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review and meta-analysis
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Objective: To evaluate the safety and efficacy of fecal microbiota

transplantation for autoimmune diseases and autoinflammatory diseases.

Methods: Relevant literature was retrieved from the PubMed database, Embase

database, Cochrane Library database, etc. The search period is from the

establishment of the database to January 2022. The outcomes include

clinical symptoms, improvement in biochemistry, improvement in intestinal

microbiota, improvement in the immune system, and adverse events. Literature

screening and data extraction were independently carried out by two

researchers according to the inclusion and exclusion criteria, and RevMan 5.3

software was used for statistics and analysis.

Results: Overall, a total of 14 randomized controlled trials (RCTs) involving six

types of autoimmune diseases were included. The results showed the

following. 1) Type 1 diabetes mellitus (T1DM): compared with the autologous

fecal microbiota transplantation (FMT) group (control group), the fasting

plasma C peptide in the allogenic FMT group at 12 months was lower. 2)

Systemic sclerosis: at week 4, compared with one of two placebo controls,

three patients in the experimental group reported amajor improvement in fecal

incontinence. 3) Ulcerative colitis, pediatric ulcerative colitis, and Crohn’s

disease: FMT may increase clinical remission, clinical response, and

endoscopic remission for patients with ulcerative colitis and increase clinical

remission for patients with Crohn’s disease. 4) Psoriatic arthritis: there was no

difference in the ratio of ACR20 between the two groups.
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Conclusion: Based on current evidence, the application of FMT in the

treatment of autoimmune diseases is effective and relatively safe, and it is

expected to be used as a method to induce remission of active autoimmune

diseases.

Systematic review registration: https://www.crd.york.ac.uk/prospero/

display_record.php?ID=CRD42021235055, identifier CRD42021235055.
KEYWORDS

fecal microbiota transplantation, autoimmune diseases, autoinflammatory diseases,
meta-analysis, systemic review
1 Introduction

Autoimmune disease refers to a class of diseases caused by the

breakdown of the immune system’s immune tolerance to its own

components, thereby attacking its own organs, tissues, or cells,

causing damage (1, 2). According to the scope of involved organs

and tissues, autoimmune diseases are divided into two categories:

organ-specific autoimmune diseases and non-organ-specific

autoimmune diseases (3). Organ-specific autoimmune disease

refers to lesions confined to a specific organ or tissue, such as type

1 diabetes mellitus (T1DM) (4). Non-organ-specific autoimmune

disease refers to a group of diseases with lesions involving multiple

tissues, organs, or systems, including systemic lupus erythematosus

(SLE) and rheumatoid arthritis (RA) (5). Epidemiology shows that

about 7.6% to 9.4%of the global population suffer fromvarious types

of autoimmune diseases. Autoimmune diseases have become the

third largest chronic disease after cardiovascular disease and cancer

(6, 7). Autoimmune diseases are difficult to cure and may seriously

affect the quality of life of patients and threaten the lives of

patients (8).

At present, the treatment of autoimmune disease is mainly

symptomatic therapy (inhibition of inflammation and inhibition of

autoimmunity) (9, 10). For example, the main drugs for RA are

conventional synthetic disease-modifying anti-rheumatic drugs

(csDMARDs). After disease remission, a reasonable reduction of

csDMARDs is closely related to the riskofdisease recurrence (11, 12).

Biologics DMARDs (bDMARDs) are commonly used to treat

patients with moderate-to-severe rheumatic disease who do not

respond well to or cannot tolerate conventional synthetic

DMARDs (12, 13). However, none of these drugs or surgical

treatments can completely cure autoimmune diseases, only relieve

symptoms, they have side effects (severe gastrointestinal adverse

reactions and immunosuppression leading to infection), and the

price of biological agents is high (14–16). With the deepening of

research, there is evidence that the intestinalmicrobiota canmaintain
02
the body’s homeostasis. It has a certain effect on the regulation of

cytokines, helps to improve the defense ability of the body’s immune

system, and can participate in the host’s immune process (17, 18).

Thegutmicrobiotahasbeenshownto interactwith immunecells and

modulate specific signalingpathways involved in innate andadaptive

immune processes (19). Current research shows that gut microbes

are closely related to diseases (20), especially in autoimmune diseases

(21). A number of animal experiments and clinical trials have found

that intestinal microbiota may become a new therapy for the

treatment of autoimmune diseases (21, 22).

Fecal microbiota transplantation (FMT) refers to transplanting

the functional microbiota in the feces of healthy people into the

patient’s intestine to rebuild the healthy intestinal microbiota and

achieve the treatment of intestinal and extraintestinal diseases (23),

especially for the treatment of Clostridium difficile infection. It has

become an important treatment method recommended by US

medical guidelines (24). FMT is not just a simple technology but

an emerging treatment that includes strict donor screening,

optimized fecal bacteria preparation methods, scientific

microbiota transplantation methods, and other concepts and

methodologies (25). A meta-analysis summarized data from 26

studies and found that FMT can significantly relieve ulcerative

colitis (UC), and has some effect on liver disease, metabolic

syndrome/obesity, and antibiotic resistance but has no significant

effect on irritable bowel syndrome. In addition, fecal microbiota

transplantation showed a good safety profile relative to the control

group (26). A number of randomized controlled trials (RCTs) have

found that the efficacy of FMT in the treatment of autoimmune

diseases is significantly better than that of conventional treatment,

and no serious adverse reactions have been observed during follow-

up (27–30). Combining the results of the current clinical studies, we

consider that FMT may be a potential option for professional

physicians in the treatment of autoimmune diseases. However, due

to the differences in the transplantation route, preparation process,

and follow-up time of FMT among the studies, there may be some
frontiersin.org
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differences in the results, and the sample size of each study is

relatively small. Therefore, this study conducted a meta-analysis of

all RCTs on FMT in the treatment of autoimmune diseases so far

and comprehensively evaluate its efficacy and safety so as to provide

an evidence-based basis for guiding its clinical application.
2 Materials and methods

2.1 Research proposal

This study was performed in strict accordance with the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines and the protocol registered in

PROSPERO (CRD42021235055) (see Supplementary Material).
2.2 Selection criteria

2.2.1 Participants
The participants were adult patients with autoimmune

diseases that are clearly diagnosed by recognized standards.

2.2.2 Intervention
The experimental group was given any method of FMT

treatment, not limited to transplantation methods. The control

group received non-FMT treatments, such as conventional therapies.

2.2.3 Outcomes
The outcomes include improvement in clinical symptoms,

improvement in biochemistry, improvement in intestinal

microbiota, improvement in the immune system, andadverse events.

2.2.4 Study design
RCTs, with no limitation on language, random sequence

generation methods, etc., were included.

2.2.5 Exclusion criteria
1) Interventions in thecontrol group includedFMT.2)Duplicate

literature: research was conducted in the same center, and duplicate

cases were excluded after the full text was read; if the article was

duplicated inChinese and English, the latest published literature was

selected.The followingwas also excluded: 3)non-RCTs, 4)non-adult

patients, and 5) non-clinical research such as animal experiments,

cytology research, or molecular biology research.
2.3 Search strategy

The researchers searched PubMed, CNKI, Wanfang

Database, Web of Science, VIP Database Medline Complete,
Frontiers in Immunology 03
Sinomed, and Embase for RCTs on FMT in the treatment of

autoimmune diseases. The retrieval time was from inception to

16 January 2022. The Cochrane Library (to Issue 1, 2022),

China Clinical Trial Registry, and ClinicalTrials.gov were also

searched. The search strategy is shown in Table S1 as

an example.
2.4 Data extraction and
quality assessment

Literature screening and retrieval were independently

completed by two researchers according to the inclusion and

exclusion criteria. If there was a disagreement, it would be

resolved through discussion with all researchers. The following

data were extracted for the included studies: author, publication

year, study type, total number of study cases, number of patients

included, average age, source of stool, transplantation method,

relevant outcomes, adverse reactions and cases, and follow-up

time. The included RCT literature was scored according to the

Cochrane Risk Bias Assessment Tool (31), and the scoring was

completed by two investigators independently. If there is a

disagreement, it will be resolved through discussion with

all researchers.
2.5 Statistical analysis

Review Manager 5.3 was used in the software for meta-

analysis (32). The Q test is used to test the heterogeneity between

the results of the included studies, and combined with I2 to

quantitatively analyze the magnitude of the heterogeneity. If p >

0.1 and I2 < 50%, then the heterogeneity between the results of

each study is considered to be small, and the fixed-effects model

was used for meta-analysis; otherwise, the subgroup analysis is

performed first, and if there is still heterogeneity, the random-

effects model was used for meta-analysis. The risk ratio (RR) and

its 95% confidence interval (CI) were used as the efficacy and

safety statistics (33).
3 Results

3.1 Results of the search

After a preliminary search, a total of 933 records were

retrieved. Then 18 articles were initially included according to

the search strategy. After reading the full text carefully and

comparing the inclusion and exclusion criteria, four RCTs were

excluded (34–39), and 14 RCTs were finally included (40–

53) (Figure 1).
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3.2 Description of included trials

Fourteen RCTs involving six types of autoimmune diseases

were included: T1DM (one RCT), systemic sclerosis (one RCT),

ulcerative colitis (eight RCTs), pediatric ulcerative colitis (one

RCT), Crohn’s disease (two RCTs), and psoriatic arthritis (one

RCT). Most of the RCTs described the clinical research registration

numbers. In addition, nomore than 100 participants were involved

in the endpoint assessment. Most studies performed FMT through

gastroscopy or colonoscopy, four of which were performed

through the upper gastrointestinal tract, and eight were

performed through the lower gastrointestinal tract, while Haifer

et al. (2022) (48) and Crothers et al. (2022) (49) used oral

lyophilized FMT. The source of fecal bacteria of Fretheim et al.

(2020) (41) is standardized human fecal microbiota composition,

which originates from a single healthy feces donor in 1995. Sun

et al. (2018) (46) did not mention the source of fecal bacteria. The

fecal bacteria used in the remaining RCTs are from healthy pre-

screened donors, and the fecal bacteria used by different patients

come from different donors. The details of the study characteristics

are presented in Table 1.
Frontiers in Immunology 04
3.3 Risk of bias assessment

The summary and graph of the risk of bias are shown

in Figure 2.

3.3.1 Sequence generation
Twelve RCTs described the method of random sequence

generation: de Groot et al. (2021) (40), Paramsothy et al. (2017)

(42), Rossen et al. (2015) (43), Moayyedi et al. (2015) (44),

Costello et al. (2019) (45), Sood et al. (2019) (51), Haifer et al.

(2022) (48), Crothers et al. (2022) (45), and Kragsnaes et al.

(2021) (53) utilized computer-generated random sequence. Sun

et al. (2018) (46) utilized random number table. Sokol et al.

(2020) (51) utilized centralized block randomization. Therefore,

it is assessed as a low risk of bias. The other RCTs did not

describe the method of random sequence generation and were

therefore assessed as unclear risk of bias.

Sun et al. (2018) (46) and Deng et al. (2020) (47) did not

describe whether to use allocation concealment, so it was rated as

unclear risk of bias. The remaining RCTs used describe the

available allocation concealment methods. They were considered
FIGURE 1

Flow diagram.
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TABLE 1 The characteristics of the included studies.

Disease Study Trial registration Country Sample size Intervention Relevant Mean age
ars)

Duration Source of fecal microbiota

Control
group

24.3 ± 5.4 48 weeks Lean (BMI < 25 kg/m2), omnivorous, healthy
male and female Caucasians

66.0 ± 1.5 16 weeks ACHIM is produced by ACHIM AB
biotherapeutics (556939-7788), Sweden. It is a
standardized human fecal microbiota
composition. The microbiota originates from
feces donated back in 1995, by a single
healthy feces donor

27.7–45.6 8 weeks Healthy anonymous pre-screened donors

30.0–48.0 12 weeks Healthy partners, relatives, or volunteers (≥18
years of age)
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Trial
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Control
group

Trial group Control
group

Trial
group

T1DM de Groot
et al. (2021)
(40)

NTR3697 Netherlands 17 17 Allogenic FMT
to upper
gastrointestinal
tract

Autologous
FMT to upper
gastrointestinal
tract

C peptide and
HbA1c, T-cell
immunology
changes, fecal
microbiota
changes, plasma
metabolite
changes upon
FMT, adverse
events

25.0 ±
3.5

Systemic
sclerosis

Fretheim
et al. (2020)
(41)

NCT03444220 Norway 5 5 Commercially
available
anaerobic
cultivated
human
intestinal
microbiota
(ACHIM)
transplant to
upper
gastrointestinal
tract

ACHIM
bacteria
medium
transplant to
upper
gastrointestinal
tract

Clinical
symptoms,
modified Rodnan
Skin Score
(mRSS), new-
onset digital
ulcers, forced
vital capacity
(FVC), diffusing
capacity of the
lungs for carbon
monoxide
(DLCO), CRP,
ESR, fecal
microbiota
changes, adverse
events

58.0 ±
5.6

Ulcerative
colitis

Paramsothy
et al. (2017)
(42)

NCT01896635 Australia 41 40 FMT to lower
gastrointestinal
tract

Normal saline
transfer to
lower
gastrointestinal
tract

Clinical
remission, clinical
response,
endoscopic
remission,
endoscopic
response, adverse
event

27.8–
48.9

Rossen et al.
(2015) (43)

NCT01650038 Netherlands 23 25 Allogenic FMT
to upper
gastrointestinal
tract

Autologous
FMT to upper
gastrointestinal
tract

Clinical
remission, clinical
response,
endoscopic

33.0–
56.0
e
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TABLE 1 Continued

Disease Study Trial registration
number

Country Sample size Intervention Relevant
outcomes

Mean age
(years)

Duration Source of fecal microbiota

Control
group

35.8 ± 12.1 7 weeks Volunteers who were between 18 and 60
years of age and were otherwise healthy, as
assessed by a screening questionnaire

25–46 8 weeks Healthy anonymous pre-screened donors

43.6 ±
13.87

16 weeks Not mentioned

42 8 weeks Healthy children or adolescents from 6 to 15
years old and meet the following conditions:
1) there is no known infectious disease and
no antibacterial drugs have been used within
3 months; 2) no gastrointestinal tumors,
polyps, and other diseases; 3) no history of
immune system diseases; no
immunosuppressive agents have been used; 4)
no history of IBD, chronic constipation, or
IBS; no history of malignant tumor; 5) have
not traveled to areas with endemic diarrhea in
the last 6 months; 6) and there are no
digestive system symptoms and other related
risk factors, such as intravenous drug abuse
(drug abuse), high-risk sexual behavior, and
criminal history. Donor exclusion criteria: 1)
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remission,
endoscopic
response, adverse
event

Moayyedi
et al. (2015)
(44)

NCT01545908 Canada 38 37 FMT to lower
gastrointestinal
tract

Water enema
transfer to
lower
gastrointestinal
tract

Clinical
remission, clinical
response, adverse
event

28–52

Costello
et al. (2019)
(45)

ACTRN12613000236796 Australia 38 35 Allogenic FMT
to lower
gastrointestinal
tract

Autologous
FMT to lower
gastrointestinal
tract

Clinical
remission, clinical
response,
endoscopic
remission,
adverse event

42.2 ±
15.0

Sun et al.
(2018) (46)

No registration
information found

China 14 15 FMT to lower
gastrointestinal
tract + oral
mesalazine 1 g
t.i.d.

Normal saline
transfer to
lower
gastrointestinal
tract + oral
mesalazine 1 g
t.i.d.

Clinical
remission,
adverse events

52.64 ±
13.91

Deng et al.
(2020) (47)

No registration
information found

China 24 10 FMT to lower
gastrointestinal
tract + oral
mesalazine 1 g
q.i.d.

Oral
mesalazine 1 g
q.i.d.

Adverse events 39.5
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TABLE 1 Continued

Disease Study Trial registration
number

Country Sample size Intervention Relevant
outcomes

Mean age
(years)

Duration Source of fecal microbiota

Control
group

metabolic diseases such as diabetes and
metabolic syndrome; 2) history of digestive
system surgery; 3) chronic fatigue syndrome;
4) autoimmune diseases; 5) atopic diseases,
such as eczema, asthma, and gastrointestinal
eosinophil-related diseases; and 6)
neuropsychiatric diseases

25.1–42.0 8 weeks Healthy unrelated donors

52 ± 15 12 weeks Healthy unrelated donors

33.0–52.0 10 weeks Healthy pre-screened donors

34.6 ± 12.3 48 weeks Healthy pre-screened donors

4–17 144 weeks Healthy pre-screened donors

52.4 ± 11.0 26 weeks Healthy pre-screened donors

(Continued)
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Trial
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Haifer et al.
(2022) (48)

ACTRN12619000611123 Australia 15 20 Oral
lyophilized
FMT

Oral placebo Clinical
remission,
endoscopic
remission,
adverse event

31.8–
46.8

Crothers
et al. (2022)
(49)

NCT02390726 the U.S. 6 6 Oral
lyophilized
FMT

Oral placebo Clinical
remission,
adverse events

41 ± 15

Crohn’s
disease

Sokol et al.
(2020) (50)

NCT02097797 France 8 9 FMT to lower
gastrointestinal
tract

Sham FMT Clinical
remission,
adverse events

27.5–
36.5

Sood et al.
(2019) (51)

CTRI/2018/02/012148 India 31 30 FMT to lower
gastrointestinal
tract

Normal saline
transfer to
lower
gastrointestinal
tract

Clinical
remission,
Endoscopic
remission,
adverse events

33 ±
12.4

Pediatric
Ulcerative
Colitis

Pai et al.
(2021) (52)

No registration
information found

Canada 19 12 FMT to lower
gastrointestinal
tract

Placebo enema
transfer to
lower
gastrointestinal
tract

Clinical
remission,
Endoscopic
remission,
adverse events

Psoriatic
arthritis

Kragsnaes
et al. (2021)
(53)

NCT03058900 Denmark 15 16 FMT to upper
gastrointestinal
tract

Sham FMT Health
Assessment
Questionnaire
Disability Index
(HAQ-DI),
Health
Assessment
Questionnaire
Disability Index
(ACR)20,
Spondyloarthritis

48.9 ±
16.1
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to have adopted allocation concealment and therefore were

assessed as low risk of bias.
3.3.2 Blinding
Sun et al. (2018) (46) only mentioned blinding patients but not

blinding data collectors. Therefore, it is assessed as a low risk of bias

in “performance bias” and as a high risk of bias in “detection bias”.

Deng et al. (2020) (47) did not mention blinding, and the outcome

indicators used were subjective (such as clinical remission). Sokol

et al. (2020) (50) mentioned the use of single blinding but did not

describe the process and objects of blinding. Pai et al. (2021) (52)

mentioned the use of blinding for patients and caregivers, but not

for members of the research team. Therefore, these three RCTs are

assessed as high risk of bias in the blind method. The other RCTs

described the blinding of both patients and researchers and were

therefore rated as low risk of bias.
3.3.3 Incomplete outcome data and
selective reporting

Fretheim et al. (2020) (41), Sun et al. (2018) (46), and Deng

et al. (2020) (47) have an incomplete outcome but do not mention

the processing method of missing data, so they are assessed as an

unclear risk of bias. The intention-to-treat analysis was used in

other RCTs, so they were rated as low risk of bias. All RCTs do not

have selective reporting and are therefore considered to be a low risk

of bias.
3.3.4 Other potential bias
Other sources of bias were not observed in 14 RCTs;

therefore, the risks of other biases in the RCTs were low.
3.4 Outcomes of type 1 diabetes mellitus

Only one RCT of intestinal microbiota transplantation for

the treatment of T1DM has been published [Fretheim et al.

(2020) (41)]. The RCT finally included 20 participants (10 in the

autologous FMT group and 10 in the allogenic FMT group) for

data analysis. For safety, the RCT reported that no serious

adverse clinical events nor adverse changes in plasma

biochemistry were observed in the two groups.

This RCT showed that compared with the autologous FMT

group (control group), the fasting plasma C peptide in the

allogenic FMT group at 12 months was lower (348 ± 115 vs.

202 ± 85 pmol/L, Student’s t-test p = 0.0049). There was no

significant difference between the two groups of blood sugar

control (glycated hemoglobin (HbA1c) 46 vs. 53.5 mmol/mol,

p = 0.19). The RCT also found that the difference between two

groups of individual T-cell responses against IA-2, GAD65, and

preproinsulin or blood frequencies of islet autoreactive CD8+ T

cells (Qdot) was of no statistical significance. There was also no

significant difference in the frequency of islet autoreactive CD8+
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T cells between the two groups. However, the RCT found that

the difference in CD4+ CXCR3+ cells between the treatment

group and the control group was statistically significant (p =

0.01) and was negatively correlated with the change in the

primary endpoint C-peptide area under the curve (AUC) at 12

months (p = 0.046, rho = −0.47). The RCT observed the changes

in the intestinal microbiota in the small intestine after FMT and

found that the relative abundance of the microbiota in the

control group decreased, while the relative abundance of the

treatment group increased. In addition, the study also found that

compared with the autologous FMT group (control group), the

plasma metabolite of the allogenic FMT group has changed,

including 1-myristoyl-2-arachidonoyl-GPC (MA-GPC) (p =

0.02, MWU) and 1-arachidonoyl-GPC (A-GPC) (p = 0.02).
3.5 Outcomes of systemic sclerosis

Only one RCT of intestinal microbiota transplantation for the

treatment of systemic sclerosis has been published (de Groot et al.,

2021). The RCT finally included nine participants (five in the
Frontiers in Immunology 09
experimental group and four in the placebo group) for data analysis.

For safety, there were five adverse events in the experimental group,

all of which were mild adverse events, including bloating,

constipation, abdominal discomfort (five times), nausea (four

times), diarrhea (three times), and vomiting (one time). In the

placebo group, a total of four adverse events occurred: one was a

serious adverse event, and three were mild adverse events, including

diarrhea, nausea (two times), bloating, constipation, vomiting, and

fever (one time). This showed that the side effects of anaerobic

cultivated human intestinal microbiota (ACHIM) were mild

and transient.

This RCT showed that at week 4, compared with one of two

placebo controls, three patients in the experimental group reported

amajor improvement in fecal incontinence. Overall, in four-fifths of

the patients in the experimental group (week 4 or 16) and two-

quarters of patients in the placebo group (week 4 or 16),

improvement in abdominal distension, diarrhea, and/or fecal

incontinence was observed. In addition, the RCT also showed

that the relative abundance of intestinal microbiota after FMT

changed compared with the placebo group [beta diversity (p < 0.02)

and number of distinct operational taxonomic units (OTUs) (p <
B

A

FIGURE 2

Risk of bias assessment. (A) Risk of bias graph. (B) Risk of bias summary.
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0.006)]. The genus whose relative abundance increased after the

intervention was mainly in Firmicutes, including genera in

Ruminococcaceae and Lachnospiraceae. The RCT also recorded

modified Rodnan Skin Score (mRSS), new-onset digital ulcers,

forced vital capacity (FVC), diffusing capacity of the lungs for

carbon monoxide (DLCO), C-reactive protein (CRP), and

erythrocyte sedimentation rate (ESR), but the results of the

comparison between the groups were not seen.
3.6 Outcomes of ulcerative colitis

A total of eight RCTs reported FMT for the treatment of

ulcerative colitis, and the outcomes could be pooled, so a meta-

analysis was performed.

3.6.1 Clinical remission
Seven RCTs reported clinical remission. The result of the

heterogeneity test was I2 = 61% and p = 0.02, which indicated

that the included RCTs had high heterogeneity, and the random-

effects model was used for analysis. The results of the meta-analysis

showed that the clinical remission rate of the experimental group

was higher than that of the control group [RR 1.89 (1.18, 3.00), p =

0.008, random-effects model] (Figure 3).

3.6.2 Clinical response
Four RCTs reported the clinical response. The result of the

heterogeneity test was I2 = 20% and p = 0.29, which indicated that

the included RCTs had low heterogeneity, and the fixed-effects

model was used for analysis. The results of the meta-analysis

showed that the clinical response rate of the experimental group

was higher than that of the control group [RR 1.87 (1.32, 2.64), p =

0.0004, fixed-effects model] (Figure 4).
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3.6.3 Endoscopic remission
Four RCTs reported endoscopic remission. The result of the

heterogeneity test was I2 = 0% and p = 0.59, which indicated that

the included RCTs had low heterogeneity, and the fixed-effects

model was used for analysis. The results of the meta-analysis

showed that the endoscopic remission rate of the experimental

group was higher than that of the control group [RR 2.40 (1.13,

5.12), p = 0.02, fixed-effects model] (Figure 5).

3.6.4 Endoscopic response
Two RCTs reported the endoscopic response. The result of

the heterogeneity test was I2 = 71% and p = 0.06, which indicated

that the included RCTs had high heterogeneity, and the random-

effects model was used for analysis. The results of the meta-

analysis showed that the difference between the control and

experimental groups was of no statistical significance [RR 1.65

(0.51, 5.48), p = 0.40, random-effects model] (Figure 6).

3.6.5 Adverse events
Eight RCTs reported adverse events. The result of the

heterogeneity test was I2 = 0% and p = 0.80, which indicated

that the included RCTs had low heterogeneity, and the fixed-

effects model was used for analysis. The results of the meta-

analysis showed that the difference between the control and

experimental groups was of no statistical significance [RR 1.02

(0.81, 1.17), p = 0.78, fixed-effects model] (Figure 7).

Four RCTs reported severe adverse events. The result of the

heterogeneity test was I2 = 0% and p = 0.99, which indicated that

the included RCTs had low heterogeneity, and the fixed-effects

model was used for analysis. The results of the meta-analysis

showed that the difference between the control and experimental

groups was of no statistical significance [OR 1.68 (0.59, 4.76), p =

0.84, fixed-effects model] (Figure 8).
FIGURE 3

Clinical remission.
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3.7 Outcomes of Crohn’s disease

A total of two RCTs reported FMT for the treatment of

Crohn’s disease, and the outcomes could be pooled, so a meta-

analysis was performed.

3.7.1 Clinical remission
Two RCTs reported clinical remission. The result of the

heterogeneity test was I2 = 65% and p = 0.02, which indicated

that the included RCTs had high heterogeneity, and the random-

effects model was used for analysis. The results of the meta-

analysis showed that the clinical remission rate of the

experimental group was higher than that of the control group

[RR 1.05 (1.02, 2.79), p = 0.04, random-effects model] (Figure 9).

3.7.2 Adverse events
Two RCTs reported clinical remission. Sokol et al. (2020)

reported more adverse events but claimed that none of the

adverse events were considered to be related to the FMT. Sood

et al. (2019) did not report related adverse events (Figure 9).
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3.8 Outcomes of pediatric
ulcerative colitis

Only one RCT reported FMT for pediatric ulcerative colitis. The

RCT finally included 31 participants (19 in the FMT group and 12 in

the placebo enema group) for data analysis. For safety, the RCT

reported that no serious adverse clinical events or adverse changes in

plasma biochemistry were observed in the two groups. At week 6, 11

children in the FMT group had improvements in UC activity index,

C-reactive protein, or fecal calprotectin, as compared with six in the

control group (RR 1.8; 95% CI [1.1, 3.7]). At 12 months, nine people

in the FMT group maintained a clinical response. Beta diversity

increased from baseline to week 6 in the FMT group compared to

the placebo group. They found that Alistipes spp. and Escherichia

spp. may be associated with improvements in several clinical

outcomes. During the 6-week intervention period, 10 people in

the FMT group experienced adverse events compared with five

people in the placebo group. Four patients (three in the FMT group

and one in the placebo group) had worsening colitis requiring

intravenous methylprednisolone. Two FMT patients with a history
FIGURE 5

Endoscopic remission.
FIGURE 4

Clinical response.
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of Clostridioides difficile colitis were diagnosed with Clostridioides

difficile colitis within 2 weeks of trial withdrawal.
3.9 Outcomes of psoriatic arthritis

Only one RCT reported FMT for psoriatic arthritis. The

RCT finally included 31 participants (15 in the FMT group and

16 in the placebo enema group) for data analysis. They randomly

assigned patients with psoriatic arthritis who were receiving

methotrexate to an FMT group and a control group, using a

gastroscopically guided approach to transplant gut microbiota or

a placebo into the duodenum. No serious adverse events were

observed at the 26-week assessment. However, they found a

higher rate of treatment failure in the FMT group than in the

control group (RR = 3.20; 95% CI [1.06 to 9.62], p = 0.018). The

HAQ-DI of the control group was lower than that of the FMT

group (p = 0.031). There was no difference in the ratio of ACR20

between the two groups (p > 0.05). However, due to the small

number of RCTs, the results need to be interpreted with caution.
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3.10 Other registered randomized
controlled trials related to
autoimmune diseases

In addition, after searching in ClinicalTrials.gov and the

Chinese Clinical Trials Registry, a total of registered RCTs for

FMT treatment of seven types of autoimmune diseases were found:

atopic dermatitis, ankylosing spondylitis, lateral sclerosis,

rheumatoid arthritis, chronic urticaria, moderate-to-severe

chronic plaque psoriasis, and multiple sclerosis (see

“Supplementary Material—Other registered RCTs related to

autoimmune diseases”).
3.11 Other registered non-randomized
controlled trials related to
autoimmune diseases

In addition, after searching in ClinicalTrials.gov and the

Chinese Clinical Trials Registry, a total of registered non-RCTs
FIGURE 7

Adverse events.
FIGURE 6

Endoscopic response.
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for FMT treatment of five types of autoimmune diseases were

found: refractory IgA nephropathy, primary sclerosing cholangitis,

multiple sclerosis, T1DM, and gout (see “SupplementaryMaterial—

Other registered non-RCTs related to autoimmune diseases”).
4 Discussion

4.1 The mechanism of autoimmune
diseases and the intervention mechanism
of fecal microbiota transplantation

Autoimmune diseases refer to diseases in which the body’s

immune system is abnormally functioning, causing its own

tissues to be attacked by the immune system, such as RA and

SLE. Its complex pathogenesis has not been fully studied (54,

55). Current studies have shown that the gut microbiota in

patients with RA, SLE, spondyloarthritis (SpA), SS, and Behçet’s

disease (BD) is significantly different from that in healthy

individuals (56–58). Some bacterial species colonized in the

human gut, such as Prevotella copri, Ruminococcus gnavus,
Frontiers in Immunology 13
and Lactobacillus salivarius, are also associated with the

pathogenesis of autoimmune diseases (59). The mechanism of

intestinal microbiota imbalance in autoimmune diseases may be

changing in the metabolic function mediated by intestinal

microbiota leading to intestinal microbiota imbalance, which

in turn leads to abnormal synthesis or degradation pathways and

then to intestinal ecological damage and pathological damage to

the body (60, 61). The link between gut microbiota and host

immunity suggests that gut microbiota disturbances contribute

to the occurrence of autoimmune diseases (62). In addition,

current studies have shown that an impaired gut barrier

increases the transfer of gut microbes and their constituents,

leading to abnormal contact between gut microbes and the host

immune system and triggering autoimmunity through various

mechanisms (63, 64). For example, studies have shown that

Enterococcus gallinarum was detected in the liver of patients

with systemic lupus erythematosus or autoimmune hepatitis, but

not in healthy subjects (65). E. gallinarum inoculated in the

stomach of lupus-prone mice can cross the intestinal barrier and

enter the liver (65). Another study found that some of the

bacteria abundant in the gut in patients with autoimmune
FIGURE 9

Clinical remission.
FIGURE 8

Severe adverse events.
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diseases may originate from the oral cavity (21). Based on the

sequence similarity between self-antigens and microbial

peptides, immune cells can be cross-activated by microbial

peptides to initiate autoimmunity, so molecular mimicry has

always been considered an important mechanism involved in the

formation of autoimmunity (62). Microorganisms such as

Bacteroides fragilis, Candida albicans, and Streptococcus

sanguis contain peptides similar to type II collagen, which can

cause cross-reactivity in collagen-induced arthritis (66, 67).

Roseburia intestinalis, Bacteroides thetaiotaomicron, etc., can

trigger lupus-like symptoms. Furthermore, further studies have

shown that dysregulated gut microbiota and their derivatives

(e.g., nucleic acids, polysaccharides, metabolites, and toxins)

may lead to aberrant activation of innate immune cells leading

to inflammation (68, 69). Adaptive lymphocytes also play an

important role in autoimmunity, where pathogens or microbial

derivatives with pro-inflammatory capabilities can overactivate

innate immunity and aberrant antigen presentation, followed by

aberrant activation of the adaptive immune system (21).

Dendritic cells and macrophages can obtain microbial cells

and their derivatives from the intestinal lumen as antigens and
Frontiers in Immunology 14
further transport these antigens to secondary lymphoid tissues to

activate T and B cells. The abnormal activation of the latter two

often promotes autoimmune diseases (70–72).

Improving diet is currently the ideal way to modulate the gut

microbiota with few adverse effects, but so far, no exact diet has

been found to be beneficial in patients with autoimmune

diseases, and strict diet control often results in poor patient

compliance (73). Prebiotic and probiotic therapy (colonoscopy

fecal microbiota transplantation, oral probiotics, compound

microbial preparations, and implantation of beneficial

engineered bacteria) modulate gut ecology by competing with

harmful microbiota for nutritional and colonizing niches, and in

conjunction with specific dietary patterns or prebiotics that

support their colonization (74) (Figure 10).
4.2 Fecal microbiota transplantation for
type 1 diabetes mellitus

T1DM is an autoimmune disease caused by the targeted

destruction of islet b cells mediated by T lymphocytes. It is
FIGURE 10

The intervention mechanism of fecal microbiota transplantation.
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mainly a disease caused by mononuclear lymphocytes

infiltrating islet beta cells, resulting in massive apoptosis of

islet beta cells, decreased insulin secretion, and elevated blood

sugar (75, 76). Genetic factors play an important role in the

etiology of T1DM. Studies have found many genetic loci

associated with T1DM, the most important of which is the

human leukocyte antigen (HLA) coding locus, and about 70% of

T1DM patients carry HLA alleles (77, 78). However, less than

10% of genetically susceptible individuals develop T1DM (79),

but the incidence of T1DM is still increasing year by year,

indicating that non-genetic factors play a key role in T1DM.

In recent years, the gut microbiota has become a research

hotspot as one of the key environmental factors (80–83).

Studies have shown that intestinal grape group imbalance and

increased intestinal permeability exist in T1DM patients and

animal models. The main manifestations are the decrease in

microbiota diversity and probiotic abundance (83, 84), and the

regulation of intestinal microbiota through multiple pathways can

significantly improve T1DM (85–88). Biassoni et al. (89) used 16S

RNA sequencing technology to find that the abundance of

Bacteroidetes and Proteobacteria increased in children with

T1DM, while the abundance of Desulfovibrio, Biliophilus, and b-
Proteobacteria decreased. Demirci et al. (90) found that the level

of Bacteroidetes in the intestinal microbiota of T1DM patients

increased, the level of Firmicutes decreased, and the ratio of

Firmicutes/Bacteroidetes was significantly reduced. Another

clinical study analyzed the gut microbiota of T1DM children

and healthy children and found the same results (91). Meanwhile,

multiple studies have shown decreased intestinal colonization of

Bifidobacterium (including Bifidobacterium adolescentis and

Bifidobacterium pseudobacteria) and increased intestinal

colonization of C. albicans and Enterobacteriaceae (except

Escherichia coli) in children with T1DM (92–94). Another study

also found that children with T1DM had a higher abundance of

Blautia, and the abundance of Blautia genus was positively

correlated with HbA1c, the number of T1DM autoantibodies,

and tyrosine phosphatase autoantibody (IA-2) titers (95). In

addition, the ratio of Bacteroidetes/Firmicutes in the intestinal

microbiota of children with T1DM was increased, the abundance

of Faecalibacterium was negatively correlated with the level of

HbA1c, and the abundance of Bacteroidetes was positively

correlated with anti-islet autoantibodies (96).

In this systematic review, only one RCT reported FMT for the

treatment of T1DM [Fretheim et al. (2020) (40)]. This RCT

showed that compared with the autologous FMT group (control

group), the fasting plasma C peptide in the allogenic FMT group

at 12 months was lower. This RCT also found that the difference

in CD4+ CXCR3+ cells between the treatment group and the

control group was statistically significant. Nonetheless, due to the

small number of RCTs and participants, interpretation of this

result remains cautious, and more RCTs are needed to further

explore the therapeutic efficacy and safety of FMT in T1DM.
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4.3 Fecal microbiota transplantation for
systemic sclerosis

Systemic sclerosis is an immune-mediated rheumatic disease

characterized by skin and internal organ fibrosis and vascular

lesions (97). Digestive complications of systemic sclerosis are the

second most common complication after skin fibrosis, with an

incidence of 90% (98). It is manifested as dysphagia,

gastroesophageal reflux, abdominal pain, diarrhea,

malnutrition, fecal incontinence, etc., which seriously affect the

quality of life and mental health of patients (98, 99). Many

studies have confirmed that systemic sclerosis has intestinal

microbiota disturbance. Multiple cohort studies have shown

significant differences in gut microbiota in patients with

systemic sclerosis compared with healthy controls (98–100).

For example, the beneficial commensal genera such as

probiotics and Clostridium were decreased in the gut

microbiota of patients with systemic sclerosis, while potentially

pathogenic genera, including Fusarium and Ruminococcus, were

increased (101). In addition, a large observational cohort study

in Sweden also detected unique microbiota differences in stool

samples from 98 patients with systemic sclerosis (102).

In this systematic review, only one RCT reported FMT for

the treatment of systemic sclerosis [de Groot et al. (2021) (41)]

and showed that at week 4, compared with one of two placebo

controls, three patients in the experimental group reported a

major improvement in fecal incontinence. Nonetheless, due to

the small number of RCTs and participants, interpretation of

this result remains cautious, and more RCTs are needed to

further explore the therapeutic efficacy and safety of FMT in

systemic sclerosis.
4.4 Fecal microbiota transplantation for
inflammatory bowel disease

Ulcerative colitis, a subtype of inflammatory bowel disease

(IBD), is a disease of unknown etiology characterized by chronic,

non-specific inflammation of the rectum and colon. The lesions

are mainly limited to the intestinal mucosa and submucosa (103,

104). The etiology of ulcerative colitis is still unclear, but it is

generally believed that it triggers excessive and inappropriate

immune responses in the intestinal lumen mucosa under the

combined effects of genetics, environment, and gut microbiota

(105). At present, the treatment of ulcerative colitis is mainly

based on 5-aminosalicylic acid preparations, corticosteroids, and

immunosuppressive drugs. Since these drugs require long-term

medication and have large adverse reactions, finding effective

new treatment methods is an urgent clinical problem that needs

to be solved (106, 107). The recent concept of the

pathophysiology of ulcerative colitis further recognizes the

important role of the gut microbiota (108). The fecal
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microbiota test of patients confirmed the existence of obvious

intestinal microbiota imbalance, which is characterized by the

reduction of intestinal biodiversity and microbial dysfunction,

and the changes in intestinal microbiota are closely related to

intestinal inflammation (109). The pathological mechanism

shows that the disordered intestinal microbiota can damage

the intestinal mucosal barrier, change the immune function of

the intestinal tract, and secrete a large number of inflammatory

mediators, which can lead to the occurrence or aggravation of

ulcerative colitis. Some special intestinal microbiota changes are

considered to play a key role in the pathogenesis of ulcerative

colitis, so it is a new perspective for the current treatment of

ulcerative colitis by regulating the structure of patients’ intestinal

microbiota to achieve therapeutic effects (110–113). Therefore,

measures to correct intestinal dysbiosis have emerged as

potential treatments for IBD. The current treatment for

altering the intestinal microbiota is mainly oral probiotics of a

single species (114, 115). However, the human gut microbiota

has more than a thousand different types of microbiota, and the

different microbiota often interacts with each other. Therefore,

oral probiotics of a single species are often unable to effectively

change the intestinal microbiota structure of patients (115).

Fecal microbiota transplantation is a treatment method that

adjusts the structure of the patient’s intestinal microbiota by

transplanting the functional microbiota in the exogenous feces

into the patient’s intestine, thereby improving the patient’s

intes t ina l env i ronment . Because feca l microb io ta

transplantation can directly change the disturbed intestinal

microbiota in patients, the use of fecal microbiota

transplantation for the treatment of ulcerative colitis has

become a research hotspot in recent years (27, 116).

This systematic review and meta-analysis also found that

FMT may increase clinical remission, clinical response, and

endoscopic remission for patients with ulcerative colitis, and

increase clinical remission for patients with Crohn’s disease.

These RCTs all reported that FMT did not significantly increase

the incidence of adverse reactions, so it can be considered that

fecal microbiota transplantation is relatively safe. However, due

to the small number of RCTs and participants, interpretation of

this result remains cautious; and more RCTs are needed to

further explore the therapeutic effect and safety of fecal

microbiota transplantation in IBD.
4.5 Fecal microbiota transplantation for
psoriasis and psoriatic arthritis

Psoriasis affects approximately 2% of the global population

and affects all age groups (117). Psoriasis may be related to

genetic factors, immune dysfunction, and environmental factors

(118, 119). Studies have shown that the pathogenesis of psoriasis

is mainly related to the helper T cell (Th)17/IL-23 axis, and the

intestinal microbiota can be involved in the differentiation of T
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cells. For example, segmented filamentous bacteria can induce

pro-inflammatory responses in Th17 cells in the gut (120).

Experiments have shown that both short-chain fatty acid

(SCFA)-producing microbiota and SCFAs can act as potent

regulators of T cells in a T cell-mediated inflammatory

environment (121–123). Among them, commensal Clostridium

is the main producer of SCFAs, which can induce the production

of IL-10 in the colon, while increasing the number of regulatory

T cells (Treg) in the mucosa, and play a key role in intestinal

homeostasis (124). Prevotella, Akkermansia muciniphila,

Faecalibacterium, and Ruminococcus were reduced in both

psoriasis (125, 126) and psoriatic arthritis (127). Among them,

Faecalibacterium and A. muciniphila can inhibit Th17 cells and

induce the development and expansion of Treg cells, while Treg

cells can produce anti-inflammatory cytokines to prevent

autoimmunity (128–130). SCFAs can promote the

differentiation of lymphoid T cells into Treg cells and induce

the expression of IL-10, thereby inhibiting the inflammatory

response (131). Meanwhile, SCFAs can also inhibit the

activation of lipopolysaccharide-induced chemokine, cytokine,

and nuclear factor-kB signaling pathways, relieve the body’s

inflammatory response, and improve the symptoms of patients

(132). Multiple studies have also demonstrated that psoriatic

plaque formation in psoriasis patients is triggered by bacterial

DNA in the blood that originates from the intestinal lumen (133,

134). For example, the presence of Prevotella and an elevated

Faecalibacterium/Bacteroides ratio can lead to bacterial

translocation from the gut to the blood.

In this systematic review, only one RCT reported FMT for

psoriatic arthritis. The RCT finally included 31 participants (15

in the FMT group and 16 in the placebo enema group) for data

analysis. They randomly assigned patients with psoriatic

arthritis who were receiving methotrexate to an FMT group

and a control group, using a gastroscopically guided approach to

transplant gut microbiota or a placebo into the duodenum. No

serious adverse events were observed at the 26-week assessment.

However, due to the small number of RCTs, the results need to

be interpreted with caution.
4.6 Fecal microbiota transplantation for
other diseases

There are no related RCTs reported for other diseases, but

some of them have been registered in clinical research centers

(see “Supplementary Material—Other registered non-RCTs

related to autoimmune diseases” and “Supplementary Material

—Other registered RCTs related to autoimmune diseases”).

Meanwhile, the current basic research and clinical research

have revealed the potential of fecal microbiota transplantation.

RA is a chronic inflammatory autoimmune disease that

affects various systems throughout the body, often manifested

as joint deformation and morning stiffness, with or without anti-
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cyclic citrullinated peptide (anti-CCP) antibody positive and

rheumatoid factor (RF) abnormalities. Modern medicine

believes that the pathogenesis of RA may be related to

immune disorders, genetics, and environmental factors, but

the specifics are not yet clear. In clinical observations, many

scholars have found that there are significant differences in the

types and quantities of intestinal microbiota between RA

patients and healthy subjects, suggesting a correlation. The

researchers analyzed the gut microbiota between 42 untreated

RA patients and 10 healthy individuals. They found a fivefold

increase in bacilli, a 17-fold increase in lactobacilli, and a

significant decrease in Faecalibacterium in the untreated RA

patient group compared with healthy individuals (135).

Metagenome sequencing technology found that untreated RA

patients and unrelated healthy controls had similar gut

microbiota diversity and richness (22). Several scholars have

expounded on the relationship between the intestinal microbiota

and the pathogenesis of RA from the perspective of

immunology. Wu et al. (136) analyzed the relationship

between the intestinal microbiota and the pathogenesis of RA

from the molecular level and proposed that the immune

response is related to the intestinal mucosal immune system,

which is consistent with the view of Catring et al. (137). In

addition, in the K/BxN mouse model, the symptoms of RA were

alleviated or even disappeared in a sterile state, and the titers of

autoantibodies and Th17 cells decreased (138).

SLE is an immune disease that affects multiple organs and

spans a large age range. Modern medicine generally believes that

the pathogenesis of SLE is related to genetics, hormones,

environment, and other factors acting on the body, but the

specific mechanism is unknown. A clinical observation detected

the stool samples of 30 newly diagnosed SLE patients and 25

healthy people and found that the number of probiotics such as

intestinal bifidobacteria and lactobacilli in the SLE group was

significantly reduced, and the number of E. coli was significantly

increased (139). Another study found that the gut Firmicutes/

Bacteroidetes (F/B) ratio was significantly lower in SLE patients

(140). The study also found that the serum levels of IL-1b, IL-6,
IL-17A, IFN-a, and TNF-a in SLE patients were significantly

higher than those in the healthy group, while IFN-g was

significantly reduced, which was associated with Firmicutes

and Bacteroidetes (141). Several studies have shown that gut

microbiota can regulate a variety of inflammatory factors (142–

144), and clinical trials have found abnormal concentrations of

anti-inflammatory or pro-inflammatory cytokines in the

peripheral blood of SLE patients (145, 146). A non-RCT

recruited 20 patients with active SLE who still had an SLE

Disease Activity Index 2000 (SLEDAI-2K) score of ≥6 despite

standard care (147). They found that the SLEDAI-2K score,

urine protein/urine creatinine ratio, and serum anti-dsDNA

antibody levels decreased significantly after FMT treatment

(147). After FMT, the alpha diversity of the gut microbiota of

the patients was increased, with significant enrichment of short-
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chain fatty acid production-related genera, while inflammation-

related bacterial taxa decreased, and short-chain fatty acid

production in the gut increased. The ratio of CD4+ memory T

cells/naive T cells in the peripheral blood of patients and serum

IL-6 concentration of SRI-4 responders was significantly

decreased (147). This clinical trial confirmed for the first time

that FMT, a new medical technology, is safe and effective in the

treatment of SLE, providing a new option for the treatment of

SLE patients and laying an important foundation for the

subsequent promotion and application of larger-scale FMT in

the treatment of SLE. It also provides important evidence-based

medical evidence for the potential therapeutic value and safety of

FMT in autoimmune diseases.
4.7 The safety of fecal
microbiota transplantation

The currently included RCTs suggest that fecal

transplantation is a relatively safe treatment with no increase

in adverse events. The most common adverse effects of fecal

microbiota transplantation are related to the gastrointestinal

tract and include diarrhea, bloating, nausea, vomiting,

abdominal pain, and constipation. Other common adverse

reactions include fever, dyspnea, headache, and fatigue. These

common adverse reactions are generally self-limiting and

relieved in the short term. Nevertheless, a few more serious

adverse events occurred, mainly due to the aggravation of the

above common adverse reactions, as well as Clostridium difficile

colitis requiring colitis resection, persistent abdominal pain,

suspected small bowel perforation, pneumonia, etc. (148, 149).

Overall, FMT is a safe therapy, with multiple studies reporting

mild and self-limiting side effects.
4.8 Factors affecting the efficacy of fecal
microbiota transplantation

4.8.1 Selection of donors and disposal of feces
The source of the donor can be classified as follows: 1)

according to the source of feces, it can be divided into allogeneic

and autologous donors. 2) According to the acquaintance with

the patient, the range of donors can be selected from relatives,

friends, spouses, and unacquainted volunteers, but there is no

clear evidence that these choices are related to the treatment

effect. 3) According to the number of donors, it can be divided

into single donors and multi-donor. Multi-donor batches have

greater microbial diversity than individual donors. Previous

studies have shown that donor species richness is a predictor

of fecal microbiota transplantation treatment efficacy in patients

with intestinal disease. However, multi-donor therapy may limit

its ability to compromise beneficial or detrimental donor-

specific and microbial content specificity (42). For the
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selection of allogeneic donors, the existing tests for screening

healthy fecal bacteria donors include age, physiology, pathology,

psychology, authenticity, time factors, living environment, and

donor status (150). However, there are currently no relevant

standards for screening donor microbiota. Azimirad et al. (2019)

reported two patients with UC and recurrent Clostridium

difficile infection who experienced adverse events of

enterotoxigenic Clostridium perfringens infection following

fecal microbiota transplantation (151). C. perfringens infection

may originate from fecal microbiota transplantation, making it

necessary to test for this pathogen during donor screening,

which may transfer unknown or uncommon pathogens.

Therefore, the detection of donor feces also requires stricter

control. The disposal of feces after collection also requires a more

refined process. The method of manure treatment has gradually

shifted from simple mixed filtration to a more refined operation

process such as microfiltration and centrifugation. Zhang et al.

developed an automated method for the purification of

microbial microbiota suspensions with the aim of minimizing

the processing time for preserving viable bacteria (150). There

was no significant difference in bacterial diversity between the

fecal bacteria treated by this method and the original feces. The

purification process significantly reduced adverse events but did

not alter its efficacy (152).

4.8.2 The path of fecal microbiota
transplantation and the frequency
of transplantation

The route of administration can be divided into the upper

gastrointestinal tract, lower gastrointestinal tract, and

swallowing capsules according to the location of injection. The

upper gastrointestinal tract transplantation includes a

gastroscope, nasogastric tube, and duodenal tube injection,

and the lower gastrointestinal tract includes an enema and

colonic approach through endoscopic enterotomy (TET).

Among these methods, the following digestive transplantation

route is more common. Although swallowing the capsules has

the advantage of being convenient, due to the large number of

capsules that need to be taken at a time, there may not be

sufficient doses to maintain long-term treatment. TET has been

reported to be a safe and convenient method for the frequency of

transplantation and colonic administration (153, 154). Although

there are many routes of administration, there is no clear

evidence that one route of transplantation is superior to other

options. Therefore, in the selection of the transplantation route,

factors such as the patient’s psychology, acceptance level,

different reactions, and disease degree need to be considered.

The frequency of transplantation, compared with single

transplantation, multiple treatments can improve the

remission rate (155–157), but the specific number of times is

still inconclusive.
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4.8.3 Pretreatment with antibiotics
Antibiotic pretreatment can increase foreign bacterial

colonization in the frequency of transplantation (112). Keshteli

et al. (158) conducted a meta-analysis of nine studies (118

patients) and found that the remission rate of patients

pretreated with antibiotics before the frequency of

transplantation was significantly higher than that of patients

not pretreated with antibiotics. Therefore, pretreatment with

antibiotics is also a step worth considering when performing the

frequency of transplantation.
4.9 Strength and limitations and
inspiration for future research

The strength is that this is the first systematic review and

meta-analysis of FMT in the treatment of autoimmune diseases

involving six diseases and 14 RCTs.

The limitations are as follows: 1) the quality of Fretheim

et al. (2020) (41), Sun et al. (2018) (46), Deng et al. (2020) (47),

Haifer et al. (2022) (48), and Pai et al. (2021) (52) was degraded

by the lack of detailed random sequence generation, allocation

concealment, and/or blinding information. 2) Although eight

diseases are involved, T1DM, systemic sclerosis, pediatric

ulcerative colitis, and psoriatic arthritis have only one RCT,

Crohn’s disease has only two RCTs, and ulcerative colitis has no

more than 10 RCTs; meanwhile, all RCTs involved only 571

participants (less than 1,000). 3) RCTs of FMT intervening in

other autoimmune diseases have not been retrieved so far. It may

be that the concept of FMT in the treatment of autoimmune

diseases has just come out and has received less attention.

Based on the above limitations, it is expected that there will

be more large-scale, multi-center RCTs involving multiple

participants with high-quality FMT in the treatment of

autoimmune diseases to further revise or confirm the

conclusions of this systematic review and meta-analysis.
5 Conclusion

Based on this systematic review and meta-analysis, the

application of FMT in the treatment of autoimmune diseases

is effective and relatively safe, and it is expected to be used as a

method to induce remission of active autoimmune diseases. The

transplantation route, source of fecal bacteria, application of

antibiotics, and fecal types had no significant effect on the

curative effect. Multiple long-term treatments with FMT could

improve the curative effect. However, due to the small number of

included RCTs, more high-quality RCTs are needed in the future

for further studies to evaluate the long-term safety and efficacy

of FMT.
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