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Crosstalk between epithelium,
myeloid and innate lymphoid
cells during gut homeostasis
and disease
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The gut epithelium not only provides a physical barrier to separate a noxious

outside from a sterile inside but also allows for highly regulated interactions

between bacteria and their products, and components of the immune system.

Homeostatic maintenance of an intact epithelial barrier is paramount to health,

requiring an intricately regulated and highly adaptive response of various cells

of the immune system. Prolonged homeostatic imbalance can result in chronic

inflammation, tumorigenesis and inefficient antitumor immune control. Here

we provide an update on the role of innate lymphoid cells, macrophages and

dendritic cells, which collectively play a critical role in epithelial barrier

maintenance and provide an important linkage between the classical innate

and adaptive arm of the immune system. These interactions modify the

capacity of the gut epithelium to undergo continuous renewal, safeguard

against tumor formation and provide feedback to the gut microbiome, which

acts as a seminal contributor to cellular homeostasis of the gut.

KEYWORDS

intestinal epithelium, macrophages (MF), dendritic cells (DC), innate lymphoid cells
(ILC), homeostasis, inflammation, cancer
Introduction

In mammals, the intestine forms a vital organ for the processing of food, while also

functioning as a barrier that protects the host from ingested pathogens and external

noxious stimuli. The intestinal environment is highly sophisticated and controlled,

harboring commensal microorganisms such as bacteria, viruses, and fungi, establishing

a mutualistic symbiotic relationship with the host. Through tightly controlled structural

organization, the intestinal epithelium, enteric neurons, gut-resident immune cells and
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other minor cell populations collectively cooperate with the

microbiota to achieve a harmonious environment.

The intestinal epithelium is a tight monolayer that separates

the host from the lumen, which contains digestive enzymes,

food, and microbes from the external environment. Stem cells in

the crypt constantly replenish stressed or damaged epithelial

cells to maintain this barrier (1). The intestinal epithelium

encompasses specialized cells with important functions in

maintaining homeostasis. Among them are goblet cells, which

secrete mucus forming a protective layer in the lumen, Paneth

cells which secrete antimicrobial agents working together to

prevent the entry of the luminal microbes into the host, and tuft

cells which act as sentinel cells that scan the lumen with their

long brush-like microvilli projections (2). In addition, the

epithelial layer contains tissue-resident lymphocytes, known as

intraepithelial lymphocytes (IELs) that primarily comprise of T

cell receptor (TCR) ab T cells, TCR gd T cells, and smaller

populations of type I innate lymphoid cells (ILC1s). Cellular

homeostasis in the gut is achieved through the impeccable

functioning of these tissue-resident lymphoid cells that reside

or closely interact with the epithelium (Figure 1).

Localized underneath the epithelium is the lamina propria, a

large layer of loose connective tissue that forms part of the

intestinal mucosa. The lamina propria contains most of the

immune components of the gut, with tiny lymphoid aggregates
Frontiers in Immunology 02
named cryptopatches, isolated lymphoid follicles, and bigger

clusters of organized lymphoid follicles known as Peyer’s

patches. Innate and adaptive immune cells accumulate in these

lymphoid aggregates, where they can directly interact with the

epithelium (3). Indeed, IELs, macrophages and dendritic cells

are essential for maintaining epithelial barrier integrity and gut

homeostasis. Moreover, IELs play critical roles in sensing

epithelial cell stress (4), control bacterial composition in the

lumen (5), detect invading pathogens (6) and develop tolerance

towards dietary or innocuous antigens (2, 7). Complex

interdependencies between the epithelial and gut-resident

immune cells are the key to maintain homeostasis, responding

to allergens as well as preventing infection, or the development

of inflammatory bowel disease (IBD), such as Crohn’s disease

(CD) or ulcerative colitis (UC), and cancer.

Studies aiming to develop therapeutics that target either the

intestinal epithelium or accompanying immune cells and aimed

to detect or eliminate neoplastic epithelium require a clear

understanding of the intricate interaction between epithelium

and immune cells. The role of IELs in establishing and

maintaining intestinal tolerance and immunity has been

widely reviewed (8), therefore, we will focus here on the

functions of innate lymphoid cells, myeloid cells and cellular

crosstalk between these populations. We will review current

knowledge of how these two immune cell types interact with the
FIGURE 1

Communication between distinct cell compartments ensures tissue homeostasis in the gut. The complex function and need for rapid
adaptability to external stimuli (i.e. food, water, bacterial load and products, enteric signals) requires carefully balanced and controlled equilibria
between the epithelia, the innate immune compartments, the adaptive immune compartments and their reciprocal interactions with enteric
neuronal network and stromal cells. Inflammatory conditions arise in situations where the balances are skewed by epithelial signals that
stimulate the immune compartments and a disbalance between the innate and adaptive compartments. In neoplastic situations, the
transformed epithelium feeds of the cytokine-rich environment established by the immune compartments including the establishment of an
immune suppressive bias towards anti-tumor immunity conferred by tumor-eradicating effectors cells.
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intestinal epithelium to maintain homeostasis, and how those

interactions are affected during disease development

and progression.
Homeostasis of the
intestinal mucosa

Myeloid cells in the intestinal mucosa

Under homeostatic conditions, myeloid cells are one of the

most abundant immune cell types in the gastrointestinal tract

(9). They comprise a very heterogeneous population,

encompassing among others, granulocytes, neutrophils,

monocytes, myeloid-derived suppressor cells, macrophages,

and dendritic cells. In this review, we mainly focus on

macrophages (MФs) and dendritic cells (DCs), which are

found in the mucosa throughout the gastrointestinal tract and

primarily reside in the lamina propria, immediately adjacent to

the epithelium (10). DCs, which develop from bone marrow

progenitors, accumulate in defined gut structures such as Peyer’s

patches, isolated lymphoid follicles, and gut-associated

lymphoid tissues. Like DCs, MФs are continuously replenished

from bone marrow-derived progenitors. In addition, the gut also

contains self-maintaining embryonic-derived macrophages in

the close vicinity of enteric neurons, blood vessels, Peyer’s

patches, and epithelial Paneth cells (11). Owing to their

strategic position and various functions, myeloid cells help

maintain a balance between homeostasis and inflammation in

the gut.

MФs are highly plastic cells with a spectrum of endotypes

reaching from proinflammatory, immune-permissive and

tumor-restricting M1-/conventionally activated MФs to anti-

inflammatory, immune-restricting, and tumor permissive M2-/

alternative activated MФs. It is now clear that MФs endotypes

are largely under the control of environmental cues, where

cytokines like interferon (IFN)-g or granulocyte-macrophage

colony-stimulating factor (GM-CSF) and bacterial products,

including LPS, enhance the development of conventionally

polarized MФs that express major histocompatibility complex

class II (MHC-II) and CD80. These M1-like MФs produce T

helper (TH) 1 responses-inducing cytokines, including

interleukin (IL)-1b, IL-12, IL-18, IL-23, tumor necrosis factor

alpha (TNF-a) and inducible nitric oxide synthase (iNOS).

Therefore, conventionally polarized MФs are associated with

host defense, high microbicidal activity and pro-inflammatory

cytokine production; accordingly, M1-like MФs can become key

mediators of autoimmune diseases when aberrantly activated. By

contrast, environments rich in IL-4, IL-13, CSF-1 or

transforming growth factor beta (TGF-b) result in alternative

activated MФs that express CD206, CD163 and Arginase 1, and

produce T helper (TH)2-cytokines (IL-6, IL-10 or VEGF)
Frontiers in Immunology 03
alongside various monocyte attracting CC chemokine ligands

(CCL) chemokines [reviewed in (12)]. In the murine and human

systems, these alternative activated MФs promote debris

scavenging, tissue repair and wound healing, besides

promoting fibrosis (13).

The phenotype and transcriptional profile of alternative

activated, M2-like MФs differs considerably depending on the

factors under which polarization occurs. Integrated phenotypic

analysis through transcriptomic, protein profiling and

metabolomic characterization re-emphasizes the somewhat

fluid continuum between the various endotypes and reflecting

variability between the interaction of MФs and their

environments (14). Nevertheless , M2-like MФs are

traditionally segregated into CD206 expressing M2a MФs that

arise in response to the Th2 cytokines IL-4 or IL-13,

CD163-expressing M2c MФs arising in response to IL-10

and glucocorticoids, and angiogenic (VEGF-producing) M2d

MФs which are induced by IL-6 and Toll-like receptors

(TLR) activation. An additional major subset comprises

CD86-expressing regulatory (M2b) MФs that are activated in

response to either TLRs, IL-1 or high-density immune

complexes, adenosine, prostaglandin, and other mediators

(15). The latter stimuli lead to activation of multiple

transcription factors such as nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB), mitogen-activated

protein kinases (MAPK) and interferon regulatory factor 3

(IRF3), as well as phosphoinositide 3-kinases (PI3K) signaling

(16). Regulatory MФs confer potent anti-inflammatory

activities, as they produce high levels of IL-10 at the expense

of pro-inflammatory cytokines (17). Importantly, and owing

to the transient state of MФs, they are best characterized by

their functional state of activation (i.e. their cytokines,

see above).

While in most tissues under homeostatic conditions, MФs

are primarily derived from bone-marrow progenitors, tissue-

resident MФs in the adult intestine are continuously replaced

from circulating Ly6CHigh monocytes (18) or from circulating

CD14+ monocytes in human and mice (19), where they replace

the yolk sac-derived MФs in the embryo. Thus, MФs within the

intestine comprise a heterogeneous mixture of cells with a self-

maintaining population, arising from embryonic precursors and

adult bone-marrow-derived monocytes that persist throughout

adulthood (11). Interestingly, depletion of the self-maintaining

populations alters the submucosal vasculature and triggers

degeneration of enteric neurons resulting in altered muscle

contractility and neuron-dependent secretion of anions in the

lamina propria (11).

The lamina propria macrophages (LP-MФs)are classically

defined as CD64+ CD11c+ MHC-IIHigh (and in mice also

CX3CR1High) sessile cells with pseudopods that form

transepithelial dendrites (TEDs) (20). These structures cross

the epithelial barrier to endow LP-MФs with the capacity to

sample the intestinal lumen and capture potential antigens.
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Recently, balloon-like protrusions, formed by LP-MФs,that

sense and limit absorption of fungal toxins by intestinal

epithelial cells (IECs), have been identified into the colonic

epithelium (21). Unlike TEDs, these protrusions do not reach

the lumen of the colon, but rather internalize membranes from

IECs and examine the presence of fungal products. If fungal

metabolites are detected, IECs stop fluid absorption to prevent

their poisoning and associated apoptosis (21). Therefore, thanks

to their protrusions, distal colon MФs are able to maintain local

homeostasis by helping the epithelium to maintain its integrity

(Figure 2A). Whether alteration of this mechanism lead to

pathologies has not been addressed yet. LP-MФs have been

shown to have a more inflammatory endotype than their

counterparts, and are buried further away from the epithelium

in the muscularis mucosae (22). Nevertheless, as a large

proportion of the luminal microbes are commensals, LP-MФs
Frontiers in Immunology 04
must be tolerogenic to prevent inflammation in homeostatic

conditions and therefore express only low levels of IL-1, IL-6,

TNF-a and other inflammatory mediators. Instead, their

production of IL-10, and response to it, ensures low

responsiveness to stimulation through TLRs (23, 24) and

balances T cell activity during homeostasis (Figure 2A).

Indeed, it has been observed that the uptake of apoptotic IECs

induced a transcriptional program associated with

immunosuppression, including down-regulation of TLR2,

likely as a mechanism to prevent unwanted inflammatory or

autoimmune responses (25). The critical role for IL-10 and

associated signaling is highlighted by the spontaneous

enterocolitis that develops in mice which either lack

expression of the IL-10 receptor alpha chain in macrophages

(26), or myeloid cell-specific expression of the IL-10 signaling-

associated transcription factor Stat3 (27).
B CA

FIGURE 2

Myeloid and innate lymphoid cell function in the colon. (A) During homeostasis, balloon-like protrusions formed by LP-MФs sense and limit
absorption of fungal toxins by IECs and thus control epithelial integrity. As a large proportion of the luminal microbes are commensals, MФs and
DCs must be tolerogenic to prevent inflammation in homeostatic conditions. Their production of IL-10 ensures low responsiveness to
stimulation through TLR and balances T cell activity during homeostasis. Under steady-state conditions, a small proportion of intestinal ILC2s
also express the anti-inflammatory cytokine IL-10 upon exposure to a variety of exogenous stimuli including IL-2, IL-4, IL-27, IL-10 or
neuromedin U (NMU). While the role of ILC2-derived IL-10 remains unclear, it could help to maintain the intestinal mucosa in an anti-
inflammatory state. DCs are able to metabolize vitamin A into RA in the intestine. ILC3 can respond to RA, thanks to the transcription factor
retinoic acid receptor (RAR) which stimulates IL-22 production under homeostasis as well as during colitis. (B) During inflammatory diseases, an
imbalance in the composition of ILC subsets is commonly observed and is thought to contribute to pathogenesis. IL-12 signaling (released by
ILC1) gives ILC3 cells the ability to produce IFN-g. Phenotypic conversion of ILC3 to IFN-g producing ILC1 is prominent in patients with CD,
supporting the pathologic role for IFN-g secreted from either ILC1 or ILC3. Tissue-resident ILC2s respond to tissue damage and a variety of
pathogen-associated danger signals through the expression of receptors for alarmins, such as IL-25R, IL-33R, and thymic stromal lymphopoietin
(TSLP) receptor. IL-5 and IL-13 mediate the recruitment of eosinophils and promote tissue repair. After exposure to microbial metabolites, DCs
produce IL-12, IL-18 and IL-1b, which are the dominant cytokines required for the induction of IFN-g and TNF-a by ILC1 during gut
inflammation. In response to TLR ligands and immune complexes, a subset of MФs, called regulatory M2b MФs, produce high levels of IL-10
which help reducing intestinal integrity during inflammation. (C) In colorectal carcinomas, cancer cells produce GM-CSF and CCL2 which
trigger the recruitment of MФs into the tumor microenvironment. In tumor stroma, a high M1/M2 density ratio was associated with better
cancer-specific survival, while preclinical models suggest that genetic or pharmacologic suppression of the M1 to M2 endotype transition
reduces colon cancer. In parallel, two populations of MФs, that do not strictly correspond to the M1 or M2 macrophages, have been identified in
CRC patients: C1QC+ MФs and SPP1+ MФs. C1QC+ MФs are enriched for complement activation and antigen processing/presentation pathways,
indicating their role in anti-tumor responses; whereas 1 SPP1+ MФs express genes involved in tumor angiogenesis and tumor vasculature,
suggesting that they play a pro-tumorigenic and pro-metastatic role in CRC. While TNF-a is widely reported to be pro-tumorigenic, the release
of IFN-g and TNF-a by ILCs are believed to be anti-tumorigenic: IFN-g through stimulation of cytotoxic T cells (CTL) and NK cells and TNF-a
through direct induction of apoptosis in tumor cells and tumor vasculature and indirectly through mobilization of MФs and DCs. While ILC1s
promote chronic intestinal inflammation via the production of IFN-g and TNF-a, those same cells are a potential candidates ()? to
therapeutically induce IFN-g and TNF-a for tumor suppression. ILC2s are abundant in colon cancer tissue and are the dominant source of IL-9
which can activate CD8+ T cells to inhibit tumor growth. Colon cancer antigens can induce DCs recruitment, maturation, and cytokine release
in order to generate effective TH1-type immune responses. Immunosuppressive signals released by tumor cells or immunomodulatory cells,
such as TGF-b, VEGF or IL-10, induce DC dysfunctionality, by inhibiting their production of pro-inflammatory cytokines, and/or prevent DC
maturation.
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As the name implies, the long-lived muscularis macrophages

(M-MФs) are embedded with the muscularis mucosae. M-MФs

are MHC-II+, CD163+, CX3CR1+ cells that do not migrate under

homeostatic conditions, and are seeded both as bone marrow-

and yolk sac-derived c-Myb+ cells (11). M-MФs not only

phagocytose dying neurons and neuronal debris in the small

and large intestine (28), but also play an important role in

regulating intestinal motility (29) through their bi-directional

interactions with glia and neurons. For instance, M-MФs

produced bone morphogenic protein type 2 that contributes to

neuronal functions, while enteric neurons constitutively produce

CSF-1, which is needed for maintenance and survival of M-MФs

(30). Unlike LP-MФs,little is known about the function of M-

MФs. Nevertheless, transcriptomic analyses have shown that M-

MФs are skewed towards M2 endotypes under homeostatic

conditions. M-MФs preferentially express genes associated

with tissue-protection and wound-healing, including as Retnla,

Cd163 and Il-10 (22), suggesting a role in homeostatic tissue

repair. Indeed, the tissue-protective functions of M-MФs is

emphasized by their maintenance of M2-like endotypes even

when homeostasis is disrupted by bacterial pathogens (22).

Akin to MФs, DCs can either develop from bone-marrow

progenitor cells during homeostasis or from monocytes during

inflammation. These precursors give rise to two populations of

cells with different features and functions: homeostatic DCs or

monocyte-derived inflammatory DCs, respectively. Homeostatic

DCs are highly heterogeneous and comprise PDCA-2+

plasmacytoid DCs (pDC) and conventional or classical DCs

(cDC). The latter can be further segregated into chemokine (C

motif) receptor+ (XCR1), or type 1 cDCs (cDC1) and signal-

regulatory protein alpha+ (SIPRa), or type 2 cDCs (cDC2).

Intestinal cDC2 are themselves a heterogeneous population,

whereby cDC2 as in the LP can be either CD103+ or CD103-.

Each of these subpopulations harbors its unique functional,

phenotypical, and transcriptional characteristics. While cDC1

are well known for their excellent capacity to cross-present

antigens to cytotoxic lymphocytes, cDC2 and pDCs are known

to polarize CD4+ T cell responses and to induce anti-viral

responses through type I IFN production. The main function

of DCs is to link innate and adaptive immunity by sensing and

capturing pathogens and triggering adaptive responses specific

to the pathogens detected. Like LP-MФs, intestinal DCs take up

soluble food antigens through TEDs (20), but also through

epithelial M-cells, which are located in the follicle-associated

epithelium of Peyer’s patches (31). Moreover, CX3CR1High LP-

MФs can transfer antigens to DCs via a Connexin 43-dependent

mechanism at gap junctions (32, 33). It also should be noted that

at least in chronic inflammatory conditions, CX3CR1High LP-

MФs are endowed with migratory capacity and can invade

mesenteric lymph nodes in a similar manner to migrating DCs

(24). While there is general consensus that DCs from a healthy

intestinal tract are tolerogenic upon sensing of commensal

bacterial components, the mechanisms by which this is
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achieved are not fully understood. cDC1 have been shown to

be crucial for intestinal homeostasis, notably owing to their

expression of the chemokine receptor XCR1. Indeed, mice with

XCR1-deficient cDC1 lack intraepithelial and LP T cell

populations and are remarkably more susceptible to

chemically-induced colitis (34). CD103+ cDC2 are believed to

be important in establishing oral tolerance in part due to their

ability to produce retinoic acid (RA) necessary for the

development of Foxp3+ regulatory T (Treg) cells (35, 36).

Moreover, mammalian target of rapamycin mTOR protein

kinase has been shown to regulate intestinal homeostasis by

promoting IL-10 production in cDC2. Indeed, the lack of mTOR

signalling specifically in DCs resulted in the suppression of IL-10

production by cDC2 and a higher susceptibility to dextran

sodium sulfate (DSS)-induced colitis (37).
Innate lymphoid cells in the
intestinal mucosa

Tissue-resident helper ILC have emerged as pivotal sentinels

of gastro-intestinal tissue homeostasis, occupying strategic

defensive positions along the various intestine and gut-

associated lymphoid tissues. ILCs can raise antigen-

independent immune responses, making them ideal

gatekeepers for barrier tissues. The quality of ILC-driven

immune responses at a mucosal site is determined by the level

of cytokine activation, apoptosis, and the proliferation and

differentiation of any given ILC subtype, as well as tissue-

specific migration and accumulation of peripheral ILCs.

Among the ILC populations, three main subtypes exist,

referred to as ILC1, ILC2 and ILC3, which are distinguished

by the expression of transcription factors required for their

differentiation/maintenance, and their specific expression

profiles of effector cytokine. The highest frequency of ILCs is

found in the gut (38), where under homeostatic conditions, the

dominant subtype is NKp44+ ILC3, with only low numbers of

ILC2s (38–41). The frequency of ILC populations drastically

changes in IBD patients (41), with decreased numbers of

NKp44+ ILC3 and increased number of both ILC1s and ILC2s.

CD patients have increased ILC1, as well as IL-17 and IL-22

producing ILC3 (41–43), while patients with UC have increased

numbers of ILC2 (41). Together, this indicates subsets-specific,

location-specific and disease-specific ILC immune responses,

most likely refined by factors in the local epithelium.

Under homeostatic conditions, two major ILC1 subsets

reside in the intraepithelial compartment and in the LP of the

mammalian intestine (44, 45). Most intraepithelial ILC1 cells

express CD49a and CD69 markers for tissue retention and stain

positively for the transcription factors Eomes and T-bet (46, 47).

Induced loss of T-bet expression using RosaCreERT2 mice

results in depletion of ILC1, but not of ILC2 or ILC3. In

contrast, lamina propria ILC1 cells express low levels of Eomes
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in favor of marked expression of IL7R and IL15R alpha

chains (48).

Recent studies suggest potential continuity across specific

ILC subtypes, including trans-differentiation between specific

subtypes. This has been observed in murine colorectal cancer

(CRC) tumor models, where IL-22 producing ILC3 trans-

differentiated into IL-10 producing regulatory ILCs (ILCregs),

thereby promoting CRC. This conversion is mediated by TGFb,
as inhibition of TGFb disrupts ILC3 conversion and curbed

tumor growth (49). Additionally, ILC3 to ILC1 plasticity has

been reported in mice, where intestinal ILC3s deficient for the

key regulator genes BCL6 and cMAF, trans-differentiated into an

IFN-g producing ILC1-like phenotypes (49). Finally, a shift from
ILC2 to IFN-g producing ILC1 has also been observed during

inflammation in mice and humans caused by chronic

obstructive pulmonary disease, viral or bacterial infection (40,

50). Interestingly, ILC3 to /ILC1 and ILC2 to /ILC1 conversions

are both reversible, with increased IL-23, IL-2, IL-1b and RA

resulting in the reversal of ILC3 to ILC1 (51). While the reversal

process from ILC2 to ILC1 is not fully understood, ILC2s

expressing receptors for IL-1b, IL-12, IL-18, and IL-33 are

more likely to undergo trans-differentiation, while ILC2s

exposed to eosinophile-produced IL-4 are less likely to do so

(40, 50).

Gut resident ILC2s are defined by their expression of the

Gata3 and Rora transcription factors, as well as the secretion of

the type 2 effector cytokines IL-4, IL-5, IL-9 and IL-13. Tissue-

resident ILC2s respond to tissue damage and a variety of

pathogen-associated signals though the expression of receptors

for alarmins (IL-25, IL-33 and thymic stromal lymphopoietin

(TSLP)), prostaglandins and interferons. The development of

ILC2 populations in the murine gut is shaped by local immune

populations and microbiota in an IL-25 and IL-33 dependent

manner. While IL-25 stimulates an inflammatory subtype of

ILC2s, called inflammatory ILC2 (iILC2), IL-33 shapes the

natural ILC2 (nILC2) population which predominantly

expresses the IL33 receptor (ST2) (52–55).

Under homeostatic conditions, a small proportion of murine

intestinal ILC2s express the anti-inflammatory cytokine IL-10

after exposure to a variety of exogenous stimuli, including IL-2,

IL-4, IL-10, IL-27 and the neuropeptide neuromedin U (NMU)

(56) (Figure 2A). While the physiologic relevance of ILC2-

derived IL-10 remains unclear, it is tempting to speculate that

it helps to maintain the intestinal mucosa in an anti-

inflammatory state (57). Certain luminal contents, such as

succinate, activate murine intestinal ILC2s indirectly via tuft

cells, which are the dominant epithelial source of the alarmin IL-

25 (58). Intestinal infection with certain parasites (e.g.,

helminths) triggers ILC2 activation in a similar mechanistic

fashion to the indirect activation of ILC2 by succinate. In the

latter situation, parasite-sensing tuft cells release IL-25 and

leukotrienes C4 (LTC4) to activate ILC2s which express the

IL-25 and LTC4 receptors (59). Of note, ILC2-derived IL-13
Frontiers in Immunology 06
skews the differentiation of murine intestinal stem cells towards

goblet and tuft cells at the expense of absorptive enterocytes. In

an effort to rebalance the absorptive capacity of the intestine,

while also maintaining full immunity against the parasite and

protection against re-infection, crypt fission leads to a

lengthening of the intestine within weeks (59). Of note, in the

colon where both succinate and helminth infections fail to

induce tuft and goblet cell hyperplasia, an alternative IL-33/IL-

13 circuit exists that expands tuft and goblet cells. In this case,

IL-33 released from colonocytes activates stromal cells which

secrete IL-13 leading to an increase in tuft and goblet cells.

Stimulation of ILC2s with IL-33 does not only induce ILC2

proliferation, but also accelerate their migration. In mice,

intestinal inflammation leads to the accumulation of nILC2s in

the lung via IL-33/CXCL6 mediated migration of nILC2s from

the intestine to the lung. Interestingly, nILC2s upregulate the

CXCR6 receptor during inflammation, while iILC2

accumulation in the intestine appears to be mediated by IL-25

and CCL25 (60). Another report has shown that the migratory

potential and cell fitness of murine iILC2 is regulated by the AP-

1 superfamily protein (basic leucine zipper ATF-like

transcription factor (BATF) (61). Indeed, increased migratory

potential of activated ILC2s was also observed during helminth

infections and this was accompanied by prolonged interactions

with T cells in the inflamed mucosa, indicating that contact-

based T cell activation is mediated by activated ILC2s (62).

ILC3 are the major ILC subtype in the mammalian gut, to

where to they are seeded as immature precursor cells which

mature into two major populations that differ developmentally,

phenotypically and functionally. Lymphoid tissue inducer cells

(LTi)-like ILC3 cells which express the surface receptor CCR6,

and NKp46+ ILC3s (63). The maturation of ILC3s is regulated by

diverse factors, including RA, diet-derived polyphenols and the

microbiota (64). In mice, ILC3s are critical for the establishment

of cryptopatches and intestinal lymphoid follicles near the

epithelial layer, and assist in maintaining the integrity of the

intestinal barrier and tissue homeostasis by regulating

microbiota content (65, 66). ILC3 sense a wide variety of

environmental signals originating from the diet, microbiota or

surrounding cells; in response ILC3 release cytokines including

IL-17A/F, IL-22, GM-CSF and IL-2. IL-22 and IL-17 expression

in ILC3s follow the patterns of circadian oscillations. Deletion of

the circadian clock regulator gene REV-ERBa in murine ILC3s,

leads to their impaired development of the NKp46+ but not

NKp46- (LTi-like ILC3) population, thereby reducing IL-22

expression, and increasing IL-17 expression (67). Several genes

necessary for the maintenance of the circadian clock, such as

brain and muscle ARNT-Like 1 (BMAL1), are highly expressed

in ILC3s. These genes, along with many ILC3 effector genes are

expressed in a diurnal oscillatory fashion. Deletion of BMAL1

resulted in reduced numbers of ILC3s in the murine gut, as well

as the induction of certain hyperactivated features, which were

being partially restored after the depletion of the gut microbiota
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(68). Similarly, ablation of the circadian regulator Arntl in

murine ILC3s led to disruptions in gut homeostasis, lipid

metabolisms and increased susceptibility to colitis (69).

Notably, IBD patients show deregulated expression of

circadian-related genes (68). Overall, this underlines that

correct circadian regulation of ILC3 activities is required for

intestinal homeostasis, with their deregulation leading to the

development of gut disease.
Cellular crosstalk in the intestinal
mucosa

Crosstalk between myeloid cells and
innate lymphoid cells

LP-MФs are critically involved in controlling the

maintenance and activation of intestinal ILCs and T cells,

including Treg cells. LM-MФs derived IL-10 not only affects

CD4+ T cell responses and differentiation of Foxp3+ Treg cells

(70, 71), but LM-MФs can also induce IL-10 production by

neighbouring T-cells (70). While the production of IL-1b by a

subset of resident LP-MФs is important for the development of

TH17 cells under homeostatic conditions (71), CX3CR1+

mononuclear phagocytes can also prime T cells towards TH17

cell differentiation. DCs and LP-MФs have also been found to be

regulated through the GM-CSF, promoting DCs and LP-MФs

driven protection against environmental pathogens, with

increased GM-CSF being identified in humans and mice

undergoing an inflammatory response (72–76). In the GI tract

of mice, a subset of ILC3s expressing RORgt+ have been

identified as the primary source of GM-CSF during

inflammation. In response to increased IL-1b produced by

microbe-sensing LP-MФs through the TLR-adapter protein

Myd88, DC and LP-MФs release IL-10 and RA which in turn

trigger the conversion of naïve T cells into Tregs and contribute

to murine intestinal homeostasis (77). On the other hand, LP-

MФs production of IL-23 and IL-1b is kept under control by

LAG3+ Treg cells (78), suggesting a feedback loop, in which pro-

inflammatory LP-MФs induce Treg cells to contribute to a

tolerogenic milieu.

Myeloid derived cells such as DCs and MФs in the

mammalian gut are key regulators of ILCs. After sensing

bacterial metabolites via TLRs, myeloid DCs secrete pro-

inflammatory cytokines such as IL-1a, IL-1b, IL-12, IL-18, IL-
23, IL-33 and the TNF family member TL1A. IL-12 activates

ILC1s to secrete IFN-g and TNF-a with IL-12-responsiveness

being especially acute in intraepithelial NKp44+ CD103+ ILC1

(46). In mice, IL-1b and IL-23 induce the expression of MHCC

-class II molecules on ILC3. Meanwhile, TL1A binds death

receptor 3 (DR3) expressed on ILC3 and induces the

expression of the co-stimulatory molecule CD40L which then
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facilitates differentiation of TH1 and TH17 cells (but not Tregs)

and expression of IL-2 receptor subunit CD25 on TL1A

stimulated ILC3. This presumably primes ILC3s to become

responsive to the mitogenic IL-2 signal (79, 80).

ILC3s in cryptopatches (CPs) and isolated lymphoid follicles

(ILF) directly interact with cDCs via expression of lymphotoxin-

ab (LTa1b2). cDC associated with CPs and ILFs are

transcriptionally distinct from other tissue resident cDCs. In

particular, they express genes associated with regulation of

immune responses such as IL-6, IL-23, IL-1rn and the IL-22

binding protein (IL-22BP), which blocks IL-22 activity. The

latter expression profile is dominant in ILF-associated cDCs.

ILF-cDCs are absent in ILC3-deficient mice and mice unable to

express IL-22BP from ILF-cDCs have significant reduction in

the expression of genes required for lipid uptake in intestinal

epithelial cells leading to whole body alterations in lipid

homeostasis (81). This result is in agreement to data showing

that the vasoactive intestinal peptide suppressed IL-22

expression in ILC3 and associated increase in lipid uptake

after food intake (82, 83).

cDC2 cells metabolize vitamin A into RA in the intestine.

ILC3 express the RA receptor and RA stimulates IL-22

production during homeostasis as well as during colitis in

mice (84). All-trans RA also induces IL-22 in ILC3 via the

HIC1 transcription factor and this protects the murine gut from

invasion by pathogens (85). Conversely, lack of RA leads to a loss

of proliferating ILC3s and LTi cells resulting in reduced

lymphoid organ development and the induction of fewer

secondary lymphoid organs in mice (86, 87) (Figure 2A).

Transcriptional profiles of MФs isolated from colons of DSS-

challenged mice suggested regulation by GM-CSF. ILC3s are the

are the principal source of GM-CSF in the colon after DSS

treatment with lower contribution from gd T cells and ILC2s.

GM-CSF augments MФ activation towards inflammatory signals

(i.e. expressing IL-1b, IL-12/23) during colitis in both humans

and mice. Anti-GM-CSF treatment leads to defective monocyte

maturation, i.e. accumulation of immature monocytes and

improved colitis. MФs unable to respond to GM-CSF led to

reduced IL-22, but not IL-17A production, by ILC3. GM-CSF

promotes M1 polarization of MФs while suppressing the M2

endotype of MФ (88).
Crosstalk between myeloid cells and
intestinal epithelial cells

Through their capacity to sample the “outside”, myeloid cells

are important regulators for IECs to retain their barrier

functions. For instance, myeloid cell-produced IL-10 regulates

the microbiota-dependent increase in pro-inflammatory

mediators such as IL-23, as revealed by the analysis of IL-10-

deficient mice. In turn, IL-23 induces production of IL-22 and

IL-17 in TH17 and ILC3 cells (26). Subsequently, IL-22-activated
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Stat3 in IECs elicits transcription of survival and proliferative

gene signatures, as well as the expression of antimicrobial

peptides which trigger a subsequent recruitment of

neutrophils. Under regenerative conditions, for instance in

response to induction of acute colitis following administration

of the luminal irritant DSS, or high level of g-irradiation, the
Stat3 response in IECs is critical to match the epithelial repair to

the extent of inflammation arising from the break-down in

epithelial barrier function. We have previously termed this as

a rheostat function, whereby myeloid and stromal derived

activators of Stat3 signaling in IECs, (i.e. IL-6, IL-11) provide a

temporary boost to the homeostatic proliferation activity within

the intestinal epithelial stem cell compartment that is controlled

by canonical Wnt-signaling (89, 90). Besides Stat3 activity in

IECs providing a central signaling node to ensure myeloid cell

communication with IECs, other soluble mediators for the

stimulation of proliferation of epithelial progenitors in

intestinal crypts include the lipid mediator prostaglandin E2,

IL-1 and others (91, 92). More recent studies also suggest that

the myeloid cell/IEC crosstalk can occur through the production

of ribonuclease angiogenin by LP-MФs, which supports IECs

growth and survival (93). MФs directly affect homeostatic

renewal of IECs, as MФs ablation following CSF1R blockade

affects the differentiation of epithelial Paneth cells thereby

affecting the adjacent intestinal epithelial stem cell populations,

including their production of Wnt ligands (94). Moreover,

blocking of CSF-1 signalling also impairs differentiation of

other IEC lineages, including goblet cells and M-cells (94).

As implied by the above comments, the physiological

crosstalk between IECs and myeloid cells in the gut is also

closely regulated by the microbiota. Single cell RNA-sequencing

(scRNA-seq) of colon myeloid cells from specific pathogen-free

and germ-free mice showed that commensal microbiota

specifically supported the generation of MФs but not DCs in

the colon (95). In germ-free mice, the development of MФs is

impaired, and their gene expression profile is affected with a

downregulation of genes associated with immune defense and

antigen presentation. These data highlight the importance of

commensal microbiota on the unique developmental and

functional diversification of colon MФs (95). Moreover, mouse

strain with defective phagocyte activity revealed that insufficient

bacterial elimination by mucosal myeloid cells can affect IECs

differentiation and promote colon adenoma formation (96).

More specifically, the persistence of bacteria within the LP

potentiated the expression of the cyclooxygenase-2 enzyme by

MФs, which in turn, induced epithelial tumor development

(96, 97).

While traditionally much of the focus has been on

direct ional s ignal ing from myeloid ce l l s to IECs ,

communication between these compartments is by no means

unidirectional as myeloid cell differentiation is dictated not only

by ontogeny (98) but also by environmental factors (99).

Examples include the production of vitamin A-derived all-
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trans-retinoic acid (ATRA) by IECs in the small intestine,

which controls the maintenance of CD103+ cDC2 in mice

(100). Indeed recent studies suggest that ATRA, alongside

mucus component, drives CD103+ cDC2 transcriptional and

functional diversification into two distinct pools comprising a

mature and proinflammatory phenotype, and a second

intraepithelial cDC2 pool exhibiting immature and tolerogenic

properties (101). Similarly, two subsets of cDC2 have been

identified by transcriptome and epitope sequencing in human

intestinal mucosa (102), although the biological functions of

these two subsets in the human intestine remain unknown.

Molecular factors derived from IECs in combination with

other factors might also drive MФs diversification. Indeed,

MФs from the distal colon are functionally, phenotypically,

and transcriptionally different than MФs from the proximal

colon (95), suggesting that IECs secrete different factors in the

proximal colon vs distal colon (103) which could drive different

MФ diversification.
Crosstalk between innate lymphoid cells
and intestinal epithelial cells

Epithelial cells detect bacteria/bacterial metabolites (danger

signals PAMPs) via TLRs and translate it into co-stimulatory

signals for ILC1s to produce IFN-g (46). IFN-g secretion by ILC1

is required for mucus secretion by goblet cells, which is

important for protection of the barrier layer (48). This setup

allows activation of ILC1s even in the absence of tissue injury. To

avoid chronic activation of ILC1s, TGF-b was shown to dampen

ILC1 activation and IFN-g, but not TNF-a, secretion (104). In

mice, several ILC2 effector cytokines can directly influence

epithelial cells. Expression of the glycoprotein amphiregulin

(Areg) by activated ILC2s promotes intestinal tissue protection

(105) IL-25-induced release of IL-13 by ILC2s acts directly on

intestinal progenitor cells and skews their differentiation towards

tuft and goblet cells at the expense of absorptive enterocytes

(53, 54).

IL-22 secreted by ILC3s directly acts on epithelial cells to

promote repair and increased stem cell maintenance and

proliferation in the murine gut. During bacterial infection, IL-

22 maintains barrier integrity by directly promoting the

proliferation and expansion of intestinal stem cells (106). The

levels of IL-22 are regulated by DCs which secrete IL-22BP,

myeloid cells which secrete IL-1b and IL-23 and epithelial cells

which produce IL-1a. In addition, certain dietary components

such as phytochemicals (glucosinolates) induce the expression of

IL-22 through direct interaction with the transcriptional

activator aryl hydrocarbon receptor (AHR) (107). IL-22/IL-

22R signaling in epithelial cells induces the ATM serine/

threonine kinase which is part of the DNA damage repair

machinery protecting epithelial cells from genotoxic damage

and part of the p53-dependent apoptosis pathway. AHR-
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mediated signaling in ILC3 promotes their differentiation and

the establishment of cryptopatches and immune lymphoid

follicles in the murine intestine. By contrast, excessive AHR

signaling can lead to loss of ILC3, meanwhile a negative feedback

loop involving AHR and cytochrome P450 leads to the reduction

of dietary ligands of AHR, thus attenuating IL-22 expression and

preventing loss of ILC3s (108). IL-22 also induces serum

amyloid A secretion by murine intestinal epithelial cells which

supports local TH17 responses and secretion of antimicrobial

peptides to limit colonization with segmented filamentous

bacteria (SFB) (109).
Inflammation of the intestinal
mucosa

Myeloid cells in intestinal inflammation

Any perturbation in the stringent harmony that governs

homeostasis leads to unwarranted immune activation inducing

epithelial damage and inflammatory pathologies such as IBD,

CD, and UC. IBD are chronic inflammatory diseases of the

gastrointestinal tract of which immunopathology relates to an

inappropriate and exacerbated mucosal immune response to

components of the gut flora in genetically predisposed

individuals (110). Intestinal MФs and DCs reside in the LP,

and thus are ideally positioned to continuously sample intestinal

luminal contents. On the other hand, intestinal barrier

dysfunction precedes and predicts the development of CD

(111, 112). In mice for instance, MФs in the distal colon sense

water and fungal metabolite absorption by intestinal enterocytes

and regulate the intestinal barrier in the colon through the

aforementioned balloon-like protrusions. Depletion of those

MФs leads to IEC death and loss of the intestinal barrier

integrity which is a characteristic feature of IBD (21). By

contrast the small intestinal barrier in mice is regulated by

diurnal variations in food intake. Indeed, dietary timing and

content has been shown to drive the microbiome composition

and the transcriptional landscape of SI IECs; especially the

expression of MHC-II and the production of IL-10 by

epithelial cells and CD4+ T lymphocytes respectively.

Disruption of this diurnal rhythmicity by alteration of the

circadian clock results in enhanced microbial flux and

exacerbation of Crohn’s-like enterocolitis (113).

Conventionally activated MФs play important roles in the

pathogenesis of experimental colitis, through the production of

inflammatory cytokines, reactive oxygen species (ROS) and nitric

oxide (NO) (114). In particular, Th17 responses have been

considered the main adaptive component of the pathogenesis of

IBD, and Th17 responses are mediated by IL-1b, IL-6, IL-23 and

TGF-b secreted by MФs (115). Primarily owing to their capacity

to release IL-10, regulatory MФs are responsible for the resolution
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of colitis and the re-establishment of intestinal homeostasis (116).

They work in concert with alternative activated M2 MФs that

promote angiogenesis and debris scavenging, and support tissue

repair of the disrupted epithelial barrier to prevent further

unimpeded access of the luminal content to immune sentinels

(117, 118). Accordingly, IL-10R-deficient patients with IBD,

display defective functions of MФs as do patients with

polymorphisms in the IL-10 promoter (119, 120), while mice

deficient in IL-10 or IL-10R develop spontaneous colitis (121).

Likewise, adoptive transfer of regulatory M2b MФs, activated by

intravenous immunoglobulins or LPS, reduces intestinal

inflammation in DSS-challenged mice and limit collagen

deposition in the intestine (122) (Figure 2B). However,

alternatively activated MФs may also contribute to fibrosis in

CD, while regulatory MФs not only control colitis in mice, but

also appear to play an active role in preventing the progression to

fibrosis (122, 123).

Interestingly, some IBD susceptibility loci include regulatory

regions of target genes for LPS or CSF-1-induced MФ

differentiation (124). This suggests a link between defects in

the resolution of intestinal inflammation and altered monocyte–

macrophage differentiation that impairs bacterial clearance and

results in excessive secretion of inflammatory cytokine in IBD

patients (125, 126). Indeed, this process is dysregulated in both

CD and UC, because both pathologies are associated with

increased migration of CD14High monocytes, leading to

accumulation of CD11cHigh inflammatory monocyte-like cells

(127). Furthermore, colonic MФs in patients with CD show

abnormal morphological maturation associated with prolonged

survival of engulfed bacteria, resulting in excessive conversion

and expansion of pathogenic TH17 cells (127).

Owing to the rapid turnover in the intestinal lining, timely

phagocytosis of apoptotic intestinal epithelial cells and

neutrophils is essential to prevent the excessive release of

inflammatory cytokines by intestinal MФs during intestinal

inflammation (25). Indeed, intestinal MФs with engulfed

apoptotic intestinal epithelial cells overexpressed genes

implicated in susceptibility to IBD (i.e., IL12B, LSP1, SEPTIN1,

IL12B, etc), strongly suggesting that defective efferocytosis might

contribute to the pathogenesis of IBD (25).

IBD pathogenesis is thought to be enhanced by improper

MФ and DC responses to the microbiota (110). These responses

include deficient protection and intensified pathogenicity. In a

mouse model of T cell-induced colitis, inflammatory MФs

accumulate in the intestine and the mesenteric lymph node

where they produce inflammatory signals such as iNOS, and

trigger the induction of pro-inflammatory T cells (128).

Moreover, MФs isolated from patients with either CD or UC

produce different cytokines in response to bacterial challenges.

In CD, MФs produce more pro-inflammatory IL-23 and less

anti-inflammatory IL-10, whereas in UC, MФs constitutively

produce high levels of the pro-inflammatory cytokine IL-12.

These increases in either IL-23 or IL-12 production, at the
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expense of IL-10 levels, contribute to the inflammatory

exacerbation observed in UC and CD patients. Moreover,

MФs from IBD patients show increased expression of TLR2

and 4, and therefore their increase susceptibility to bacterial

products can exacerbate inflammatory responses and result in

inflammation and autoimmune reactions (129).

Like MФs, LP-DCs promote tolerance to intestinal antigens

at steady state but can become immunogenic upon inflammation

or direct stimulation. Indeed, they can produce inflammatory

cytokines, such as IL-12, IL-6, and IL-18, and thus induce TH1

responses when activated by TLR ligands (Figure 2B). Indeed, in

IBD patients with active disease, circulating pDCs migrate to

secondary lymphocytic organs resulting in the secretion of Th1

cytokines (IL-6, IL-8, TNF-a) thereby perpetuating disease

(110). Meanwhile, inflamed and uninflamed ilea of CD

patients harbor significantly fewer CD11c+ DCs, suggesting

that loss of DC as may be a precursor to subsequent damage

(130). However, despite the lesser abundance of CD103+ cDCs

in IBD tissues, these cells have a potent ability to drive Th1/Th2/

Th17 responses (131). More recent data on the contributions of

individual cDC subsets remain controversial.

While some studies showed that cDC2 have no effect on

DSS-induced colitis, others showed that cDC2s drive the

initiation of T cell-driven colitis (132, 133). Indeed, deficiency

of LP CD103+ cDC2 in human langerin-diphtheria toxin A

(DTA) mice, or complete depletion of cDC2 in CLEC4a4-

diphtheria toxin receptor (DTR) mice had no effect on the

severity of colitis in response to DSS administration (132,

134). Nevertheless, impaired development of colon LP cDC2

in IRF4 conditionally depleted mice was associated with a

delayed onset of T cell-dependent colitis (133) which

suggested a role for IRF4-expressing cDC2 in the initial

priming of colitogenic T cells.

Interestingly, cDC1 seem to have the capacity to protect/

prevent colitis. cDC1 deficiency in XCR1-DTA mice, or

depletion of cDC1 by administration of diphtheria toxin to

CLEC9A-DTR mice, leads to enhanced susceptibility to DSS-

induced colitis (34, 132).
Innate lymphoid cells in intestinal
inflammation

An imbalance in the composition of ILC subsets is

commonly observed in preclinical models of IBD, CD and UC

patients, and is thought to contribute to pathogenesis. The

common theme emerging is the expansion of the pro-

inflammatory natural cytotoxicity triggering receptor (NCR)-

T-bet+ ILC3 subtype at the expense of the tissue protective NCR+

T-bet- ILC3 subtype accompanied by the increase in IFN-g
secreting ILC1 population while the frequency of ILC2

subtypes remains most ly unaffected (42, 43, 135–

138) (Figure 2B).
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IL-12, IL-18 and IL-1b produced by DCs in response

exposure to microbial metabolites are the dominant cytokines

required for the induction of IFN-g and TNF-a released by

ILC1s during gut inflammation (139, 140). IL-12 signaling

(released by ILC1s) gives NCR+ ILC3 cells the ability to

produce IFN-g. Phenotypic conversion of NCR+ ILC3s to

IFN-g producing ILC1s is prominent in CD patients

supporting the pathologic role for IFN-g secreted by either

ILC1s or ILC3s. Accordingly, mice lacking ILC1s were

protected from experimental colitis (141). Of note, while both

commensal and pathogenic gram- bacteria were able to induce

IFN-g in isolated gut ILC1s, gram+ bacteria failed to do so (142).

A recent study has provided functional evidence showing

activated ILC1 contributing to tissue remodeling in IBD

through the secretion of TGF-b leading to epithelial growth

matrix remodeling involving the protein kinase p38g and the

matrix metallopeptidase 9 (143). This raises the prospect that

ILC1 may be able to facilitate tissue repair reminiscent to ILC2

and ILC3 subtypes via IL-13 and IL-22 secretion, respectively.

Conversely, TGF-b was shown to antagonize the IL-15-mediated

expression of cytotoxic molecules in an expanded population of

IL-7Ra+ CD94+ ILC1s present in the lamina propria of patients

with active CD but absent in healthy individuals (144).

Notwithstanding the well-established role of the IL-25-

responsive, inflammatory subtype of ILC2s in tissue repair

during intestinal parasite infections and their capacity to

respond to microbial metabolites such as succinate, their

contribution to IBD is less clear. Confounding results are

mostly due to the role of the IL-33 cytokine, a major activator

of ILC2 function. Expression of IL-33 in the epithelial cells is

suppressed by the signaling protein Sprouty2 via the PI3K-Akt

pathway and accordingly, loss of Sprouty2 in the colon protects

mice from DSS-induced colitis. Notably, Sprouty2 is elevated in

IBD patients suggesting an anti-inflammatory and tissue

protective role for IL-33 (145). In addition to necrotic

colonocytes, IL-33 is expressed from stromal cells, myeloid

cells and endothelial cells in response to tissue damage and

stress (146). This is most likely important since recent data in

mice indicate that the cellular source of IL-33 dictates the

biological consequences of IL-33 activity. While epithelial IL-

33 drove host protective immunity, DCs-derived IL-33

suppressed it by controlling intestinal Treg numbers (147). A

further source of IL-33 are microbiota-sensing mucosal

macrophages. Here, the microbial product muramyl dipeptide,

found in the walls of both gram+ and gram- bacteria, is sensed by

nucleotide-binding oligomerization domain–containing-2

(NOD2) expressing mononuclear phagocytes which in

response secrete IL-33 which leads to IL-5 secretion in

activated ILC2. Of note, NOD2 is a susceptibility gene

associated with CD underscoring the relevance of this

mechanism. IL-33 levels are reduced in NOD2 deficient mice,

resulting in lower levels of ILC2 and acerbated inflammatory

disease, indicative of a pathogenic role of the IL-33/ILC2 axis in the
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early stages of ileitis (148). In agreement with this, IL-33

abundance was elevated in colon biopsies of IBD patients (149)

and IL-33 deficient mice were protected from DSS induced colitis

while exogenous IL-33 aggravated disease. IL-33 deficiency

resulted in impaired development of ILC2 and TH17 cells and

reduced expression of pro-inflammatory cytokines IL-1b, IL-6 and
IL-10 (150). In contrast to these findings, ST2 deficient mice

displayed accelerated colitis in a DSS model and rIL-33

improved disease and induced strong upregulation of TH2

cytokines IL-5 and IL-13 as well as an accumulation of Tregs

and ILC2s in the colon. Notably, murine Tregs were required for

the induction for IL-5 and IL-13 and the expansion of ILC2 was

independent of T and B cells (149, 151). However, it is currently

unclear whether the expansion of Tregs in response to IL-33

requires the ILC2-M2 MF axis as recently demonstrated in a

murine lung sepsis model (151). Furthermore, thymic stromal

lymphopoietin (TSLP) belongs to the family of ILC2-activating

alarmin cytokines and is secreted mainly from epithelial cells and

stromal cells. Its role in gut homeostasis and IBD is controversial.

An initial older study reported increased TSLP expression in UC

patients while two more recent studies report the opposite (152–

154). IBD patients on anti-IL-13 treatment had increased TSLP

expression and demonstrated improved tissue healing (153). TSLP

receptor deficient mice did worse after DSS treatment and TSLP

administration improved colitis by inducing TGF-b (155, 156).

During breaches of the epithelial barrier, bacterial metabolites

trigger the release of pro-inflammatory cytokines IL-1b and IL-23

by tissue-resident macrophages which in turn activates ILC3s to

release the cytoprotective IL-22. During colitis in mice, expression

of IL-22 was negatively impacted by accumulating Tregs which

suppressed the release of IL-23 and IL-1b frommacrophages (78).

In the intestinal tissue of UC and CD patients, the frequency of IL-

17+ pro-inflammatory ILC3 subset (NKp44-) was increased and

hyper-responsive to IL-23, while the tissue-protective NKp44+

ILC3 subset was reduced (42, 136, 138, 157). Similarly, in a model

of human neonatal necrotizing enterocolitis (NEC), the pro-

inflammatory ILC3 subtype (NKp46- RORgt+ T-bet+) was

increased at the expense of the tissue protective ILC3 subtype

(NKp46+ RORgt+) and ILC1 populations, while ILC2 frequencies

were largely unaffected, despite a significant reduction in type 2

cytokines IL-4, IL-13 and reduced expression of Gata3. This

suggests that TH2 cells rather than ILC2s were the source of the

type 2 cytokines in this model (158).

There is limited data on pathways and mechanisms that

suppress activation of ILC3 in inflammatory conditions such as

IBD. Their identification is important for developing therapeutic

approaches able to target ILC3 activity. Vitamin D downregulates

IL-23 receptor signaling. Notably, vitamin D deficiency is a reported

risk factor in IBD, hence vitamin D substitution may be beneficial

by lowering IL-23 mediated induction of IL-17 secretion (159). The

expression of circular RNA circKcnt2 which was induced in ILC3

during inflammation leads to suppression of IL-17 transcription

and resolution of the inflammatory response. Mice lacking
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expression of this circular RNA exhibited activated ILC3s and

aggravated colitis (160). Another avenue to curb ILC3 activity

may be achieved through dietary means (161). Both high salt

and high fat diets contributed towards disease progression (162,

163). A ketogenic diet (KD), characterized as high in fat and low in

carbohydrates, was shown to alter the gut microbiota and microbial

metabolites in mice, leading to ameliorations in both inflammation

and disease severity after DSS. Mechanistically, levels of

inflammatory cytokines (IL-22, IL-17 and IL-18), chemokines

(CCL4, CCL12) and frequency of CP-resident ILC3s were

reduced in mice on KD diet. This benefit was transferable

through the fecal microbiota to mice on a normal diet. Microbial

metabolites such as short chain fatty acids (SCFA) signal directly to

mucosal ILC3 through binding to the GPR43 receptor (FFAR2) to

induce ILC3 proliferation and release of IL-22 (164).
Cancer in the intestinal mucosa

Myeloid cells in colorectal cancer

IBD increases the risk of developing colorectal cancer (165).

The emergence of single cell analyses has greatly facilitated the

study of solid tumor microenvironments (TME) and their cellular

diversity. scRNA-seq analyses on immune and stromal populations

from colorectal cancer patients identified heterogeneity within the

populations of tumor-associated macrophages (TAMs) and the

tumor-associated DCs with diverse gene expression profile and

functions. Comparing scRNA-seq from human colon cancer

patients with mouse models of colon cancer, showed that the

major tumor-associated myeloid cell populations are conserved in

human andmouse (166). Moreover, computational modeling of all

cell subsets enriched in tumors revealed a cell-cell interaction

network in human and mouse colon cancer where TAMs and

DCs harbor the most connections with other cell types (166). This

predicted network suggests that TAMs and DCs subsets are central

mediators of cellular crosstalk in the TME. In the next paragraphs

we will briefly discuss MФ and DC populations present in colon

cancer tissue.

Macrophages are one of the most important cells in the TME.

They are recruited to the TME mainly by the chemokine CCL2,

produced by cancer cells. Their role during tumorigenesis is

complex because they have been associated with prevention

and/or promotion of tumor development in different cancer

types (167–170). Several studies have investigated the prognostic

significance of MФ infiltration in colon cancer patients and have

generally reported a correlation between better survival and high

MФ infiltration (171–173), although conflicting reports exist (174,

175). As mentioned earlier, TAMs are traditionally segregated into

pro-inflammatory and anti-inflammatory MФ, M1 and M2

respectively, but there is significant plasticity between these

endotypes. For instance, suppression of an M2-like endotype is

intracellularly controlled by distinct molecular mechanisms
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including kinase activities such as the gamma-isoform of PI3K

(176, 177), or the hematopoietic cell kinase (HCK) (178) and

others. Multiplexed immunofluorescence analyses using M1 and

M2 specific markers revealed the presence of those TAMs in

epithelial and stromal regions of human colorectal carcinoma

(179). Tissue microarray analyses correlated with patient survival

and revealed that, in tumor stroma, a high M1/M2 density ratio

was associated with better cancer-specific survival (179). Similar

observations have been made in human and mouse models of

colorectal cancer (180–182). Indeed, preclinical models suggest

that genetic or pharmacologic suppression of the M1 to M2

endotype transition reduces colon cancer in preclinical models

(178) (Figure 2C).

It is now generally recognized that diverse phenotypic states

exist between the two traditional M1-M2 polarizations. In colon

cancer patients, two main populations of TAMs with distinct

functional features have been identified by transcriptomic analyses

(166): Secreted phosphoprotein 1 (SPP1) positive TAMs and

complement C1q C chain (C1QC) positive TAMs. SPP1+ TAMs

are enriched for pathways involved in tumor angiogenesis, tumor

vasculature and colorectal adenoma, while C1QC+ TAMs are

enriched for complement activation and antigen processing and

presentation pathways. These observations suggest that SPP1+

TAMs played a pro-tumorigenic and pro-metastatic role in colon

cancer whereas C1QC+ TAMs are involved in anti-tumor

responses. Confirming these hypotheses, only C1QC+ TAMs are

identified in the mucosal colon of UC and healthy individuals

(183), whereas SPP1+ TAMs are virtually absent in non-cancer

tissues (166). Notably, neither of these populations strictly

correspond to the classically activated M1 or the alternatively

activated M2 macrophages (Figure 2C).

TAMs have also been shown to participate in the

development of colon cancer metastasis (184). They can

secrete IL-6 and IL-11, two cytokines that engage the same

signaling cascade associated with the shared gp130 receptor

subunit which not only suppress apoptosis and enhance

proliferation of neoplastic IECs, but also promote migration of

colon cancer cells and induce the epithelial–mesenchymal

transition program in cancer cells and therefore enhance

metastasis (184, 185). Reciprocally, cancer cells produce CCL2

and GM-CSF which promote MФ recruitment (184, 186).

CSF-1 is a well-known regulator of MФ proliferation,

differentiation, and survival. Clinical immunotherapies aiming

at repressing TAM biology, by disrupting their expansion and

differentiation, use anti-CSF1R which block CSF-1 binding to

MФs. However, anti-CSF1R immunotherapy alone presents a

low efficacy in patients with solid malignant tumors (187).

Zhang., et al. showed, in mouse model of colon cancer, that

anti-CSF1R treatment preferentially depleted a fraction of the

C1QC+ TAM subset, while sparing SPP1+ TAM (166).

Therefore, anti-CSF1R was insufficient to deplete MФ

populations with tumor growth-promoting potential, hence its

low clinical efficacy.
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Conventional DCs (cDCs) have been widely studied in various

immunogenic cancers, and researchers have shown that cDCs

capture and transport tumor antigens to draining lymph nodes

where they secrete pro-inflammatory cytokines such as IL-12, IL-6,

TNF-a and IL-1b and (cross) present antigens to activate cytotoxic

T lymphocytes [reviewed in (188)]. Similar to other malignancies,

colon cancer antigens can induce DCs recruitment, maturation, and

cytokine release in order to generate effective TH1-type immune

responses (189). However, despite the key role of functional DCs in

anti-tumor immunity, it is still largely unclear how colon cancer

shapes DC fate. Indeed, immunosuppressive signals released by

tumor cells or immunomodulatory cells, such as prostaglandin E2/

cyclooxygenase-2, IL-10, TGF-b or vascular endothelial growth

factor (VEGF), can induce DC dysfunctionality (190, 191). These

molecules can modulate DC inflammatory responses by inhibiting

their production of pro-inflammatory cytokines, and/or prevent

DC maturation (Figure 2C).

Tumor-associated DCs, unlike TAMs, constitute only a

minority of myeloid cells in the TME (166, 189). Little is known

about how DCs are recruited to the TME in colon cancer, but a

study in a mouse model of colon cancer showed that

tumor-residing NK cells produce the chemokines XCL1 and

CCL5 which attract cDC1 into the tumor where NK cells and

other cells enhance their activation for efficient anti-tumor

responses (192). Immuno-histological staining of human colon

cancer tissue shows that the number of tumor infiltrating DCs is

negatively correlated with survival, tumor size and metastasis

(193–196). The level of DC maturation has been shown to be

primordial for the correlation between the number of tumor-

infiltrating DCs and patient prognosis. Indeed, only high

infiltration with immature DCs (S100 positive) correlated with

increased disease-free survival, while the presence of mature

(HLA-DR+) DCs in the tumor epithelium showed an opposite

effect on patient survival (193, 194, 196). In addition, a recent

study on colon cancer patients indicated that the presence of DCs

expressing the immunoinhibitory molecule PD-ligand 1 (L1) in

the TME is associated with improved survival (197). Moreover,

the density of PD-L1+ DCs in tumor compartments is positively

correlated with the density of CD8+ cells, which suggests that the

presence of PD-L1+ DCs reflects a hot immunological TME (197).

Contradictory observations have been made regarding pDC

and survival prognosis in human colon cancer. While Kiessler et al.

reported that a high tumor infiltration of pDC was correlated with

prolonged survival of patients with colon cancer (198); Wu et al.,

showed that tumor-infiltrating pDC upregulated genes associated

with tumor development and downregulated genes associated with

tumor inhibition (199), suggesting that pDC participate in human

colon tumor progression.

It is well established that immature DCs can induce

tolerance. For instance, CD11b+ CD103+ cDC2 from the

lamina propria were particularly competent at inducing

Foxp3+ Tregs (200, 201). They do so through a TGF-b and
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RA-dependent mechanism: the small intestinal tissue

constitutively expressed large amounts of TGF-b that triggered

RA production by DCs which in turn converted CD4+ T

lymphocytes into Foxp3+ Tregs (200, 201). Furthermore, it has

been shown that the production of IL-27 by DCs, and especially

cDC1, induced the development of type-1 regulatory T cells

(202, 203) which enhanced tumorigenesis in mouse models of

colon cancer.
Innate lymphoid cells in colorectal
cancer

Dysregulation in the composition, activation states and

responses of immune cells in the TME of colon cancers are

contributing events in the inception of pro- or anti-tumorigenic

immune milieus (204). Recently, innate lymphoid cells (ILCs)

have come to the fore as critical intermediaries during tissue

homeostasis, inflammatory disease and cancer in the colon and

are increasingly being recognized as potent and pleiotropic

immunomodulators. In this section we will give an overview

of recent developments, advances, and discoveries in this rapidly

evolving field.

Until recently, no clear role for ILC1s in colorectal

tumorigenesis had been described beyond their ability to

promote chronic intestinal inflammation through their potent

mediators IFN-g and TNF-a. Nevertheless, both cytokines have

well-documented anti-tumorigenic properties in both humans

and mice: IFN-g through stimulation of cytotoxic activity in T

cells and NK cells and TNF-a through direct induction of

apoptosis in tumor cells and tumor vasculature, and indirectly

through mobilization of MФs and DCs into the TME (205–208)

(Figure 2C). While NK cells fall outside the scope of this review,

there have been few publications addressing the direct interplay

between ILC1s and NK cells in colorectal cancer, as such, much

of their functionality remains ambiguous and warrants further

investigation (209). Studies directly addressing the role of ILC1

effector cytokines in colon cancer remain missing, instead the

distribution and profiles of the various ILC subtypes in the

periphery or inside the colon cancer tumor are being reported. A

study identified a proliferating CD103+ intraepithelial ILC1-like

population with cytotoxic activity localized in human colon

cancers (210) while a CD56+ intraepithelial ILC1-like

population was significantly expanded in the blood of

metastatic colon cancer patients with the frequency of the

corresponding ILC1 population decreased (211). More

recently, single cell transcriptomics was used to profile ILCs in

the blood and gut tissue of healthy individuals and colon cancer

patients. Overall, the gene signatures were very similar between

the ILCs isolated from healthy or diseased blood while the tumor

ILCs were remarkably different. In particular, an ILC1-like

subset was found to be colon cancer-specific. Notably, the
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molecule family member 1 (SLAMF1), a surface protein which

was specifically and highly expressed in tumor ILCs (mainly

ILC1-like and ILC2) and to a lower level in the blood of colon

cancer patients but absent in the normal blood. Intriguingly,

SLAMF1 is a potential predictive biomarker for colon cancer

since the SLAMF1high group of colon cancer patients had a better

overall survival compared to the SLAMF1low group (212). A

similar observation was made in circulating ILC2s of patients

with colitis (CD and UC) where SLAMF1 was upregulated on

ILC2s in both patient groups compared to healthy control.

Moreover, the frequency of SLAMF1+ ILC2s in the blood was

negatively correlated with disease severity in patients with active

CD, but not UC (213). ILC1s expressed inhibitory receptors and

underwent inhibitory functional conversion in late stage colon

cancers while ILC1s in early-stage tumors expressed high levels

of activating receptors (KLRD1, NCR1, KLRC2, KLRB1C) while

late-stage colon cancers expressed inhibitory markers (KLRE1,

KLRA7). Furthermore, late stage ILC1s were weak responders to

IL-12, most likely due to loss of IL-12RB2 expression and

reduced IFN-g secretion (214).

ILC2s are abundant in colon cancer tissue and were the

dominant source of IL-9. IL-9 was able to activate CD8+ T cells

to inhibit tumor growth (Figure 2C). Conversely, blocking ILC2s

promoted tumor growth in mice (215). Single-cell RNA profiling

of ILC subsets in the AOM/DSS model of colon cancer identified

6 clusters of tumor infiltrating ILCs. ILC2s were classified into

three subsets A, B and C with the ILC2-C subset shown to

facilitate tumor progression. HS3ST1 (heparan sulphate3-O-

sulfotransferase) and programmed cell death protein 1 (PD-1)

were highly expressed on ILC2s in late-stage tumors and lack of

HS3ST1 and PD-1 in ILC2s suppressed tumor growth (214).

ILC3 numbers are reduced in colon cancer tissue compared

to healthy controls in both humans and mice, mostly due to

transdifferentiation of ILC3s into ILCregs during tumor

progression. The conversion was partially mediated by

TGF-b and inhibition of TGF-b signaling disrupted ILC3

conversion and curbed tumor growth (214). ILC3 to ILC1

transdifferentiation also resulted in increased inflammatory

activity of TH17 cells, which is consistent with previous reports

demonstrating an ILC3-dependent restriction of microbiota-

specific TH17 activity during intestinal inflammation in an

MHC-II-dependent manner (Figure 2C). Accordingly, deletion

of MHC-II molecules on ILC3s accelerated tumor progression

and aggressiveness and lead to resistance to anti-PD-1

checkpoint blockade while also eliciting changes to microbiota

composition. This change in microbiota restricted the

effectiveness of anti-tumor TH1 cell immunity and this defect

was transferable by fecal transplants. IBD patients have reduced

numbers of ILC3s and transfer of fecal microbiota transplant

from IBD patients into mice reduced TH1 levels and increased

resistance to PD-1 blockade (216). Numbers of ILC3s
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are negatively correlated with colon cancer stage, while

plasmacytoid DC numbers are positively correlated. It was

proposed that pDCs induced apoptosis of ILC3s through the

Fas/Fas ligand pathway in the TME (199). A recent report

highlighted the importance of microbial fungi in the regulation

of colon cancer progression in mice (217). Here fungal control

required pattern-recognition receptors such as dectin-3

expressed on MФs, and in dectin-3 null mice the increased

fungal burden promoted colon cancer. Mechanistically, elevated

fungal burden induced IL-7 production in dectin-3-deficient

macrophages which then stimulated IL-22 release from ILC3s.

In turn, IL-22 increased cancer cell proliferation in a Stat3-

dependent manner. Notably, late-stage colon cancer patients had

lower expressions of DECTIN-3 and conversely DECTIN-3

expression was high in patients with low fungal burden and

high fungal burden predicted worse progression-free survival

and overall survival. (218).
Conclusion

A complex network of crosstalk between the epithelium and

the innate and adaptive immune systems is required for the

maintenance of intestinal homeostasis. While many of the

mechanistic underpinnings of innate and adaptive immune

cell functions have been deciphered through the utilization of

mouse models, the functions of these cells in gastro-intestinal

tract-associated diseases is continuously evolving.

As prolonged homeostatic imbalance can result in chronic

inflammation, tumorigenesis and inefficient anti-tumor immune

control, more scrutiny has been applied to the mucosal innate

immune cells responsible for maintaining gut homeostasis.

These tissue-resident immune cells are likely the first to sense

changes in the gut environment, stemming from microbial

dysbiosis via pattern recognition receptor on IEC (219) or via

antigen presentation by DCs (220). Indeed, the close proximity

of innate immune cells to the gut epithelium allows them to

rapidly respond to invading pathogens, coordinating with the

adaptive immune system to mount an effective defense.

However, in many cases, aberrant activation of both innate

and adaptive immune cells can promote chronic inflammation,

an immunosuppressive environment, while increasing the risk of

colorectal cancer development. Potentially due to a disturbance

in the commensal microbial community, leading to gut dysbiosis

and ongoing inflammation.

A deeper understanding of the contribution of individual

immune cell subsets, and in particular of the myeloid and ILC

lineages, are likely to unveil novel potential strategies to

therapeutically manage IBD. Currently, clinical interventions

for IBD are primarily based on the management of persisting
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inflammation through targeting of TNF-a, or the inhibition of

IL-12 and/or IL-23 cytokines through p19 or p40-subunit

specific antibodies, or the use of steroids to dampen the

overall inflammatory response (221). In addition, anti-

adhesion therapies with biologics targeting a4 and b7 integrin

containing heterodimers or various sphingosine 1-phosphate

receptors have shown promise in recent clinical trials (138, 222).

While the inhibition of pro-inflammatory cytokines leads to a

beneficial therapeutic effect predominantly by curbing the

pathological activity of activated MФs, DC’s and ILC3s and

an associated restoration of the ILC1/ILC3 balance, anti-

adhesion therapies block the migration of leukocytes to the

gut, their egress from the vasculature and the subsequent

adhesion of intraepithelial T cells and DC’s to E-cadherin

expressing epithelial cells (223). Therapeutic targeting of

specific cellular subsets, either directly or indirectly through

manipulation of the microbiome, is likely to allow a more

patient-tailored approach and therefore potentially also reduce

side-effects arising from current treatments. In mice for

instance, eosinophil chemotaxis and associated spontaneous

colitis is suppressed by treatment with a CCR3 receptor agonist

(224), while the correction of dysbiosis in CD by fecal

microbiota transplants is now being explored in Phase 2

clinical trial (NCT03078803).

Although there have been numerous attempts to target

adaptive immune cells in colon cancer, both with anti-PD-1

and anti-CTLA-4 immunotherapies, this has been unsuccessful

in >80% of colorectal cancers. In contrast, innate immunity in

the intestinal epithelium can promote adaptive immunity,

limiting cancer metastasis or recurrence. Most studies

examining gut-resident innate immune cells (MAIT/gd T

cells) in colorectal cancer highlighted that the cytotoxic or

activation phenotype of these cells is dependent on the

expression of genes found in the tumor microenvironment or

relies on in vitro stimulation. However, there is a lack of

evidence and understanding if and how these cells become

cytotoxicity deficient or anergic, resulting in reduced

interaction with innate and adaptive tumor responding

immune cells, impeding the killing of cancer cells. Indeed,

preclinical studies using targeting innate immune cells in

mouse models, suggest novel therapeutic strategies through

inhibiting immunosuppressive MФs (178), activating ILC3s

(216) and DCs (225), either alone or in combination with anti-

PD-1/anti-CTLA-4 therapy in primary or metastatic colorectal

cancer. Finally, the effect of targeting gut-resident ILCs and

myeloid cells, through the identification of intestinal-specific

regulatory or inhibitory immune markers could offer new

therapeutic pathways for the treatment of CRC and need to

be unraveled.
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