TB
cases worldwide despite BCG administration further demands
the advancement of the existing vaccination strategy. In the past
decade, various research groups have utilized pioneering
technologies to improve the current scenario. Progressive
vaccine design strategies have been implemented and vaccine
candidates have been evaluated in different clinical trials (13). It
is challenging to discover more efficacious vaccine candidates for
TB that can substitute BCG. It is highly critical to comprehend
the shortcomings and prospects of novel vaccination strategies
for better implementation and amendment of TB control
measures. Table 1 summarizes key desirable characteristics of
improved vaccination strategy. In the current scenario, COVID-
19 and TB are the top two causes of death from contagious
diseases (1). The similarity in symptoms, risk factors, and
primary organ affected further exacerbates the circumstances.
TB-COVID-19 co-infection certainly intensifies the severity and
threat of death. Even though both diseases primarily affect the
lungs, due to disparities in modes of transmission and
pathogenesis, distinct therapeutic measures are required (14).
Nevertheless, with extraordinary scientific endeavour,
information regarding the pathogenesis of SARS-CoV-2 was
channelled to develop diagnostics, therapeutics, and vaccines
TABLE 1 | Desired characteristics for novel Tuberculosis immunization approaches.

S. No Desired characteristics

1. Safe to be administered in immunocompromised individuals at risk of developing active TB
2. Expenses associated with regimen and dosage should be reasonable for high burdened developing countries.
3. Immunization strategy must lower the risk of developing active pulmonary TB in adults previously vaccinated with BCG
4. Must protect against M.tb infections for more than 10 years subsequent to immunization
5. Minimum administrations requisite to elicit host protective responses
6. Evaluation of protective immune correlates by employing established assays
7. Must offer greater than 50% protective efficacy against established pulmonary TB
July 2022 | Volume 13 | Article 944183
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for COVID-19. Further, years of implementation of TB control
programs were utilized to implement control strategies to
constrain the pandemic (15). This prompts the necessity to
retrospect and harnesses the paramount knowledge for
progressive solutions to counteract the syndemic of COVID-19
and TB. Lessons learned from BCG vaccination for TB have been
operative to control the COVID-19 pandemic owing to the
broad-spectrum immunomodulatory potential of BCG (16).
The emergence of Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) and the consequent COVID-19
pandemic has negatively influenced the years of progress in
tuberculosis (TB) control (17). Advancement in the direction to
put an end to TB was hit hard by the ongoing COVID-19
pandemic. Reports of the World Health Organization (WHO)
corroborate that advent of COVID-19 has caused a diminution
in TB diagnosis and escan alation in mortality. To augment
protective immune responses against TB in adults, massive
scientific and economic attempts have been made globally.
Aspiration to attain complete bacterial sterility to counteract
active TB and restrict the transmission with next-generation
vaccines has been actively trailed. Even with several vaccine
candidates in different phases of clinical trials, we are yet to
uncover vaccination strategies that can efficaciously restrict
escalating TB burden worldwide (17). Hence, in this review, we
have discussed strategies to augment the existing vaccination
approach. Immune responses induced by BCG vaccination have
been studied comprehensively in past and we are still uncovering
new information regarding host responses stimulated by BCG
that impede the establishment of effective memory responses
(18). To improve the immunotherapeutic efficacy of BCG it is
vital to completely understand the mechanism of BCG-induced
immune responses. Modulation of host immunity via
immunomodulators along with vaccination can be employed
as a stratagem to incline immune responses to attain ever-lasting
immunity against M.tb infections. We will reassess the radical
approaches utilized by the researchers to limit the prevailing TB
cases and how a better understanding of BCG is prime for
progress in the TB vaccination program.
EXPEDITION FROM VIRULENT M. BOVIS
TO THE BCG VACCINE:

Albert Calmette and Camille Guérin commenced the pursuit to
develop a vaccine against TB in 1900 at the Pasteur Institute (19).
They began by cultivating a virulent bovine strain of bacillus
which was isolated from a tuberculous cow by Nocard. Initially,
the bacilli were grown on glycerine, potato medium
supplemented with ox bile to limit the clumping and attain
homogenous bacterial suspension. This effort to minimize
bacterial clumping additionally lowered the virulence of
pathogen upon sub-culturing. This scientific observation
provoked the scientists further to focus on using the attenuated
strain of bacilli for the generation of TB vaccine (20). Till 1919,
they successfully sub-cultured the bacilli more than 230 times.
This strain failed to infect and cause TB in animals such as
Frontiers in Immunology | www.frontiersin.org 3
guinea pigs, cattle, and rabbits. Firstly named “Bacille Bilie
Calmette-Guerin” this is now the most widely administered
vaccine worldwide Bacille Calmette-Guerin (BCG) (20). BCG
was first utilized in 1921 to immunize a new-born via oral route
after which it was mass vaccinated to protect infants from
disseminated forms of TB. To justify the escalating demand for
vaccine strain worldwide, several laboratories around the world
began sub-culturing BCG owing to which individuals around the
world are vaccinated with characteristically distinct BCG strains
(21). Based on existing knowledge, it is evident that diverse BCG
strains have variable efficaciousness (22) and immunogenicity
(23) but the most efficient BCG strain is yet to be established
(23). As little as 1% augmented efficaciousness can rescue around
18,000 individuals and limit 83,000 TB cases in a year (24).
Hence, to better understand the protective co-relates of BCG
vaccination should be the top priority to upgrade the
vaccination strategy.
BCG INDUCED PROTECTION AGAINST TB

Since the launch of BCG in TB immunization programs,
numerous lives have been saved owing to the only existent TB
vaccine (19). The percentage decline in disease that can be
attributed to vaccination outlines the clinical effectiveness of a
vaccine. Mainly, the BCG vaccine is administered to protect
against TB. However, the protective efficacy of BCG is assessed
distinctively in the case of disseminated TB in children and adult
pulmonary TB on the account of colossal discrepancy (25). One
of the multifaceted explanations can be the intricate biology of
TB establishment and progression in humans (26). In the
majority of M.tb infections, the immune system can
proficiently restrict the progression of the pathogen to cause
active TB. However, the endeavour to eliminate the bacilli
completely is rarely achieved and can culminate into escalated
inflammatory responses that direct distinct phases of disease
such as latent TB and associated immunopathogenesis (27). The
aim is to strike a balance for the resolution of M.tb infection
exclusive of detrimental inflammation. For more than a century,
researchers have attempted to ascertain correlates of BCG-
induced defenses in humans through various animal models
(10) and clinical trials (28). Additional toM.tb infections, broad-
spectrum immunomodulatory characteristics of BCG are utilized
to treat bladder cancer (29), asthma (30), leishmaniasis (31) and
warts (32). While our understanding of key immunological
aspects is continuously expanding (33), we have attained
substantial knowledge regarding innate and adaptive immune
responses to M.tb infection and BCG immunization which is
briefly depicted in Figure 1 and will be reviewed thoroughly in
this section.

Innate immune system function as the first line of defense in
confronting M.tb infections (34). The innate immune responses
are the key component of the host immune responses engaged
promptly at the site of infection (35). Even in the course of
intradermal BCG immunization, early immune responses are
elicited by resident epidermal macrophages (36), neutrophils
July 2022 | Volume 13 | Article 944183
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(37), and dendritic cells (DCs) (38). BCG comprises pathogen-
associated molecular patterns (PAMPs) such as cellular
component s (myco l i c ac id s , pep t idog lycans , and
arabinogalactans) which are recognized by diverse PAMP
recognizing receptors (PRRs) present on the surface of innate
immune cells. Diverse PRRs abundantly expressed on innate
subsets such as complement receptor 3 (CR3) (39), TLR2/4/9
(40), mannose receptor (41), Ca2+-dependent lectin (MINCLE)
receptors on macrophages (42), nucleotide-binding
oligomerization domain (NOD)-like receptors NOD2 on
monocytes, CD18, FcgRII, and FcgRIII on neutrophils and DC-
SIGN, CD11c, and CD205 on dendritic cells initiate the prompt
innate immune responses upon BCG immunization (43).
Disparities in the cellular composition of BCG and M.tb has
been linked with recognition by different PRRs which further
influences the uptake, processing and representation of antigens
to other immune cells. Since the receptor involved determines
the fate of downstream signaling, the variation in receptor
utilization can be further associated with relatively inefficient
immune responses in the case of BCG (44). Examination of skin
biopsies demonstrated that BCG blister point majorly comprises
CD15+ neutrophils, a small proportion of CD14+ monocytes,
and an infinitesimal population of CD3+ T lymphocytes (45).
Frontiers in Immunology | www.frontiersin.org 4
However, in whole blood culture experiments, CD56+ NK cells,
gd T cells, NKT cells, and cells from MAIT were found to be
associated with BCG-induced immunity (46). In response to
BCG vaccination, innate immune responses such as ROS/RNI
generation by neutrophils, the release of monocytic chemokines
like IL-6, TNF-a, MIP-1a, MIP-1b, IL-8, and IL-1a within 1-3
hours is initiated to direct systemic immune responses (45). BCG
is known to effectively activate monocytic populations (47). In
animal models, subsequent to BCG immunization mycobacterial
extermination by macrophages was demonstrated independent
of adaptive immune responses (48). Deficit immune responses
induced by macrophages subsequent to BCG vaccination
downgrade bacterial clearance. Furthermore, guinea pigs
immunized with BCG upon H37Rv infection demonstrated
enhancement of phagosome-lysosomal fusion with a
considerable reduction in mycobacterial burden (47).

Dendritic cells (DCs) function as a nexus between innate and
adaptive immune responses by presenting processed antigens to T
lymphocytes post BCG immunization via IL-1R, MyD88 pathway
(49). BCG immunization is known to enhance DC maturation and
activation by upregulating the expression of markers implicated in
antigen presentation such asMHC-II, CD40, CD80, and CD86 (35).
Nonetheless, BCG immunization is also linked with the stimulation
FIGURE 1 | Immune responses to BCG immunization. Immune responses to the BCG vaccine initiate at the site of inoculation by induction of innate immune cells
such as resident macrophages, neutrophils, and dendritic cells. Innate immune cells internalize, degrade and present antigen of bacilli via surface receptors to further
activate adaptive immune cells. Chiefly, DCs loaded with bacilli drain to the lymph nodes and result in lymphocyte stimulation and activation. T and B lymphocytes
further differentiate into diverse subtypes including effector and memory cells.
July 2022 | Volume 13 | Article 944183
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of IL-10 and IL-4 cytokines by DCs which can bias the
differentiation of T lymphocytes toward the TH2 subtype and can
be the cause of weakened BCG effectiveness (49). Nonetheless, the
majority of information concerning the role of DCs in the case of
BCG inoculation is from in vitro studies. The observation that in
vitro BCG stimulation, initiates aggregation of DCs, upregulates
antigen presentation with reduced endocytosis, and stimulation of
TNF-a infers that DCs contribute to the initiation of immune
responses. However, it is concerning that compared to M.tb
infection these responses are inadequate to impart requisite
protection (50). Apart from the major innate immune cell
populations, innate lymphoid cells (ILCs) and mucosal-associated
invariant T cells (MAIT) have been connected with BCG-induced
innate protection (36). However, fragmentary information is
accessible regarding these subsets and further exploration
is necessitated.

It is now well-known that analogous to antigen-specific
responses elicited by adaptive immunity, subsequent to
pathogenic insults cells of innate immunity elicit heterologous
memory responses (7). Distinct reports have demonstrated that
natural killer (NK) cells and macrophages which have formerly
encountered pathogens through epigenetic remodeling are
trained to respond to distinct pathogens (51). It has been
observed that epigenetic modifications such as H3K4me1,
H3K4me3, and H3K27ac have been associated with the
reprogramming of monocytic populations owing to
unfastening of chromatin positions at the promoters of pro-
inflammatory cytokines (52). BCG immunization leads to the
expansion of Hematopoietic stem cells (HSCs), drives
myelopoiesis and via epigenetic reprograming enhances host
protective immune responses (53). Furthermore, it is established
that macrophages interact with NK cells and bring about the
refinement of innate immune responses against pathogenic
insults (54). With a deeper insight into trained immunity, it
was observed that BCG vaccination in healthy individuals
stimulates NK cells and macrophages to uphold cytokine
generation in response to ex vivo stimulation (55). The broad-
spectrum immunomodulatory potential of BCG has been
employed for the treatment of diverse ailments including the
COVID-19 disease caused by SARS-CoV-2 (56). It has been
experimentally proved that BCG via epigenetic reprogramming
of immune cells exhibits cross-protection against diverse
pathogens (57). The research demonstrates the impact of BCG
vaccination on the induction of genome-wide histone
modifications in trained monocytes which participate in IL-1b
generation and the reduction of the yellow fever virus (YFV)
burden (58). BCG-induced protection against YFV infection
substantiates the broad-spectrum effectiveness of the vaccine
against diverse viral infections such as influenza A (H1N1)
virus, herpes simplex virus (HSV), and human papillomavirus
(HPV) (59). Based on this information, BCG vaccination was
evaluated initially during the COVID-19 pandemic. Preliminary
ecological studies demonstrated that COVID-19 cases and
deaths per population were fewer in countries with BCG
vaccination schedules (60). The notion of inducing anti-viral
immunity by employing BCG was based on the generation of
Frontiers in Immunology | www.frontiersin.org 5
heterologous immune responses (61). Since it was found that the
envelope protein of the SARS-CoV-2 virus shared certain
homology with strains of Mycobacterium species (62). It was
inferred that the homology was associated with the induction of
host-protective Th1/Th17 responses. The concept of trained
immunity and heterologous responses were utilized to exploit
BCG vaccination in the era of COVID-19. Since the majority of
individuals are already vaccinated with BCG, it is judicious to
keep BCG in reflection while developing new vaccination
strategies. The fight to halt TB must continue progressively
while dealing with the ongoing COVID-19 pandemic (17).

Till now adequate information is established regarding protective
correlates against TB. Adaptive immune responses play a vital role in
eliciting pathogen-specific immune responses with superior efficacy
(26). The protective role of T lymphocytes was primarily
demonstrated by the adoptive transfer of CD4+ and CD8+ T cells
from BCG immunized mice to T and B cell-deficient (Rag1-/-)
knockout mice (63). T lymphocytes contribute significantly against
M.tb infections upon activation by components of innate immunity.
The induction of Th1/Th17 immune responses and IFN-g secretion is
positively linked with augmented clinical outcomes in TB patients
(26). Several studies have demonstrated mechanistic insights of BCG-
induced defenses as a consequence of Th1 cells through IFN-g
secretion (64). The paramount contribution of Th1 responses was
also demonstrated in infants vaccinated with BCG wherein Th1
responses prevailed for more than a year contrary to pronounced
Th2 responses in unvaccinated infants (65). Furthermore, for the next
few years, BCG-induced protection was attributable to IFN-g
releasing T lymphocytes (65). However, the outcomes of BCG
immunization are still disputable and not strongly concurrent with
specific immune responses. In IFN-g deficient mice, BCG
immunization demonstrated considerable protection against M.tb
infection that vanished after depletion of CD4+ T lymphocytes (66).
Comparable outcomes were achieved in a study involving humans
vaccinated with BCG wherein restricted M.tb progression and
protection were linked with IFN-g independent CD8+

immunological responses (67). It is established now that
polyfunctional CD4+ T lymphocytes play a vital role in enhancing
defenses againstM.tb by secreting cytokines in different combinations
to amend the microenvironment at the site of infection (68). It was
confirmed that BCG immunization in infants does not elicit
polyfunctional immune responses linked with effective protection
against M.tb (12). However, immunization with a booster dose of
MVA85A (modified vaccinia virus Ankara expressing antigen 85A)
in BCG vaccinated adults confirmed induction of polyfunctional T
cell responses (69). This gave rise to the hypothesis of heterologous
boosting of BCG immunization for robust protective immunity
against M.tb. Thereafter, failure of MVA85A heterologous boosting
in infants to induce efficacious immune responses even with
induction of polyfunctional T responses blurred the resolution of
protective efficacy (70). Similarly, CD8+ T cells exhibit
antimycobacterial activity and are directly involved in M.tb killing,
cytotoxic extermination of infected cell populations, and IFN-g
secretion (71). In human samples, CD8+ T cells have been shown
to distinctively identify and kill infected macrophages along with
internalized M.tb with granular discharge comprising perforin and
July 2022 | Volume 13 | Article 944183
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granulysin (63). Therefore, subsiding the bacterial burden and
effectively enhancing defenses against M.tb. The vitality of MHC
class I-restricted CD8+ T cells was demonstrated in b2-microglobulin
(b2m) deficient mice incapable of restrictingM.tb infection (72). It is
not feasible to achieve sterilizing immunity against reinfections with
mycobacteria subsequent to pathogen clearance with
antimycobacterial drugs. Several studies have emphasized the
significance of IL-17 generating CD4+ T lymphocytes in mediating
protection from reinfections and improving clinical outcomes upon
vaccination (73). Consistent with these reports, in BCG immunized
mice, Th1 responses in the lungs were shown to be reliant on IL-17A
and IL-23 secreted by antigen-specific Th17 cells (73). In non-human
primates (NHPs) administering a high dose of intradermal or
intravenous BCG was linked with augmented protection from M.tb
as a consequence of CD4+ T lymphocytes with Th1/Th17 phenotypic
characteristics (74). Thus, augmenting Th1/Th17 responses induced
by BCG offer prospective solutions against TB (74). BCG
immunization has been linked with the enhancement of regulatory
T cells (Tregs) via alteration of immune metabolic pathways which
consequently reduces the protective efficacy against TB. Depletion of
Tregs can result in enrichment of Th1, cytotoxic T cell responses with
enhanced bacterial extermination upon infection (75). Boosting BCG
with a novel vaccine candidate comprising Ag85B-Mpt64 (76–84)-
Mtb8.4 (AMM) along with composite adjuvant lowers the Treg
population which was associated with enhanced protection in the
mice model (85). Nonetheless, few studies have also demonstrated
unaltered outcomes in BCG immunization upon prior Tregs depletion
(86). Hence, further analysis is necessitated to validate the prospects
for utilization in clinical operation. Regardless, the potential of the
BCG vaccine to enrich Tregs and inhibit detrimental inflammation has
been employed to treat diverse disorders including SARS-CoV-2
infection-induced cytokine storm in the COVID-19 pandemic (87).
Additionally, BCG administration has been linked with increased IL-
10 secretion in animal models which consequently restricts anti-
mycobacterial pro-inflammatory responses induced by vaccination
(88). Furthermore, obstruction of IL-10 signal transduction in the
course of BCG immunization improved protective immune
responses by mounting Th1, and Th17 responses (89). Hence,
striking the immunological balance to achieve affirmative outcomes
is requisite to alleviate BCG-induced protection.
APPROACHES TO AMEND
INADEQUACIES OF BCG VACCINE

Despite numerous limitations of the BCG vaccine, it is still
challenging to stumble upon more effective vaccine candidates
for TB (90). BCG is unquestionably the most reliant vaccine for
the prevention of disseminated forms of TB in children (91).
Hence, it is critical to comprehend the shortcomings of BCG to
extemporize protection by progressive approaches. It is widely
proclaimed that wearying BCG immunity is a consequence of the
non-existent T cell epitopes ofM.tb in BCG vaccine strains (92). It
is also established that expansion and differentiation of effector T
cells declines in age-dependent manner upon BCG inoculation
inferring toward weakened central memory responses (93). The
Frontiers in Immunology | www.frontiersin.org 6
contracted pool of antigen-specific memory populations is the
basis for short-term protection against M.tb infections (93).
Furthermore, the variable efficaciousness of BCG-induced
defenses is associated with multifold factors such as ecological
aspects, genetics, and differences in nutritional profiles amongst
populations, listed in Figure 2. A major rationale for highly
variable BCG efficacy in adults is exposure to environmental
non-tuberculous mycobacteria (NTM). Prevalence of NTMs in
tropical regions has been linked with low efficacy of BCG and
consequent high TB burden due to pre-immunization exposure
induced variation in protective efficacy (94). In the regions nearby
the equator, UV exposure has been connected with a reduction in
BCG efficacy which was further demonstrated in animal models
with alterations in cytokine profiles when exposed to UV at the
time of BCG immunization (60). Furthermore, variations in
handling protocols and numerous passages of BCG vaccine
strains have given rise to alterability in immunogenicity of BCG
vaccine strains worldwide (95). Despite the wavering protective
efficacy of BCG vaccine is deemed to be safe and is administered
worldwide is numerous vaccination programs. However, with the
raising concerns in immune-compromised HIV-TB co-infected
individuals, WHO has addressed disputes regarding the utility of
live vaccine in diverse risk groups. In immune-deficient children
seldomly BCG vaccination can lead to systemic BCGosis. Atypical
adverse reactions were detected in children with chronic
granulomatous disease, Di George syndrome and severe
combined immune deficiency (SCID) which can result in deadly
consequences if unmanaged (96). In immunocompromised
individuals especially neonates vaccination can also result in
BCG lymphadenitis and disseminated BCG infection which is
one of the most detrimental consequence of BCG vaccination (97).
Hence, due to the overabundance of factors contributing to
undermining protection elicited by BCG progressive approaches
have been employed to improvise BCG against M.tb.
REPLACING OR RECLAIMING BCG

The major TB burden worldwide accountable for morbidity and
mortality is due to adult pulmonary TB cases (1). The interval of
weakening of BCG-induced defenses overlaps with an escalated
incidence of M.tb infections in adults. On the surface foremost
justification for the incompetence of the BCG vaccine appears to be
immunization in the early years of life which imparts limited
protection (90). The prospects of the End TB Strategy hence seem
bleak without an improvised vaccination stratagem. Since BCG is the
most widely utilized vaccine in the world and imparts protection in
infants against disseminated forms of TB, it is judicious to reclaim
BCG-induced protection rather than displacing it with a replacement.
Fundamental strategy to amend BCG efficacy is by utilizing prime
boost vaccination approach (98). Since one of the many desired
characteristics for upcoming vaccine candidates is to efficaciously
improvise the existing TB control approach i.e. prophylactic BCG
immunization (99). Alternatives to strengthen the existing TB control
program comprises developing a booster vaccine to augment the
protective efficacy of BCG or supplementing immunotherapeutic as
July 2022 | Volume 13 | Article 944183
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an adjunct to strengthen BCG-induced immunity. Our research
group has endeavored and designed a novel vaccine comprising
TLR2 and TLR9 agonist along with collective of 7 overlapping
immunogenic M.tb peptides, packed together in a liposome (PTL).
We have demonstrated that intranasal immunization with PTL along
with BCG drastically condensed the bacterial burden, enhanced host
protective T cell responses with expansion of polyfunctional T cells as
well as memory T cell subsets. Furthermore, host protective immune
responses were M.tb specific owing to which spectrum of host
protective signaling pathways critical to control TB were activated
in response to PTL BCG co-immunization (100). Further assessment
in higher animal models like Non-human primates (NHPs) is
coveted to further validate our findings and progress the research
to higher phases. We and various groups worldwide have actively
devised and pursued strategies to develop new vaccine candidates,
booster vaccines and immunotherapeutic to augment BCG efficacy
against M.tb infection. However, in this review we have discussed
about new TB vaccines in brief and have focused on host
immunotherapeutic approaches comprehensively.
NEW VACCINES AGAINST TB

The necessity of an alternate vaccination strategy for TB control has
not been overlooked and researchers around the world are actively
pursuing diverse vaccine candidates to improve existing
Frontiers in Immunology | www.frontiersin.org 7
circumstances (99). On the account of immense attempts, several
groups have developed vaccines by employing diverse approaches to
control TB. Some classic examples include the attenuated M.tb
bacilli strains (101) with high immunogenicity (102), the generation
of genetically modified BCG strains for better immune responses
(70), sub-unit vaccines incorporating immunogens absent in BCG
(103), and adjuvants with enhanced potency. Major TB vaccine
candidates in advanced clinial trials are tabulated in Table 2. A
myriad of challenges is liable for slow progress in vaccine
development against TB. One of which is the necessity for a
vaccine that protects against adult pulmonary TB, in individuals
who are presently vaccinated with BCG. Ideally, the development of
vaccine candidates that can efficaciously impart protection to
individuals previously exposed to mycobacteria including BCG,
M.tb and environmental mycobacterial species would be enviable.
So as to boost the immune responses thereby limiting adult
pulmonary TB infections (19). Diverse studies incorporating
booster vaccinations are under evaluation in animal models (104).
With the advancement in technology and knowledge regarding host
protective defense mechanisms, especially antigen-specific immune
responses accountable for effective responses against M.tb we are
surpassing conventional vaccination approaches. With improved
understanding regarding known correlates of protection, research
groups are assessing strategies to enhance long-lasting protective
immune responses by employing progressive targets. What we have
learned in the past decade from BCG trials as well as recent
COVID-19 trials can be employed in the future to better interpret
FIGURE 2 | Diverse factors associated with variable efficacy of BCG. Inconsistent efficacy of BCG vaccination can be linked to numerous host factors including
genetics, geographical representation, ethnicity, and fragmentary immunological insight addition to variation in BCG vaccine strains with distinct characteristics.
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the lacunae which can be resolved for an improved TB vaccination
program (16).
HOST-DIRECTED STRATEGIES TO
IMPROVE BCG EFFICIENCY

The outcome ofM.tb infection is determined not just by the action
of the pathogen but also by the host response. So as to achieve the
goal of the End TB strategy, progressive efforts are being made to
establish efficacious therapeutics (17). In an attempt to achieve this
goal, host-directed therapeutics with the potential to reprogram host
defenses for better clinical outcomes are under consideration. Since
it is known that in the majority of individuals, the immune system
can self-reliantly eradicate the pathogen. Augmenting this
phenomenon so as to achieve complete sterility can offer benefits
to the existing global TB burden. TB is a chronic disease with a
spectrum of pathologies (26). Hence, we need to move ahead from
conventional antibiotics toward host-directed therapies for
improved clinical outcomes. HDT has found a niche in the
treatment of various diseases (105). However, we need more
efforts to establish a standard HDT as an adjunct to conventional
ATT for the augmentation of disease burden. So as to achieve this
target it is a prerequisite to determine key host immune targets for
better outcomes. HDTs aim at diverse pathways critical for
determining the fate of the infection. HDTs work by restricting
Frontiers in Immunology | www.frontiersin.org 8
pathways exploited by pathogens or by ameliorating host protective
immune responses (105). With the advancement in understanding,
diverse factors contributing to the establishment of infection have
been identified. The primary goal of TB drug discovery is to
exterminate both active and persistent bacteria so as to attain
complete sterility. Challenge is to aim at heterogenous M.tb
populations that respond distinctly to therapeutics. It is essential
to be reminiscent of the fact that M.tb infection can instigate a
continuum of host responses owing to distinctive physiologies of
heterogeneous bacterial populations. Furthermore, a profound
assessment of stochastically and phenotypically drug-resistant
persisting populations of M.tb subsequent to drug therapy is
requisite to cope with TB relapse and reactivation (106). Better
insight into mechanisms targeted to exterminate persistent
populations is necessitated since it is not conclusive whether
targeting bacterial membrane or prime respiratory components
will eradicate latent bacteria. It is the need of the hour to get hold
of innovative drugs to establish efficacious therapy to attain the goals
of the End TB strategy. To accelerate the search for the right drugs,
United States Food and Drug Administration (FDA) approved
compounds are also under evaluation and operation (107).

Futuristic therapeutics should aim to shorten the duration of
conventional ATT by proficient elimination of persistent bacterial
populations, which also result in drug-resistant strains. With the
constant expansion of drug resistance, options for treatment are
continuously depleting. Chiefly, in terms of drug-resistant TB,
HDTs can be employed to augment antimicrobial host defences
TABLE 2 | Major TB vaccine candidates in clinical trials:.

Vaccine
candidate

Composition Clinical Trial Clinical trial
Identifier

Ref.

Inactivated whole-cell vaccines
DAR-901 Inactivated Mycobacterium obusense Phase 2, randomized, placebo-controlled, double-blind study to

evaluate the efficacy of DAR-901 TB booster to prevent TB in
adolescents.

NCT02712424 (1)

MIP Inactivated Mycobacterium indicus pranii Phase 3, randomized, double-blind, interventional study to determine
the efficacy and safety of MIP as an adjunct in Category I pulmonary
TB patients

NCT00341328 (2)

RUTI® Detoxified, fragmented M.tb contained in liposomes Phase 2, randomized, double-blind, placebo-controlled interventional
trial to assess the therapeutic vaccine, RUTI against TB

NCT01136161,
NCT04919239

(3,
4)

Vaccae™ Heat-inactivated Mycobacterium vaccae Phase 3, randomized, double-blind, interventional trial to assess the
safety and efficacy to prevent TB in high-risk groups of TB infection

NCT01979900 (5)

Live attenuated vaccines
MTBVAC Live attenuated M.tb vaccine with PhoP and FadD26

deletions
Phase 3, randomized, quadruple masking intervention to determine
safety, efficacy and immunogenicity in newborns

NCT04975178 (6)

VPM1002 Live recombinant BCG vaccine strain with urease C
deletion engineered to express listeriolysin rather than
urease C

Phase 3, multicenter, double-blind, randomized, active-controlled trial
to examine the safety, efficacy and immunogenicity to prevent M.tb
infection

NCT04351685 (7)

Subunit vaccines
M72/
ASO1E

Fusion protein subunit vaccine based on 32A and 39A
prepared in AS01E adjuvant

Phase 2, randomized, interventional clinical trial to determine the
efficacy of TB vaccine candidate in Adults

NCT01755598 (8)

H56:IC31 Recombinant vaccine comprising proteins of M.tb (85B,
ESAT6, Rv2660c) and IC31 adjuvant

Phase 2, randomized (1:1), double-blind, placebo-controlled trial to
determine efficacy of H56:IC31 in preventing rate of TB recurrence

NCT03512249 (9)

GamTBvac Recombinant subunit vaccine formulation comprising
modified Ag85a and ESAT6-CFP10 M.tb antigens and
CpG ODN adjuvant

Phase 3, randomized, multicentered, double-blind, placebo-controlled
intervention to determine safety and efficaciousness of GamTBvac
against pulmonary TB

NCT04975737 (10)

ID93/GLA-
SE

ID93 is a recombinant fusion protein comprising 4
antigens from virulence-associated proteins in GLA-SE
i.e., oil-in-water emulsion

Phase 2a, randomized, placebo-controlled, double-blind intervention to
evaluate safety and effectiveness of ID93/GLA-SE in TB patients

NCT02465216 (11)
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or to restrain detrimental inflammation instigated by infection.
Some of the prospective HDTs against M.tb are listed in Table 3,
summarised in Figure 3 and further mechanism of protection is
elaborated in different sections. Furthermore, HDTs that can limit
the hepatotoxicity associated with conventional antibiotics are
desired to subside unfavourable outcomes of extensive therapies.
Theoretically HDTs surpass diverse issues associated with
pathogen-directed therapeutics. HDTs augment host immune
responses with sufficient proficiency to restrict the progression of
the disease. Furthermore, targeting host components provide the
advantage of reducing the generation of antibiotic resistance (129).
Therapeutics targeting host components avoid the chances of drug
resistance which is a global health concern. However, if not chosen
wisely targeting host components can lead to off-target binding and
might accelerate the chances of detrimental side effects. Thus, our
knowledge regarding targeted mechanisms is vital to developing
therapies to reprogram host defences for efficacious TB treatment.
ESTABLISHED HOST-DIRECTED
STRATEGIES TO POTENTIATE BCG
VACCINATION

In an attempt to achieve the targets of End TB strategy, diverse host-
directed therapeutics with the potential to reprogram host defences
for better clinical outcomes are under consideration. Since it is
known that in the majority of individuals, the immune system can
self-reliantly eradicate the pathogen. Augmenting host defences so
as to achieve complete sterility can offer benefits in reducing existing
global TB burden. To achieve superior effectiveness against M.tb
infections, researchers have evaluated the administration of
immunomodulators along with antibiotics and vaccines. This was
widely employed in cancer therapies wherein inhibition of anti-
inflammatory cytokines, and inhibitory signaling receptors such as
Frontiers in Immunology | www.frontiersin.org 9
PD-1 and CTLA-4 were found effective in augmenting tumor
recession (130). Likewise, therapeutics known for inhibition of
detrimental immune responses were found effective in improving
tumor vaccine efficacies. Constructive outcomes were detected
against breast cancer and pancreatic adenocarcinoma by the
utilization of COX-2 inhibitors (131). In HIV-infected individuals,
therapy with COX-2 inhibitor augmented effector and memory
responses induced by T cell targeting vaccine; tetanus toxoid (132).
Selected clinical trials that have evaluated immunomodulatory
strategies adjunct to BCG immunization for improved clinical
results have been listed in Table 4 (133). Furthermore,
modulation of monocytic cell populations has been exploited as a
prospective strategy for augmenting efficacy of BCG vaccination.
Abundance of uric acid crystals namely monosodium urate (MSU)
have been linked with bone inflammation and associated immune
responses (110). Presence of MSU crystals was further linked with
coexistingM.tb joint infection in patients suffering from gout (134).
MSU treatment in the THP-1 cell line brings about a generation of
ROS, stimulation of phagosome-lysosome fusion, and viaNOD-like
receptor signaling enhanced BCG clearance (135). MSU alone has
no anti-bacterial activity inferring potential to promote bacterial
clearance by immunomodulation. MSU therapy in adjunct to BCG
vaccination in vivo led to a reduction in bacterial burden in draining
lymph nodes. However, MSU treatment did not affect the viability
of BCG. As compared to BCG alone, MSU therapy significantly
reduced the bacterial burden in the lungs and spleens of M.tb
infected mice (110). Based on affirmative evidences of Vitamin D
supplementation in restraint of M.tb infections (136), several
research groups have correlated protective efficacy of BCG
immunization in infants with Vitamin D levels (137). One of the
research group has observed increase in Vitamin D levels in infants
vaccinated with BCG and have linked the upsurge with non-specific
immune responses detected subsequent to vaccination (138). In
another study, infants supplemented with Vitamin D were expected
to elicit protective IFN-g responses against M.tb infection (137).
TABLE 3 | Potential host directed immunotherapeutic approaches against M.tb infection.

S. No. Therapeutic candidates Host protective immunological characteristics References

1. Ibuprofen Inhibits neutrophil infiltration and detrimental inflammation at the site of infection (108, 109)
2. Acetylsalicylic acid (Aspirin) Anti-inflammatory responses reduce detrimental pathology (108)
3. Monosodium Urate (MSU) Activation of immune responses to augment antimycobacterial efficacy of BCG (110)
4. Calcimycin Induction of autophagy by binding to P2X7 receptors (111)
5. Verapamil Inhibits LTCC channels thereby induces autophagy by increasing Ca2+ levels. (112)
6. Clofazimine Enrichment of stem cell memory T memory responses upon BCG revaccination (113)
7. Luteolin Inhibition of Kv1.3 K

+ channels, enhancement of antimycobacterial and T cell memory immune response (114, 115)
8. Rapamycin (Sirolimus) Enhances antigen processing and presentation and directs Th1 immunity (116)
9. Tat-beclin-1 fusion peptide Autophagy induction and reduction in progression of pathogens (117)
10. Gefitinib Enhances lysosomal biogenesis, action and bacterial degradation (118)
11. 2-deoxyglucose (2-DG) Metabolic reprograming induced reduction in pathological damage (119)
12. Ritonavir (Norvir) Glucose transporter agonist induces protection against HIV as well as M.tb (120)
13. FX11 Lactate dehydrogenase inhibitor reduces oxidative stress and downgrade iNOS (121)
14. TEPP46 Limits inflammation by reducing PKM2 activation (122)
15. Metformin Induces AMPK mediated signaling, induction of ROS and intracellular bacterial killing (123)
16. AICAR Stimulate anti-microbial immune responses by via (PPARGC1) linked pathways (124)
17. C75 Inhibits lipid derived droplets biogenesis, enhances ROS, NO production and polarizes macrophages from M1 to M2 (125)
18. Cerulenin Inhibition of fatty acid synthase, uncouples UCP2 and promotes NLRP3 activation (126)
19. GW9662 PPARg antagonist can regulate inflammation and disease progression by altering metabolism in macrophages. (127)
20. AGK2 Inhibits host sirtuin2 (SIRT2) and enhances bacterial clearance, host protective immune responses (128)
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FIGURE 3 | Potential of host-directed therapies (HDTs) to improve BCG efficacy. Diverse HDTs aiming at distinct pathways are under evaluation to improve clinical
outcomes. HDTs restrict pathogen-induced subversion strategies to ameliorate host defenses against M.tb.
TABLE 4 | List of clinical trials evaluating BCG immunization along with diverse immunotherapeutic for efficient medical utility against diverse disease conditions.

BCG vaccine and immunothera-
peutic regimen

Clinical trial Trial
identifier

Diseased
condition

Ref.

Intravesical hyaluronic acid (HA) with
BCG

Phase 2, randomized, pilot study to examine effect of HA in reducing BCG induced
local cytotoxicity

NCT02207608 Bladder urothelial
cell carcinoma

(12)

Tislelizumab in Combination
with BCG

Phase 2, open-label, single-arm, single center trial to evaluate safety and
effectiveness of Tislelizumab along with BCG (TACBIN-01)

NCT04922047 High risk urinary
bladder cancers

(13)

Vitamin D supplementation in adjunct
to BCG immunization in infants

Randomized, double masked, interventional study to evaluate impact of vitamin D
supplement in infants prior to BCG vaccination

NCT01288950 Tuberculosis (14)

Vitamin A with BCG Vaccine Phase 4, randomized, double-masked intervention to evaluate the utility of high-
dose vitamin A supplementation in infants along with BCG vaccine at birth

NCT00168597 Mortality and
morbidity in infants

(15)

Monoclonal Antibody A1G4
and BCG

Phase 1 intervention to evaluate the efficacy of monoclonal antibody A1G4 along
with BCG in cancer patients

NCT00003023 * Neuroblastoma,
Sarcoma

(16)
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However, this clinical trial waned to provide evidences of Vitamin D
induced protection in augmenting BCG efficacy. Further assessment
is requisite to explore prospects of Vitamin D supplementation
along with BCG immunization. Potential of established
immunomodulators with BCG have been improvised for better
clinical outcomes. One such study demonstrated induction of
superior host protective T cell responses upon co-administering
curcumin nanoparticles along with BCG immunization in murine
model (139). Clofazimine (CLOF), an authorised therapeutic for
leprosy treatment and second-line drug used in combinations
against drug-resistant M.tb strains has also demonstrated
affirmative outcomes in mice model. BCG revaccination along
with CLOF administration significantly augmented T cell
memory responses comprising enhancement of stem cell-like
memory T cell responses (TSCM) along with successive effector
and memory T cell populations (113). So as to further resolve the
prospects of above-mentioned strategies in enhancement of BCG
efficacy, further studies in higher animal models such as non-
human primates (NHPs) and clinical trials is necessitated
without delay.
MODULATION OF IMMUNE RESPONSES
TO IMPROVE PROTECTIVE EFFICACY

With the rise of genomics, researchers have utilized the genomic
information of M.tb and M. bovis BCG vaccine strains for
assessing variations that can be benefitted to develop better
vaccination strategies (95). The revelation of the entire M.tb
genome revolutionized TB research by expanding the knowledge
of central immunomodulatory components (140). To achieve
superior effectiveness against M.tb infections, researchers have
evaluated the administration of immunomodulators along with
vaccines. This was widely employed in cancer therapies wherein
inhibition of anti-inflammatory cytokines, and inhibitory
signaling receptors such as PD-1 and CTLA-4 were found
effective in augmenting tumor recession (130). Likewise,
therapeutics known for inhibition of detrimental immune
responses were found effective in improving tumor vaccine
efficacies. Constructive outcomes were detected against breast
cancer and pancreatic adenocarcinoma by the utilization of
COX-2 inhibitors (131). In HIV-infected individuals, therapy
with COX-2 inhibitor augmented effector and memory responses
induced by T cell targeting vaccine; tetanus toxoid (132).
Inhibition of neutrophil infiltration at the site of M.tb infection
by Ibuprofen (IBP) resulted in improved clinical outcomes and a
reduction in bacterial burden in C3HeB/FeB mice (109). IBP is
also known to possess specific antitubercular characteristics
(141) . Furthermore, IBP along with another drug;
acetylsalicylic acid was evaluated to be repurposed as an
adjunct therapy in TB patients (108). In murine model of TB,
drugs were associated with enhancement of pyrazinamide (PYZ)
antimycobacterial efficacy (142). This approach can be further
exploited to amend BCG-induced responses. These studies
indicate that treatment with immunomodulatory compounds
Frontiers in Immunology | www.frontiersin.org 11
or enriching host protective responses along with BCGmight can
effectively enhance protection induced by BCG vaccination.
TARGETING HOST ION CHANNELS

Another strategy is to aim at host ion channels, that orchestrate
physiological features of various cell populations by operating
ions facilitated currents throughout cellular and subcellular
membranes (143). Intracellular calcium levels are known to
regulate key immune responses in the host, directly or by
directional alteration of other vital ions such as potassium
(K+), sodium (Na+), and chloride (Cl-) ions within immune
cell populations (144). Obstruction of ion channels by employing
diverse blockers has been assessed as a therapeutic target for
diseases like hypertension (145). Research groups have also
examined ion channel blockers for boosting anti-microbial
immune responses. Intracellular calcium (Ca2+) levels play a
vital role in the regulation of antimycobacterial mechanisms such
as autophagy, maturation of phagosome, and induction of
apoptosis (146). However, the impact of Ca2+ levels on
processes like autophagy additionally depends on the
involvement of diverse ion channels contributing to the
maintenance of current (147). For instance, it has been
observed that Ca2+ currents via Voltage-gated calcium
channels (VGCCs) impede induction of autophagy (147) while
Ca2+ currents through P2X purinoceptor 7 (P2X7) receptor
heighten autophagy induction and intracellular extermination
of M. bovis BCG in macrophages. Calcimycin, an ionophore
binds to P2X7 receptor which leads to rise in intracellular Ca2+

levels and exerts antimycobacterial activity againstM. bovis BCG
(111) by stimulation of autophagy (148). Administering Ca2+ ion
channel blockers was linked with a 32% reduction in risk of
progression into a diseased state, in a clinical study in TB patients
with heart and cerebrovascular diseases (149). Diverse Ca2+ ion
channel blockers evaluated in the investigation exhibited variable
consequences. L-type calcium channel (LTCC) blocker –
verapamil, an FDA approved drug is utilized to treat
abnormalit ies in heart rhythms, angina (150), and
hypertension (151). In macrophages, LTCCs attenuate Ca2+

discharge from the endoplasmic reticulum (ER) leading to
inhibition of macrophage activation. So as to bypass host
immune responses M.tb upregulates the expression of VGCCs
in APCs. Verapamil administration inhibits LTCC currents
thereby escalating Ca2+ concentration in the cytosol which
upregulates autophagy and bacterial clearance in M.tb (143).
Additionally, LTCC ion channel blockers can alter iron-
associated metabolic pathways thereby impeding iron
accessibility which lowers intracellular bacterial survival (143).
Furthermore, verapamil acts synergistically with first-line anti-
TB drugs- INH (152), and RIF (153) in lowering the bacterial
burden in cultures, macrophages, and murine models of TB. In
another study, antimycobacterial activity of verapamil was
confirmed with several TB drugs including bedaquiline (BDQ)
and clofazimine (CFZ) and decreased bacterial load was linked
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with induction of membrane stress responses as a consequence of
verapamil induced membrane function disruption (154). In the
murine model, adjunctive verapamil administration augmented
efficacy of recently approved MDR-TB drug; bedaquiline at
lower doses and diminished the emergent resistant strains
(155). Furthermore, progressive approaches such as assessment
of inhalable verapamil-rifapentine particles has been assessed by
researchers for utility as ATT (156). Even with significant pieces
of evidence regarding anti-TB activity and negligible toxicity,
verapamil has not transitioned into clinical setup. Further
assessment of the anti-TB potential of verapamil along with
BCG immunization is necessitated to evaluate the impact on
modulating immunological responses. Similarly, Numerous K+

ion channel blockers have been assessed as prospective anti-TB
therapeutics owing to their physiochemical ability to activate
macrophages. Clofazimine (CFZ) is a conventional first-line
drug used for leprosy treatment along with RIF and dapsone
(157). It was initially developed against M.tb but was found not
as efficacious as INH and RIF. However, with emergent drug-
resistant strains, it has been recently employed as a second-line
anti-TB drug (158). Numerous clinical trials (BEAT-TB (159),
endTB-Q (160), and TB-PRACTECAL (161)) are investigating
the efficaciousness of regimens comprising clofazimine.
Furthermore, phase-2 clinical trial CLO-FAST is examining 3-
month ATT comprising clofazimine and rifapentine against
drug-sensitive M.tb (162). In addition to antimycobacterial
activity, clofazimine is a potent immunomodulator. It inhibits
Kv1.3 K

+ channels which are expressed in various immune cells
(163). Clofazimine-induced inhibition of Kv1.3 K+ channels
abundantly present on T effector memory cells (TEM) enhances
the efficacy of BCG vaccination in a murine model of TB by
specifically promoting the expansion of the T central memory
cell population (TCM). Furthermore, CFZ enriches stem cell
memory T cell responses upon BCG revaccination (113). In a
similar manner, we have demonstrated the efficacy of less toxic,
phytochemical namely Luteolin an established Kv1.3 K

+ channel
blocker in augmenting BCG-induced immune responses by
enriching TCM memory responses, improving TCM : TEM ratio
and enhances host protective Th1 and Th17 immune responses
against M.tb infection in the murine model of TB (115).
Furthermore, immune-protective properties of luteolin
condensed the time period of bacterial clearance with INH
owing to augmented Th1 and Th17 immune responses and
eased pathological damage and TB associated hepatotoxity in
vivo (114).
IMPROVING ANTI-MICROBIAL
IMMUNE RESPONSES

Therapeutic modulation of host immune responses to achieve
complete sterility is another approach that has been pursued by
several research groups (129). M.tb utilizes complex artillery to
evade immune cell populations and associated defense
mechanisms. M.tb owing to mycobacterial virulence factors such
as cell wall component- mannose-capped lipoarabinomannan is
Frontiers in Immunology | www.frontiersin.org 12
known to inhibit phagolysosome fusion in macrophages. It is a
vital phenomenon critical for curbing infection at an early stage
(26). However, this can be enforced by autophagy induction,
which is another cellular mechanism by which detrimental
cytosolic molecules and organelles are targeted to lysosomes for
degradation. Early secreted antigen 6 secretion system-1 (ESX-1)
of M.tb is known to permeabilize the phagosome to escape
degradation (164). However, this facilitates processing by
components of ubiquitin-mediated autophagy mechanism and
results in a reduction in M.tb persistence (165). Furthermore,
stimulation of autophagy sequesters and degrades bacterial
components and can also contribute to fostering antigen
presentation and moderating pathology (166). The most widely
studied autophagy inducer – rapamycin (Sirolimus) is known to
inhibit the mammalian target of rapamycin (mTOR) which
negatively regulates autophagy. It is majorly employed in organ
transplantation owing to the immunosuppressive nature of the
drug (167). Researchers have attempted re-purposing of
Rapamycin, an autophagy inducer to heighten antigen
processing and presentation in murine antigen-presenting cells
(APCs) (168). It is well established that confiscation of BCGwithin
phagosome and inability to fuse with lysosome reduces the efficacy
of antigenic peptide presentation on DCs. Dendritic cells (DCs)
treated with autophagy inducer, rapamycin enhanced Th1
responses against M.tb (116). Improvement in DC activation
and Th1 responses against M. with concurrent rapamycin and
BCG administration offers prospective approach to autophagy
mediated enhancement of bacterial clearance (116). Similarly, the
efficacy of BCG can be augmented by simultaneous treatment to
direct host responses toward bacterial extermination to achieve
complete sterility (116). Few piecemeal studies have questioned
the immunotherapeutic strategies to enhance vaccine efficiency
against TB, however a great deal is yet to be explored (169).
However, side effects associated with rapamycin administration
such as interstitial pneumonitis can be alarming in TB patients
with substantial pathology (170). Furthermore, metabolization of
rapamycin by hepatic enzyme CYP3A4 limits its utility in TB
patients since CYP3A4 is intensely stimulated by standard ATT
antibiotic – INH (171). Due to the mentioned limitations
rapamycin has not been further evaluated as HDT against M.tb.
Vadimezan (also known as DMXAA) is another prospective
autophagy inducer. It is an established antitumor agent as well as
in mice it triggers, a stimulator of IFN genes (STING) dependent
autophagy mechanism (172). However, it was found inefficacious
in humans (173). Research groups have further examined the
utility of fusion peptides for the induction of autophagy. Tat-
beclin-1 fusion peptide an autophagy inducer (174) was found to
restrict the proliferation of diverse pathogenic strains and
heightened survival rates in infected mice (117). Though,
restrictions like regular administration by injection constrain the
clinical utility of HDT. Alternatively, an inhibitor of epidermal
growth factor receptor (EGFR) was found to limit M.tb
proliferation in macrophages and reduces bacterial burden in
the lungs of infected mice via autophagy induction (175). In
M.tb infected macrophages treated with Gefitinib; tyrosine kinase
inhibitor, lysosomal biogenesis, function and targeting of bacteria
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to lysosome for degradation is increased thereby decreasing
bacterial burden via EGFR signaling in macrophages (118).
However, there is a need to further analyse pieces of evidence
and peripheral markers of autophagy for certainty. With the
advancement in technologies, sophisticated approaches to
evaluate the induction of autophagy can evolve the quest for
superior autophagy inducers that can be employed to enhance
bacterial killing by limiting dissemination.
TARGETING HOST METABOLISM

Research focus has shifted radically in the past decade towards
metabolic shifts in response to infections. Immunometabolism is
an emerging field that focuses on the impact of the metabolic
state of immune cell populations to provide better insight into
disease progression and pathogenesis (176). In the initial course
of M.tb infection, metabolic shift is observed to defend the host.
Immune protective responses such as stimulation of pro-
inflammatory cytokines, and nitric oxide (NO) release is
directed via HIF-1-dependent glycolytic pathways (177).
However, M.tb is known to stimulate the Warburg effect so as
to inhibit anti-microbial host immune responses (178). Host
metabolism is utilized by M.tb to survive and proliferate by
escaping host protective immune mechanisms (179). This infers
that metabolic reprogramming is vital for defense againstM.tb so
as to augment efficacious sterilization mechanisms. 2-
deoxyglucose (2-DG) an inhibitor of hexokinase enzyme, can
limit the IL1-b generation in LPS-activated macrophages and
result in succinate accumulation (180). 2-DG stimulated
glycolysis inhibition can additionally result in a reduction in
lung damage induced by LPS (181) via moderating nuclear
PKM2-STAT3 signaling. Further, prospects of 2-DG to restrict
pathological damage in TB cases can be assessed for augmented
clinical outcomes. Similarly, ritonavir (Norvir), a protease
inhibitor widely used as antiretroviral medication to treat HIV
infections (120), is additionally known for capability to act as an
glucose transporter agonist (182). Researchers have evaluated
combinations of HIV drugs including ritonavir along with ATT
so as to effectively counter HIV-TB coinfections (183). Strategic
arrangement by utilizing characteristics of ritonavir to inhibit
host glucose transporters can be assessed further in case of HIV-
TB patients to better understand mechanism of protection.
Inhibitor of pyruvate dehydrogenase kinase- dichloroacetate,
is a small molecule that increases pyruvate flux into
mitochondria and skews metabolism toward glucose oxidation
rather than glycolysis (184). Inhibition of pyruvate
dehydrogenase kinase was established as a host target to
counter infection of Salmonella enterica serovar typhimurium
via metabolic reprogramming of M1 macrophages. However,
intracellular burden for M.tb was not reduced upon
dichloroacetate treatment, alternate inhibitors can be explored
with similar objective (185). Another small molecule and lactate
dehydrogenase inhibitor – FX11 (3-dihydroxy-6-methyl-7-
(phenylmethyl)-4-propylnaphthalene-1-carboxylic acid]) is
known for induction of oxidative stress and reduction in
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tumour advancement (121). Downregulation of iNOS and
cytokine generation was achieved in LPS-activated RAW 264.7
macrophages upon FX11 induced lactate dehydrogenase
inhibition (186). Similarly, the inhibitor of pyruvate kinase–
TEPP46 significantly reduced PKM2 activation in LPS-induced
macrophages which led to a lowering of IL-1b generation (122).
Hence, small molecule inhibitors can be employed to direct
metabolic flux for desired clinical outcomes to resolve
immunopathology of TB by regulating host metabolism.

M.tbmanipulates lipid and fatty acid metabolic pathways of the
host for its persistence and proliferation (187). Foamy macrophages
recruited around M.tb infected phagocytes, supply nutrition and
support in the course of infection. M.tb manipulates host cells to
synthesize lipids and fatty acids. Hence, components of lipid
synthesis pathways manipulated by M.tb for survival can be
targeted as HDT (188). Metabolic energy sensors such as AMP-
activated protein kinase (AMPK) play a vital role in the regulation
of key host protective mechanisms against infections (189). An
approved type 2 diabetes drug, Metformin which activates the
AMPK-mediated signaling mechanism has been evaluated for TB
(190). Metformin induces the generation of mitochondrial reactive
oxygen species (ROS) resulting in restriction in intracellular growth
ofM.tb and limiting the activation of the inflammatory gene (191).
In M.tb infected guinea pigs, metformin acts synergistically with
conventional ATT drugs – INH and ETH (192). Metformin
administration causes a significant reduction in latent TB
incidences in prone diabetic individuals (193). This HDT can be
evaluated proficiently at advanced clinical stages. Another AMPK
activator, 5-aminoimidazole-4-carboxamide-1-1-b-D-
ribofuranoside (AICAR) stimulates anti-microbial responses by
activating autophagic pathways in macrophages. AMPK activation
by AICAR further controls the biogenesis of mitochondria and
metabolic state in macrophages by inducing peroxisome
proliferator-activated receptor gamma coactivator-1 (PPARGC1)
associated pathways (124). Components of host machinery that
curb the metabolism of lipids can reduce detrimental inflammation
thereby establishing a balanced immune state. Fatty acid synthase
inhibitors such as C75 and cerulenin are prospective targets for the
augmentation of efficacious immune responses. Inhibition of lipid-
derived droplets by C75 can lead to polarization of macrophages
from the M1 to M2 subset causing enhancement of ROS and NO
production (125). C75 and cerulenin-mediated inhibition of fatty
acid synthase lead to uncoupling protein-2 (UCP2) mediated
NLRP3 inflammasome activation (126). PPARg antagonist,
GW9662 is known to regulate vital processes such as metabolism,
inflammation, and disease progression (127) in macrophages
infected with M. bovis BCG (76). Link between inflammation and
lipid metabolism associated PPARg signaling can be exploited to
potentiate BCG-induced protection (76). This infers that
reprogramming key components of lipid metabolism can be a
prospective target for progressive TB therapeutics. Sirtuins
(SIRTs) are another prospective target with the potential to be
targeted for the augmentation of host defences (77). SIRTs are
deacetylases that regulate cellular mechanisms like inflammatory
responses, regulation of lipid metabolism by modulating
components of NF-kB immune signaling, and anti-inflammatory
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responses by regulation of Peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1a) (78). It has been
observed that SIRT-1 expression is diminished drastically in M.tb
infected THP-1 cells. SIRT-1 downregulates RelA/p65 unit of NF-
kB so as to modulate inflammation (79). SIRT-6 is also known to
diminish pro-inflammatory and anti-microbial responses in the
early course of M.tb infection (80). Furthermore, SIRT2 has been
established as an immunotherapeutic target against M.tb infection
in mice model of TB (128). It was observed that subsequent toM.tb
infection, SIRT2 expression increases along with translocation to
nucleus to induce immune dampening epigenetic modifications.
However, chemical inhibition of SIRT2 using established inhibitor,
AGK2 dramatically augmented bacterial clearance and host
protective immune responses. Since, existing literature is available
regarding SIRT2 induced metabolic programming (81) and signal
transduction (82). Further progressive approaches can be shaped by
targeting key physiological factors of host.
TARGETING MICRORNAS

miRNAs are non-coding RNAs that are involved at post-
transcriptional levels to regulate array of genes decisive of
immune responses (83). Over 2000 functional miRNAs are
encoded by human genome (84) which regulate diverse protein-
coding transcripts (194). It is now well-established that miRNAs
distinctly regulate host immune responses against M.tb infection
(195). Differential expression of miRNAs can signify the
advancement of disease from latent to an active infection (196).
Furthermore, miRNAs play a significant role in the moderation of
apoptotic and autophagic responses during M.tb infection (196).
Owing to advancements in technology, miRNA delivery is being
employed to treat diverse diseases. This further pave way for the
application of miRNAs as HDT against TB (197). Several studies
have assessed mechanisms by which M.tb temper host immune
responses for survival in an antimicrobial milieu. Diverse immune
mechanisms such as phagolysosome maturation in APCs, cytokine
stimulation by immune cell populations, and antigen processing
and presentation are dynamically manipulated by M.tb. These
cellular processes are strictly regulated by an assortment of
miRNAs in the host (198). M.tb is additionally known to alter
miRNA expression associated with key biological responses to
escape host immune responses (199). Additionally, expectations
of combined regulation of transcriptional network by miRNAs and
transcription factors represent miRNAs linked with diseases as a
novel category of therapeutics.

miRNAs involved in immune pathways are extensively
studied for mycobacterial infections (200). It is well-known
that during M.tb infection miR-125b inhibits TNF biosynthesis
in human alveolar macrophages (201). Several research groups
have observed that M.tb infection results in differential
expression of miRNAs which determines the fate of immune
responses (202). However, comprehensive knowledge is requisite
for progressive considerations. Participation of miRNAs in M.tb
induced autophagy (203) and apoptosis has provoked further
interest to maneuver miRNAs for HDTs. Upon M.tb infection,
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diverse cell populations respond varyingly in conjunction with
variations in miRNA expression. Upregulation of miR-155 has
been observed in bone marrow-derived macrophages of mice
infected withM.tb (204). In contrast, downregulation of miR-155
has been observed in peripheral blood mononuclear cells
(PBMCs) derived macrophages upon M.tb infection (201).
Mycobacterial infection in human monocyte-derived
macrophages results in overexpression of miR-29a, miR-886-
5p, and let-7e, which further target caspase 3 and caspase 7 as
predicted by the integrated analysis. Differential expression of
miR155, miR-146a, miR145, miR222, miR-27a, and miR-27b
was observed in human macrophages infected with virulentM.tb
H37Rv and avirulent strain M. bovis BCG. Downregulation of
miRNA involved in the regulation of inflammation and lipid
metabolism was observed. Furthermore, miR-145 known for
induction of apoptosis has been reported to be downregulated
upon infection with a virulent M.tb strain, which results in
overexpression of targets which inhibit apoptosis (205). Based
on microarray analysis, global changes in miRNA expression
screened nine miRNA genes which were differentially expressed
in M.tb H37Rv and M.tb H37Ra infected THP-1 cells. These
differentially expressed miRNAs such as miR-30a, miR-30e,
miR-155, miR-1275, miR-3665, miR3178, miR-4484, miR-
4668-5p, and miR-4497 contribute in diverse physiological
aspects. miR-155 interacts with negative regulators involved in
TNF- a generation (201). Evaluation of PBMCs and pleural fluid
mononuclear cells (PFMCs) linked miRNA expression with
levels of IL-6 cytokine. Additionally, it has been observed that
the highly-virulent Beijing/W TB strain represses plenty of
miRNA in human macrophages as compared to non-Beijing/
W TB strains. Alterations in miRNAs have been observed in
patients with active TB. The functional assessment demonstrated
that miR-144 restrains T-cell expansion and generation of key
cytokines, INF-g and TNF-a. In RAW264.7 cells, upon BCG
inoculation, miRNA-144-3p overexpression is linked with
inhibition of autophagy and antimycobacterial activity (206).
Elevation in miR-424 and miR-365 levels has been detected in
active TB patients. Diverse miRNA contributes to determining
the fate of infection. Regulation of immune cell activation by
miR-155, miR-146a, miR-21, and miR-9 (207), TLR signaling is
positively regulated by miR155 (208). Subsequent to M. bovis
BCG infection significant increase in miR-155 expression is
observed in macrophages, which modulates diverse innate
immune responses including ROS generation (209). It
additionally plays role in apoptosis induction in macrophages
upon M. bovis BCG inoculation which modulates cellular
physiology and immune responses (210). In M.tb infected
human alveolar macrophages, miR-125b inhibits TNF
generation (201). miR-29 targets IFN-g and regulate immune
responses linked toM.tb infection (211). miR-223 targets several
chemo-attractants such as CXCL2, CCL3 and contributes to
directing immune response (212). It has been evaluated that
endogenous block of miR-29 in transgenic mice, augmented
resistance to M.tb infection (211). miR-27a targets IRAK4 and
restrict immune response in TB (213). Another study
demonstrated that BCG infection in RAW264.7 cells
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upregulates miR-17-5p which was linked with augmented BCG
dissemination and enhanced autophagosome related protein
expression (214). As revealed diverse miRNAs are under
evaluation owing to gene modulatory potentials. However, our
knowledge regarding role of specific miRNA overexpression
upon BCG inoculation is still fragmentary. Utilization of
miRNAs to augment host immune responses, paves way for
advancement in therapeutics for various diseased conditions.
Differential expression of miRNAs can be moulded in such a way
to achieve better clinical outcomes in TB patients. Progressive
therapeutics are employing miRNA-mimics (215), antisense
oligonucleotides (216) to manipulate immune responses.
Although several research groups have evaluated the utility of
miRNA manipulation as HDT against M.tb, further assessment
is necessitated to establish the prominence of miRNA as
therapeutic. We required more studies to comprehend the
contribution of miRNA in host-pathogen interactions and a
progressive strategy for augmenting conventional therapies.
CONCLUSIONS AND FUTURE
PERSPECTIVE

Despite incessant debates on the variable protective efficiency of
BCG, it prevails as the only vaccine for TB prevention. Owing to
considerable protection in children against disseminated forms of
TB, it remains a key component of TB control programs in various
countries (90). Throughout our review, we have mentioned several
shortcomings and lacunae linked with the failure of the TB
vaccination strategy. One of which is the complexity of the
Frontiers in Immunology | www.frontiersin.org 15
disease itself, as we are envisaging resolutions that can impart
complete sterility, which is seldomly accomplished in the natural
course of infection (26). In this aspect, TB diverges from the diseases
that are preventable via vaccination. Hence, progressive approaches
were pursued with the utilization of known immune correlates of
protection. To surpass the previously failed attempts, it is vital to
redirect focus on immunological pathways that can be augmented
for better clinical implications (217). Since adult pulmonary TB
mainly accounts for M.tb transmission, advances to tackle the
inadequacies of BCG to impart long-lasting immunological
memory should be highlighted as a better immunization
stratagem. With extraordinary scientific efforts to counteract the
most fatal pathogens known to humankind, we have progressed to a
situation wherein we can harness establish knowledge and
immunological concepts to deal with the shortcomings of existing
approaches and improvise for robust clinical trajectories. Since the
most of individuals worldwide are already vaccinated with BCG, it is
judicious to keep BCG in reflection while developing new
vaccination strategies. Scientific communities are attempting
stratagems to prevent millions of deaths from escalating infectious
diseases by investing on immunotherapeutic approaches to
augment immunological responses.
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2. Sutherland I, Svandová E, Radhakrishna S. The Development of Clinical
Tuberculosis Following Infection With Tubercle Bacilli. 1. A Theoretical
Model for the Development of Clinical Tuberculosis Following Infection,
Linking From Data on the Risk of Tuberculous Infection and the Incidence
of Clinical Tuberculosis in the Netherlands. Tubercle (1982) 63(4):255–68.
doi: 10.1016/S0041-3879(82)80013-5

3. Onozaki I, Raviglione M. Stopping Tuberculosis in the 21st Century: Goals
and Strategies. Respirology (2010) 15(1):32–43. doi: 10.1111/j.1440-
1843.2009.01673.x

4. Elsevier_Vaccine_Immunology. Available at: https://www.vacunashnrg.com.
ar/archivosInteres/Elsevier_Vaccine_immunology.pdf.

5. Holladay AJ, Poole JCF. Thucydides and the Plague of Athens. Classical
Quarterly (1979) 29(2):282–300. doi: 10.1017/S0009838800035928

6. Riedel S. Edward Jenner and the History of Smallpox and Vaccination. Proc
(Bayl Univ Med Cent) (2005) 18(1):21–5. doi: 10.1080/08998280.2005.11928028

7. Netea MG, Quintin J, van der Meer JWM. Trained Immunity: A Memory
for Innate Host Defense. Cell Host Microbe (2011) 9(5):355–61. doi:
10.1016/j.chom.2011.04.006

8. Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL. Innate and
Adaptive Immune Memory: An Evolutionary Continuum in the Host’s
Response to Pathogens. Cell Host Microbe (2019) 25(1):13–26. doi: 10.1016/
j.chom.2018.12.006

9. BCG. Available at: https://www.who.int/teams/health-product-policy-and-
standards/standards-and-specifications/vaccines-quality/bcg.
10. Mack U, Migliori GB, Sester M, Rieder HL, Ehlers S, Goletti D, et al. LTBI:
Latent Tuberculosis Infection or Lasting Immune Responses to M.
tuberculosis? A TBNET Consensus Statement. Eur Respir J (2009) 33
(5):956–73. doi: 10.1183/09031936.00120908

11. Ottenhoff THM, Kaufmann SHE. Vaccines Against Tuberculosis: Where
Are We and Where Do We Need to Go? PloS Pathog (2012) 8(5):e1002607.
doi: 10.1371/journal.ppat.1002607

12. Moliva JI, Turner J, Torrelles JB. Immune Responses to Bacillus Calmette–
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Calmette-Guérin. Nat Commun (2021) 12(1):6658.

104. Dalmia N, Ramsay AJ. Prime-Boost Approaches to Tuberculosis Vaccine
Development. Expert Rev Vaccines (2012) 11(10):1221–33. doi: 10.1586/
erv.12.94

105. Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R. Host-Directed
Therapies for Bacterial and Viral Infections. Nat Rev Drug Discov (2018) 17
(1):35–56. doi: 10.1038/nrd.2017.162

106. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. The Challenge of
New Drug Discovery for Tuberculosis. Nature (2011) 469(7331):483–90. doi:
10.1038/nature09657

107. Commissioner O of the. FDA Approves New Drug for Treatment-Resistant
Forms of Tuberculosis That Affects the Lungs (2022). Available at: https://
www.fda.gov/news-events/press-announcements/fda-approves-new-drug-
treatment-resistant-forms-tuberculosis-affects-lungs.
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