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Rheumatoid arthritis (RA) is an autoimmune disease involving joints, with

clinical manifestations of joint inflammation, bone damage and cartilage

destruction, joint dysfunction and deformity, and extra-articular organ

damage. As an important source of new drug molecules, natural medicines

have many advantages, such as a wide range of biological effects and small

toxic and side effects. They have become a hot spot for the vast number of

researchers to study various diseases and develop therapeutic drugs. In recent

years, the research of natural medicines in the treatment of RA has made

remarkable achievements. These natural medicines mainly include flavonoids,

polyphenols, alkaloids, glycosides and terpenes. Among them, resveratrol,

icariin, epigallocatechin-3-gallate, ginsenoside, sinomenine, paeoniflorin,

triptolide and paeoniflorin are star natural medicines for the treatment of RA.

Its mechanism of treating RA mainly involves these aspects: anti-inflammation,

anti-oxidation, immune regulation, pro-apoptosis, inhibition of angiogenesis,

inhibition of osteoclastogenesis, inhibition of fibroblast-like synovial cell

proliferation, migration and invasion. This review summarizes natural

medicines with potential therapeutic effects on RA and briefly discusses their

mechanisms of action against RA.

KEYWORDS

rheumatoid arthritis, autoimmune disease, flavonoids, polyphenols, alkaloids,
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Introduction

Rheumatoid arthritis (RA) is a common chronic inflammatory disease and systemic

autoimmune disease, mainly involving the synovial joints, and is characterized by

destroyed immune regulation of the joint synovial membrane, systemic inflammation

and the existence of autoantibodies, which finally lead to severe damage and destruction

of cartilage and bone (1, 2). At the inflammatory joint site, immune infiltration caused by
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cytokine and chemokine pathway disorders promotes the

proliferation of joint fibroblast-like synoviocytes (FLSs) and

leads to the development of chronic inflammation (2, 3). The

disease will cause systemic symptoms such as fever, anemia,

osteoporosis or muscle weakness. It will also affect other organs,

such as the skin, blood vessels, kidneys, heart, lungs, nerves, liver

and intestines and stomach (4, 5), and even increase the risk of

patients suffering from cardiovascular diseases and certain

cancers such as lung cancer and lymphoma (6, 7). Globally,

the incidence of RA is approximately 1% (8). The pathogenesis

of RA is mainly genetic factors, environmental factors and

autoimmune (9). Smoking, hormones, infections, microbiota,

etc. are the key factors leading to RA in genetically susceptible

individuals (10, 11). At present, immunosuppressive drugs and

non-steroidal anti-inflammatory drugs are commonly used in

clinic to treat this disease, but these drugs have serious side

effects. In order to alleviate the suffering of patients with RA and

improve their quality of life, we need more kinds of clinical drugs

that are more effective and have fewer side effects.
Polyphenols

Resveratrol

Resveratrol (RES) (3,5,4-trihydroxystilbene) is a natural

antioxidant that exists in a variety of plants, such as Cassia

obtusifolia, Veratrum nigrum, Polygonum cuspidatum, grapes,

soybeans and nuts, and has a variety of pharmacological effects,

as well as therapeutic effects on a variety of autoimmune

diseases, including RA (12). A clinical study (13) has shown

that RES can significantly improve the disease status of patients

with RA and significantly reduce the serum levels of related

biochemical indicators, namely, C-reactive protein, erythrocyte

sedimentation rate, carboxylated osteocalcin, matrix

metalloproteinase-3 (MMP-3) tumor necrosis factor a (TNF-

a) and interleukin-6 (IL-6). The expression of silent information

regulator 1 (SIRT1) in synovial tissue and FLSs of patients with

RA is significantly lower than that in the healthy control group.

SIRT1 is a key regulator of the pathogenesis of RA and plays an

important role in the anti-inflammatory and anti-cytokine

pathway of resveratrol in the inflammatory joint environment

of RA (14). RES inhibits the NF-kB pathway by increasing the

expression of SIRT1 and promotes FLSs apoptosis, reducing

synovial hyperplasia and inflammatory response, thereby

improving RA (15). This process may be mediated by RES by

inhibiting the expression of MMP-1 and MMP-13 (16). Further

research has shown that (17), NF-kB can directly bind to the

promoter of SIRT1/nuclear factor erythroid 2-related factor 2

(Nrf2) signaling pathway and exert a negative regulatory effect.

Lu et al. demonstrated that (18), resveratrol induced FLSs

apoptosis through mitochondrial dysfunction and endoplasmic

reticulum stress pathway. Fernández-Rodrıǵuez et al. (14)
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showed that resveratrol could inhibit the proliferation of

synovial tissue cells by inducing non-classical autophagy

pathway and reducing the expression of p62.

The research by Buhrmann C et al. (19) showed that TNF-b
induction could make chondrocytes produce a pro-

inflammatory microenvironment similar to that of TNF-a and

T lymphocytes, up-regulate the pro-inflammatory signaling

pathway and inhibit the chondrogenic potential of

chondrocytes, while resveratrol could inhibit the downstream

signaling pathway of TNF-b, which might be achieved by

inhibiting the NF-kB signaling pathway of chondrocytes and

up-regulating the SIRT1 signal. Tian et al. (20) demonstrated

that TNF-a induction could increase the production of IL-1b
and MMP-3 inflammatory cytokines in RA-FLS, while

resveratrol reduced the production of TNF-a-induced IL-1b
and MMP-3 by inhibiting PI3K/Akt signaling pathway,

thereby exerting the anti-inflammatory effect. The research by

Tsai et al. (21) has revealed that particulate matter in air

pollution can enhance the activity of nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase and reactive oxygen

species (ROS) generation in human FLSs, enhance the activity of

NF-kB pathway and activate Akt, ERK1/2 or p38 MAPK.

However, resveratrol pretreatment can down-regulate the

expression of cyclooxygenase (COX)-2 and its metabolite

prostaglandin E2 (PGE2), inhibit oxidative stress, and reduce

the activity of these inflammatory pathways. Studies have found

that (22, 23), Src tyrosine kinase, Signal transducer and activator

of transcription 3 (STAT3), mitogen-activated protein kinase

(MAPK) and Wnt signaling pathways in collagen-induced

arthritis (CIA) model are activated, and the level of hypoxia-

inducible factor-1a (HIF-1a) in RSC-364 cells stimulated by IL-

1b is increased. Resveratrol can mediate angiogenesis in synovial

tissue by inhibiting these signaling pathways and HIF-1a, with a

preventive role in the progression of RA. Theoretically,

resveratrol can play a role in improving RA by resisting

inflammation, oxidation, inhibiting cell proliferation,

promoting apoptosis in synovial tissues and inhibiting

angiogenesis. Resveratrol can be considered as a new

therapeutic drug for RA, with great potential.
Epigallocatechin-3-gallate

Epigallocatechin-3-gallate (EGCG), a catechin monomer

extracted from tea leaves, is the main active component of tea

polyphenols and has antioxidant and anti-inflammatory effects

(24). Studies (25, 26) have shown that EGCG has an anti-

inflammatory effect in human RASFs, and is the best anti-

inflammatory catechin in green tea extract, which can inhibit the

expression of IL-1b-induced chemokines (ENA-78, growth related

gene a and reduced upon activation, nornal T cell expressed and

secreted), cytokines (TNF-a, IL-6 and IL-8), COX-1, COX-2,

MMP-1 and MMP-2. According to the research by Karatas et al.
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(27), EGCG can improve the symptoms of arthritis in rat CIA

model, which may be achieved by reducing the level of pro-

inflammatory cytokines (IL-17 and TNF-a), regulating the

transcription factor Nrf2 and the balance between the induced

inflammation and oxidation-oxidation resistance. Studies (28, 29)

have shown that EGCG can reduce the symptoms of autoimmune

arthritis, inhibit osteoclastogenesis and Th17 cell activation, and

increase the number of Foxp3+ Treg. Its anti-arthritis effect may be

due to the induction of pERK, Nrf2 and heme oxygenase-1 (HO-1)

expression, and inhibition of STAT3 activation. Further studies

have shown that EGCG inhibits Th17 differentiation by inhibiting

STAT3 activation, and also inhibits mTOR and subsequent

activation of HIF-1a, which may lead to the reduction of Th17

and enhancement of Treg. These studies suggest the potential value

of EGCG in the treatment of RA.
Curculigo glycoside

Curculigo glycoside is the main saponin active substance in

Curculigo orchioides and has significant antioxidant and anti-

osteoporosis effects (30). A study (31) has shown that

Curculigoside A (CA) can improve the symptoms of arthritis

in adjuvant-induced arthritis (AIA) rats, which may be mediated

by reducing the expressions of pro-inflammatory factors (IL-6,

IL-1b, TNF-a) and PGE2, regulating the oxidation-oxidation

balance, and down-regulating the NF-kB/NLRP3 pathway.

Tan’s research shows that (32), curculigo glucoside has a

significant anti-arthritis effect, which can significantly inhibit

the proliferation of MH7A cells, improve the arthritis symptoms

of type II collagen-induced arthritis (CIA) rats and reduce the

levels of inflammatory factors (TNF-a, IL-1b, IL-6, IL-10, IL-12
and IL-17A). Its anti-arthritis molecular mechanism may be

related to the JAK/STAT/NF-kB signaling pathway. According

to network pharmacology research (33), EGFR, MAP2K1,

MMP2, FGFR1 and MCL1 are potential target genes for CA to

treat RA. CA may inhibit the expression of these genes and exert

anti-RA effects by acting on nitrogen metabolism, estrogen

signaling pathway, RAS-associated protein 1 (Rap1) signaling

pathway, PI3K/Akt signaling pathway, etc.
Flavonoids

Icariin

Icariin (ICA), the active monomer of flavonoid glycosides

extracted from Epimedium grandiflorum, has the

pharmacological activities of anti-oxidation, anti-inflammation,

anti-tumor, regulating sex hormones, alleviating atherosclerosis,

etc. It also has a certain effect on autoimmune diseases such as

RA, bronchial asthma, multiple sclerosis and systemic lupus

erythematosus (34). A study (35) showed that icariin could
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inhibit the cartilage and bone degradation of CIA mouse model,

and had cathepsin K activity. Chi et al. (36) suggested that icariin

could alleviate RA by inhibiting the expression of osteoclast markers

(b3 integrin, cathepsin K and MMP-9), reducing the number of

Th17 cells, and inhibiting STAT3 activation-mediated IL-17

production. Further research (37) has shown that the inhibition

of joint bone loss and the reduction of joint damage by ICA are

mediated by lower nuclear factor x b ligand receptor activator

(RANKL) and higher OPG expression. Wu et al. (38) demonstrated

that ICA could inhibit the proliferation of RA-FLS and the secretion

of inflammatory cytokines (TNF-a, IL-1b and IL-6), and promote

the apoptosis of RA-FLS by up-regulating the miR-223-3p/NLRP3

signaling pathway. miR-223-3p may be a potential therapeutic

target for ICA to alleviate RA. Synovitis is an important

pathological process of RA. Luo et al. (39) studied the effect of

ICA on synovitis using a lipopolysaccharide (LPS)-induced

synovitis cell model. The results showed that ICA could inhibit

iron ptosis by activating the Xc-/glutathione peroxidase 4-axis,

thereby reducing the mortality of LPS-induced synovial cells and

protecting synovial cells. These studies indicate that ICA is a

promising agent for the treatment of RA and synovitis.
Apigenin

Apigenin is a dietary flavonoid compound widely distributed in

fruits and vegetables, and has multiple biological activities such as

anti-inflammation, anti-oxidation, and pro-apoptosis (40, 41).

Studies (42, 43) have shown that apigenin has a pro-apoptotic

effect in human RA-FLS, and it can induce RA-FLS apoptosis by

mediating ROS and oxidative stress activator ERK1/2, and mediate

apoptotic cell death by activating the apoptotic effector caspase-3/7.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)

induces apoptosis in human RAFLS and subsequently induces the

proliferation of viable cells. Apigenin, in turn, promotes TRAIL-

induced apoptosis in human RA-FLS and inhibits TRAIL-

dependent proliferation of RA-FLS by increasing the expression

and activity of caspase-3, decreasing the ratio of Bcl-2/Bax, restoring

the expression of cell cycle inhibitors p21 and p27, and activating

the PI3K/AKT signaling pathway. The research by Chang et al. (44)

has shown that apigenin can improve the symptoms of arthritis in

CFA rats and its anti-inflammatory mechanism may be mediated

by reducing the expression of cytokines (IL-1b, IL-6 and TNF-a)
and inhibiting the P2X7/NF-kB signaling pathway. Li et al. (45)

showed that apigenin could prevent arthritis in CIAmice andmight

be a potential therapeutic drug for arthritis. In vitro, apigenin

inhibits LPS-stimulated maturation and chemotaxis of bone

marrow-derived dendritic cells (BMDC) by inhibiting the

expression of costimulatory molecules (CXCR4 and CCR7) and

MHCII and reducing the secretion of cytokines (TNF-a, IL-12p70

and IL-10). In vivo, apigenin reduces the secretion of pro-

inflammatory factors (IL-1b, IL-6, and TNF-a), reduces the

expression of the DCs costimulatory molecules CXCR4 and
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MHCII, and reduces the number of Langerhans cells. The above

studies have shown that apigenin can play an anti-RA role by

resisting inflammation and promoting apoptosis, and inhibiting the

maturation and migration of DCs.
Quercetin

Quercetin, a natural flavonoid compound, is widely

distributed in herbs, vegetables and fruits and has a variety of

pharmacological effects. In addition, it plays a role in improving

the clinical symptoms of RA, alleviating inflammation and

preventing the formation of pannus, so that quercetin can be

used as a natural drug to assist in the treatment of RA (46, 47).

A study (48) showed that quercetin could inhibit RANKL

production and monocyte-to-osteoclast formation in

IL-17-stimulated RA-FLS, inhibit Th17 differentiation and IL-

17 secretion, and exert immunomodulatory effects in IL-17-

stimulated RA-FLS through mTOR, ERK and NF-kB pathways.

Yang et al. (49) showed that quercetin could reduce the

symptoms of arthritis in CIA rats, and its potential

mechanism might be mediated by regulating Th17/Treg

balance, inhibiting the activation of NLRP3 inflammasomes

and activating HO-1-mediated anti-inflammatory response.

Endale et al. (50) further studied the molecular mechanism of

quercetin against RA. The results showed that the anti-

inflammatory effect of quercetin on LPS-induced RAW264.7

cells was achieved by inhibiting the production of MAPK/

activating protein-1 (AP-1) and IKK/NF-kB-mediated

inflammatory mediators (TNF-a, IL-1b, IL-6, and macrophage

colony stimulating factor) and the formation of TLR4/myeloid

differentiation factor-88 (MyD88)/PI3K complex. These studies

have shown that quercetin exerts anti-RA effects mainly through

anti-inflammation, immune regulation and inhibition of

osteoclasts formation.
Baicalin

Baicalin is a flavonoid active compound extracted from the

root of Scutellaria radix. Previous study (51) has shown that

baicalin has an anti-inflammatory effect in RA-FLS and inhibits

IL-1b-induced proliferation of RA-FLS, which is related to its

inhibition of NF-kB transcriptional activity and macrophage

migration inhibitory factor (MIF)-mediated MAPK/ERK/p38

signaling pathway. A study (52) has shown that baicalin can

improve joint inflammation in CIA mice, inhibit the expansion

of Th17 cells in the body, and down-regulate the expression of

adhesion molecules (ICAM-1 and VCAM-1) and inflammatory

factors (IL-6 and TNF-a) in synovial cells stimulated by IL-17.

The research by Wang et al. (53) showed that baicalin treatment

could reduce joint inflammation in CIA rats, which was related
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to that baicalin could inhibit the expression of NF-kB p65

protein in synovial tissue and FLSs, and down-regulate NF-kB
p65 acetylation by increasing Sirt1. Studies (54, 55) have shown

that the anti-RA effect of baicalin is related to the down-

regulation of pro-inflammatory factors (TNF-a, IL-1b, and IL-

6) and inflammatory markers (MMP-2, MMP-9, iNOS, and

COX-2), the induction of monocyte apoptosis in synovial fluid

of CIA mice, and the inhibition of JAK1/STAT3 and TLR2/

MYD88/NF-kB p65 signal transduction. The above studies have

shown that Baicalin has anti-RA activity.
Alkaloid

Sinomenine

Sinomenine is the main active ingredient isolated from the

Chinese medicinal Caulis Sinomenii for the treatment of

rheumatic diseases, and has the biological effects of anti-

inflammation, anti-oxidation, inhibition of apoptosis,

immunosuppression, etc (56–58). Clinical studies have shown

that (59, 60) sinomenine has a significant effect on the treatment

of RA. The study of sinomenine in RA-FLS by Liao et al. has

shown that it has an antioxidant effect in anti-RA (61).

Sinomenine can phosphorylate p62 Ser351 to degrade Keap1

and increase Nrf2 expression, and play a role in protecting

bone destruction by increasing p62 expression and activating the

p62-Keap1-Nrf2 axis through p62 Thr269/Ser272 phosphorylation.

Studies (62, 63) have shown that sinomenine can inhibit the

levels of inflammatory factors (TNF-a, IL-6, NO, PGE2, iNOS
and COX-2) in IL-1b-induced RA-FLS, and inhibit the

expression of TLR4, MyD88, p-NF-kB p65 and TRAF-6 in

RA-FLS, suggesting that sinomenine prevents IL-1b-induced
inflammation in human RA-FLS by inhibiting the TLR4/

MyD88/NF-kB signaling pathway. The research by Zeng et al.

(64) showed that sinomenine could inhibit the LPS-induced

immune response of macrophages by down-regulating the levels

of inflammatory cytokines (TNF-a, IL-1b and IL-6) and

blocking the activated TLR4/NF-kB signaling pathway,

indicating that sinomenine had an immune regulation effect in

RA, which was consistent with the former research.

Zhou et al. demonstrated that (65), the mechanism of

sinomenine improving inflammation and arthritis is partly

related to the inhibition of microsomal prostaglandin E

synthase 1 expression by reducing the DNA binding capacity

of NF-kB. According to the research by Tong et al. (66), the

mechanism of sinomenine inhibiting arthritis in CIA rats may be

related to regulating the frequency of Treg and Th17 cells in

intestinal lymph nodes and transporting lymphocytes (especially

Treg cells) from the intestine to the joints. Feng et al. (67)

showed that sinomenine could reduce the arthritis of CIA mice

by inhibiting angiogenesis, and the mechanism might be related
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to the HIF-1a/vascular endothelial growth factor (VEGF)/

angiopoietin 1(ANG-1) axis. a7 nicotinic acetylcholine

receptors (a7nAChR) are key receptors for inhibiting

inflammation in the cholinergic anti-inflammatory pathway,

and there is a correlation between them and RA, while

sinomenine can inhibit the expression of a7nAChR and exert

anti-inflammatory and anti-arthritis effects through ERK/Egr-1

signaling pathway transduction (68, 69). These studies have

shown that sinomenine can exert anti-RA effects through a

variety of pathways, including anti-oxidation, anti-

inflammation, immune regulation, and inhibition of

angiogenesis. Therefore, sinomenine can be selected as one of

the options for medical treatment of patients with RA.
Norisoboldine

Norisoboldine (NOR), the main isoquinoline alkaloid

present in the dried roots of Radix Linderae, may have certain

anti-RA activity (70, 71), which can improve synovitis and

abnormal immune status of CIA mice, and inhibit the

activation of RAW264.7 macrophages by down-regulating the

MAPKs signaling pathway. The research by Lu et al. (72) showed

that NOR could inhibit the angiogenesis of synovial membrane

in AIA rats, not only reducing the number of blood vessels and

the expression of growth factors in the synovial membrane, but

also inhibiting the migration and production of endothelial cells

in vitro. The molecular mechanism of anti-angiogenesis was

related to the activation of Notch1 signaling pathway by binding

to Notch1 transcription complex. Wei et al. (73) believed that

the important mechanism for NOR to exert anti-RA

characteristics might be to prevent the release of IL-6 from

FLSs, and its mechanism might be related to the inhibition of

PKC/MAPKs/p65/cAMP response element-binding protein

(CREB) pathway. Luo et al. (74) found that NOR had a pro-

apoptotic effect on FLSs of AIA rats, and its molecular

mechanism was achieved by promoting the release of

cytochrome C, regulating the Bax/Bcl-2 expression-mediated

mitochondrial dependent pathway, and up-regulating the p53

pathway. Studies (75, 76) have shown that NOR can inhibit

the destruction of bone and cartilage in AIA rats by reducing the

expression of RANKL, IL-6, PGE2 and MMP-13 through the

p38/ERK/AKT/AP-1 pathway. The molecular mechanism may

be achieved by inhibiting the ubiquitination of TNF receptor

associated factor 6 (TRAF6), the aggregation of TRAF6-TAK1

complex and the activation of MAPKs/NF-kB/c-Fos/nuclear
factor of activated T cell cytoplasmic 1 (NFATc1) pathway to

prevent the differentiation and function of osteoclasts. In order

to further study the anti-arthritis mechanism of NOR, Fang et al.

(77) used non-targeted metabolomics to analyze the endogenous

metabolites in urine of CIA rats and finally screened out 22

differential metabolites, most of which were related to lipid
Frontiers in Immunology 05
metabolism. Besides, it was also found that NOR could up-

regulate the expression of carnitine acyltransferase 1 and down-

regulates the expression of fatty acid synthase, suggesting that

they may be new targets of NOR for the treatment of RA. These

studies have shown that NOR is an effective monomer drug for

the treatment of RA, which can play a role by anti-inflammation,

immune regulation, promoting synovial cell apoptosis,

inhibiting osteoclast differentiation and synovial angiogenesis,

and regulating lipid metabolism.

Aryl hydrocarbon receptor (AhR) is a transcription factor

that regulates ligand activation of foreign body metabolic disease

(78). Prior to ligand binding, AhR was present as a complex in

the cytoplasm. When AhR was bound to its agonist, AHR was

dissociated from the protein complex and translocated to the

nucleus, where it interacted with aryl hydrocarbon receptor

nuclear transporter (ARNT) to form a dimer, and activated

transcription of target genes by binding to specific enhancer

sequences in the regulatory regions of target genes, such as the

aryl hydrocarbon receptor response element on the cytochrome

P450 Family 1 subfamily B member 1 (CYP1B1) promoter (78).

A study (79) has found that AhR is highly expressed in the early

stage of osteoclast formation, but its expression is reduced in

mature osteoclasts, participating in human osteoclast

differentiation. AhR may be a target molecule for preventing

bone destruction in chronic inflammatory diseases such as RA. It

is currently believed that AhR signaling pathway plays a key role

in inflammatory diseases and autoimmune diseases (80). Studies

(81, 82) have revealed that NOR can stably bind to AhR,

promote AhR/Hsp90 dissociation and AhR nuclear

translocation, increase the accumulation of AhR-ARNT

complex, activate AhR-mediated reporter gene and up-regulate

the expression of CYP1A1. In addition, NOR also inhibited the

reduction of AhR/NF-kB/p65 complex caused by nuclear

translocation of NF-kB p65 in osteoclasts, and reduced the

expression of VEGF, resulting in the reduction of

accumulation of ARNT/HIF-1a complex, suggesting that NOR

reduced osteoclast differentiation and bone erosion by activating

AhR and inhibiting the subsequent NF-kB and HIF pathways

(81). NOR promoted the differentiation and function of Treg

cells in intestinal tissue of CIA mice (in an AhR-dependent

manner) by activating AhR, and thus played an anti-arthritis

role (82). AhR antagonists such as resveratrol could largely

reverse the effect of NOR, which was the agonist of AhR. The

role of AhR in the immune system and potential clinical value of

AhR antagonists in the treatment of RA (83).
Tetrandrine

Tetrandrine, a dibenzyl isoquinoline alkaloid isolated from the

root of the anti-rheumatic Chinese medicinal Stephania tetrandraS.

Moore, has been proved to have medicinal potential for the
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treatment of RA (84). Studies (85, 86) have shown that the anti-

inflammatory mechanism of tetrandrine in the treatment of RA

may be related to its efficacy in inhibiting the LPS-induced

phosphorylation of IkBa and NF-kB p65 in RAW 264.7

macrophages and ATDC5 chondrocytes and reducing the

expression of COX in peripheral blood mononuclear cell of CFA

rats. A recent study (87) has also shown that tetrandrine can

improve RA by regulating neutrophil activity in AIA mice and

reducing the formation of neutrophil extracellular traps induced by

phorbol ester. AhR is essential for the differentiation and activation

of Th17 cells (88). Tetrandrine, as a potential ligand of AhR, can

activate AHR and regulate the Th17/Treg balance to inhibit

osteoclastogenesis and improve arthritis in CIA rats (89).

Tetrandrine can enhance the ubiquitination and degradation of

spleen tyrosine kinase (Syk) through AhR/non-receptor tyrosine

kinase/c-Cbl signaling pathway and regulate the expression of Syk

and phospholipase-Cg, thereby inhibiting osteoclastogenesis and

bone destruction in arthritis (90, 91). C-src, as a binding protein of

AhR, can bind to AhR in the cytoplasm. Once AhR is activated by

ligands, c-src will be released and activated (92), followed by c-Cbl,

which may also be activated as a substrate of c-src. Lv et al. showed

that (93), tetrandrine can down-regulate the expression or

activation of Akt/JNK, MMP-2, MMP-9, and fibrous F-actin and

focal adhesion kinase FAK, reduce the expression of migration-

related proteins Rac1, Cdc42 and RhoA in MH7A cells, and block

the migration and invasion of RA-FLS. These studies have shown

that tetrandrine can be used as a potential drug for the treatment

of RA.
Terpenoids

Triptolide

Triptolide, a diterpenoid epoxide separated from Tripterygium

wilfordii Hook. F., has strong anti-inflammatory effect and anti-RA

activity (94), and can significantly inhibit TNF-a-induced gene

expressions of IL-1b, IL-6, and IL-8 in MH7A cells, and induce

apoptosis in MH7A cells. In the research by Wen et al. (95), the

overexpression of ENST 000060619282 increases the levels of pro-

apoptotic and pro-inflammatory factors, and reduces the levels of

anti-apoptotic proteins and anti-inflammatory factors at the same

time. However, the mechanism of triptolide in promoting the

apoptosis of RA-FLS cells and reducing the inflammatory response

may be achieved by down-regulating ENST 00000619282 (lnc

RNA). Studies (96–98) have shown that triptolide can inhibit the

proliferation, migration and invasion of FLSs. Triptolide can

inhibit LPS-induced FLSs migration and invasion by inhibiting

TLR4/NF-kB pathway-mediated MMP-9 expression (96), and the

molecular mechanism for inhibition of MMP-9 is to inhibit MMP-

9 transcriptional activity by inhibiting NF-kB binding activity in

the MMP-9 promoter. Triptolide also reduced F- actin

polymerization, which was related to the inhibition of MAPK
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signaling pathway activation (reducing TNF-a-induced
phosphorylation of JNK) (97). Another study (98) has shown

that triptolide inhibits the proliferation of FLSs and the expression

of inflammatory cytokines (IL-1b, IL-6, and VEGF) induced by IL-
6/sIL-6R complex by inhibiting the JAK2/STAT3 signaling

pathway. Huang et al. (99) showed that triptolide could improve

RA by down-regulating the inflammatory function of neutrophils

(inhibiting the expression of pro-inflammatory cytokines,

inhibiting migration, NETosis and autophagy, and promoting

apoptosis). Kong et al. (100) found that Triptolide could inhibit

angiogenesis of RA, down-regulate the expression of angiogenic

activation factors (TNF-a, IL-17, VEGF, VEGFR, ANG-1, ANG-2
and Tie2), and inhibit the activation of MAPK signaling pathway

(phosphorylation of ERK, p38 and JNK). These studies have

shown that triptolide can exert anti-RA activity through a variety

of pathways and can be used as a potential therapeutic agent

for RA.
Geniposide

Geniposide (GE) is a iridoid glycoside compound isolated from

Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides

Ellis. Studies (101, 102) have shown that GE has a certain anti-

arthritis effect, probably by inducing Th17 cell immune tolerance

and down-regulating p-JNK expression in mesenteric lymph node

lymphocytes (MLNL) and peripheral blood lymphocytes (PBL) of

AIA rats to enhance Treg cell-mediated activity, to exert anti-

inflammation and immune regulation. Further study (103) has

revealed that its anti-inflammatory and immunomodulatory effects

may be related to the inhibition of the activation ofMAPK signaling

pathways (JNK, ERK1/2 and p38). The conversion of activated Ga
protein subunits (Gas)/inhibited Ga protein subunits (Gai) can be

coupled to sphingosine-1-phosphate receptor (S1PRs), which

induces the activation of pro-inflammatory signals in RASFs by

binding to S1PRs, thus playing a key role in RA. GE could inhibit

the process (104), thereby inhibiting the abnormal proliferation,

migration and invasion of MH7A cells, as well as the release of

inflammatory factors, the expression of cAMP and the activation of

ERK protein. Studies (105, 106) have found that GE also has a role

in preventing angiogenesis in RA, which is related to the up-

regulation of the expression of phosphate and tension

homelessness deleted on chromoten (PTEN) to inhibit PI3K/Akt

signal activation, the restoration of dynamic balance of pro/anti-

angiogenic factors in vascular endothelial cells (VEC), and the

reduction of FLSs stimulation to VEC by inhibiting the VEGF/

SPK1/S1P pathway. Another study (107) showed that GE induced

apoptosis in FLSs of AIA rats by regulating the expression of

apoptosis-related genes and inhibiting the activation of ERK signals.

The above studies have demonstrated that GE has anti-

inflammatory, immunomodulatory, anti-angiogenic and pro-

apoptotic effects on FLSs in RA, and it can be used as a potential

therapeutic agent for RA.
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Andrographolide

Andrographolide (AD) is the main active diterpenoid alkane

separated from the leaf extract of Andrographis paniculata (Burm.

F.) Nees. It has many pharmacological effects, such as anti-

inflammation, anti-oxidation, anti-angiogenesis and protecting

liver. At the same time, it also has certain anti-arthritis effect

(108). The preliminary study (109) showed that AD could inhibit

cell growth and promote apoptosis of RA-FLSs. Li et al. found that

(110), AD can reduce the production of anti-CII, TNFa, IL-1b and

IL-6 in the serum of CIA mice, and can also decrease the

phosphorylation of p38 MAPK and ERK1/2 in RASFs induced

by TNFa in a dose-dependent manner. This suggests that AD may

play an anti-inflammatory role in RA by inhibiting the activation of

MAPK pathway. Further studies (111, 112) have shown that AD

can treat arthritis and systemic inflammation in rats with RA by

regulating oxidative stress (inhibition of MDA and nitrite/nitrate

levels, enhancement of antioxidant enzymes SOD, CAT and GSH

activities), reduction of chemokines and inflammatory factors (CXC

chemokine ligand2, TNF-a, IL-6), reduction of neutrophil

aggregation and infiltration and NetOS, and promotion of

neutrophil apoptosis. Another study (113) has also shown that

AD can attenuate hypoxia-induced migration and invasion of RA-

FLS and the expression of MMPs (MMP-1, MMP-3 and MMP-9)

by inhibiting the HIF-1a signaling pathway. These studies suggest

that AD has anti-RA activity and can be used as a potential

therapeutic agent for RA.
Artesunate

Studies (114, 115) have found that the antimalarial drug

artemisinin analog artesunate (ARS) has strong immunosuppressive

activity in RA model, which can inhibit the formation of germinal

centers, B cell proliferation and the production of autoantibodies,

increase Foxp3 expression, reduce the formation of pannus, and

cartilage and bone erosion. ARS is also an effective antioxidant

(116), which is able to inhibit the production of ROS in osteoclast

precursorcells andmaintainoxidativehomeostasis, thereby inhibiting

osteoclastogenesis, by activating p62/Nrf2 signaling pathway and

inhibiting NFATc1 signaling. The research by He et al. (117) has

demonstratedthatARSmayalsohaveanti-angiogeniceffectandplaya

role in RA-FLS. ARS may reduce the secretion of VEGF and IL-8

induced by TNFa or hypoxia, as well as the expression of HIF-1a,
possiblybyinhibitingtheactivationofPI3K/AKT.Ithasbeenreported

(118–121) that ARS can inhibit the proliferation of chondrocytes and

accelerate apoptosis and autophagy in RA rats, inhibit the migration

and invasion of RA-FLSs and reduce the secretion of IL-1b, IL-6 and
IL-8, alleviate inflammatory symptomsandprevent thedestructionof

cartilageandbone,whichisrelatedtotheinhibitionofNF-kBsignaling

pathway, the activation of PI3K/AKT/mTOR signaling pathway, and

the phosphorylation of p90 ribosomal kinase 2 (RSK2). These studies
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have shown that ARS has a significant anti-arthritis effect in RA and

can be used as adjuvant treatment for patients with RA.
Glycoside

Ginsenoside

Ginsenoside, an active ingredient of triterpenoid saponins in

Panax ginsengC. A. Mey, has many effects such as anti-tumor, anti-

oxidation, anti-inflammation, anti-fatigue and improving immunity

(122). A study (123) has shown that ginsenoside Rg1, Rg3, Rg5,

Rb1, Rh2 and CK have anti-RA effect, and ginsenoside CK has the

strongest effect on RA, with strong anti-inflammation and immune

regulation. Ginsenoside compound K (GCK) is the main

degradation product of oral ginsenoside in the human intestinal

tract and can play an anti-arthritis role from three aspects of anti-

inflammation, immune regulation and bone protection, respectively

(124). The research by Choi et al. (125) showed that GCK could

inhibit osteoclast formation, which might be related to the

molecular mechanism through inhibiting the JNK and ERK

pathways, reducing the expressions of MMP-1, MMP-3 and

RANKL in RA-FLS, and inhibiting RANKL-induced IkBa
degradation and NFATc1, thereby inhibiting TRAP+ osteoclast-

like cell formation. Chen et al. (126) showed that GCK could

alleviate arthritis in AIA rats by inhibiting T cell activation, and the

mechanism was through inhibiting T cell proliferation, CD25

expression and IL-2 production, as well as up-regulating

immature T cells and Treg cells in the spleen, thus exerting

immunomodulatory effects on RA model to improve arthritis.

Their further research showed (127) that GCK could inhibit the

abnormal activation and differentiation of T cells in CIA and AIA

animal models, and its potential molecular mechanismmight be the

inhibition of CCL21/CCR7-mediated DC migration and signal

transduction between T cells and DC. Their research also showed

(128) that GCK could increase the level of serum antibodies (IgG1,

IgG2a and anti-type II collagen) in CIA mouse model, promote the

proliferation of B cells and restore B cell subsets. It could also

promote the endocytosis of IgD-BCR by enhancing the expression

of b-arrestin1 and promoting the co-location between IgD and b-
arrestin1, thus inhibiting the activation of B cells. GCK also exerts

joint protection by inhibiting the proliferation, migration and

secretion of synovial cells (129), whose molecular mechanism is

to inhibit the secretion of TNF-a in AIA-FLS rats, down-regulate

the expression of tumor necrosis factor receptor type 2 (TNFR2),

and inhibit TNF-a-mediated proliferation, migration and secretion

of AIA -FLS. These studies show that GCK can treat RA in many

ways, and it is an effective drug for treating RA. Compared with

GCK and methotrexate (MTX) alone in treating AIA rats, GCK

combined with MTX has better curative effect, and can also reduce

anemia (130). In addition, the anti-RA mechanism of ginsenoside

Rg1 may be related to its anti-inflammatory effect by up-regulating
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peroxisome proliferators activated receptor-g (PPAR-g) and then

inhibiting the NF-kB signaling pathway (131). The anti-RA

mechanism of ginsenoside Rg3 is related to its efficacy in

regulating the oxidative phosphorylation pathway, and enhancing

the ability of CD4+ CD25+ Foxp3+ Treg cells to maintain peripheral

immune tolerance, thereby resisting inflammation and

immunosuppression (132). In conclusion, ginsenoside (especially

GCK), as a star natural product that can be used for the treatment of

various diseases, may also be an effective drug for the treatment

of RA.
Paeoniflorin

Paeoniflorin, a monoterpenoid glycoside compound, is the

main active ingredient of total glucosides of paeony widely used

in the treatment of RA in China, and has multiple biological

effects such as anti-inflammation, anti-oxidation, anti-

thrombosis, anti-depression, anti-tumor and immune

regulation (133). It has been reported (134–136) that TGP/

paeoniflorin can exert anti-RA effects by inhibiting

inflammatory processes, inhibiting lymphocyte activation,

inhibiting the proliferation and differentiation of synovial cells,

and preventing the formation of new blood vessels and the

production of MMPs. Jia et al. showed (137) that paeoniflorin

can improve arthritis of RA model rats by anti-oxidative stress,

anti-inflammatory and reducing COX-2 expression.

Paeoniflorin decreased the concentration of MDA in serum,

increased the activities of antioxidant enzymes (SOD, CAT and

GSH-Px), and also decreased the activities of inflammatory

factors (NF-kB p65, TNF-a, IL-1b and IL-6) and the

expression level of COX-2 protein. Zhu et al. (138) proved

that paeoniflorin could significantly improve the symptoms of

CIA rats, reduce the levels of pro-inflammatory factors (TNF-a,
IL-1b and IL-6), and down-regulate the expression of p-NF-kB
p65 and p-myosin-binding subunit (MYPT1). P-NF-kB p65 was

a marker of NF-kB activation, and p-MYPT1 was a commonly

used indicator of Rho-associated protein kinase (ROCK)

activation. ROCK up-regulates the inflammatory gene by

regulating NF-kB activity and mediates the development of

RA. All these have suggested that paeoniflorin might improve

RA by inhibiting inflammation mediated by the ROCK/NF-kB
signaling pathway. The research by Xu et al. (139) showed that

paeoniflorin could reduce bone destruction and inflammatory

infiltration of joints in CIA mice and inhibit osteoclast

differentiation. The mechanism of inhibiting osteoclast

differentiation might be realized by inhibiting NF-kB signaling

pathway to reduce the expression of osteoclast-specific genes

(TRAP, cathepsin, and MMP-9). In addition, paeoniflorin can

also inhibit the proliferation, migration, invasion and

inflammation of RA-FLS and accelerate cell cycle arrest by

regulating the circ-FAM120A/miR-671-5p/MDM4 axis (140).
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These studies have shown that paeoniflorin can be used as an

effective drug for the treatment of RA.
Paeoniflorin-6 ‘-o-benzenesulfonate

Paeoniflorin-6 ‘-o-benzenesulfonate (CP-25) is a novel ester

derivative of paeoniflorin, which has better anti-inflammatory

and immune regulation effects than paeoniflorin (141). Wei’s

research group found (142) that CP-25 had anti-inflammatory

and immunomodulatory effects on AIA rats, and was able to

regulate the expression of B cell activator (BAFF)/BAFF-R in

CD4+ T cells to inhibit the growth of AIA-FLS co-cultured with

BAFF-activated CD4+ T cells and the secretion of cytokines.

Subsequent studies (143) showed that CP-25 could reduce CIA

in mice and regulate B cell function by down-regulating the

BAFF/BAFF-R-mediated BAFF-TRAF2-NF-kB signaling

pathway. CP-25 can improve the ankle pannus formation in

AA rats (144), and its possible mechanism is that it inhibits the

plasma membrane localization of G protein-coupled receptor

kinase 2 (GRK2) in human umbilical vein endothelial cells

(HUVECs) and down-regulates the GRK2-induced endothelial

C-X-C chemokine receptor type 4 (CXCR4)-ERK1/2 signaling

pathway to exert anti-angiogenic effects. Jia et al. research found

(145) that, CP-25 inhibited the proliferation of FLS and the

secretion of PGE2 and TNF-a in AIA rats, and promoted the

up-regulation of EP4 receptor and the down-regulation of GRK2

in AIA-FLS. This suggests that CP-25 blocked the progression of

AIA in rats by regulating the expression of GRK2/EP4 receptors,

correcting immune function and inhibiting the proliferation of

abnormal FLS. Further study found (146) that CP-25 can

directly target GRK2 and down-regulate the interaction

between GRK2 and EP4, which may be achieved by

controlling the key amino acid residue Ala321 of GRK2. The

above studies have shown that CP-25 has a good anti-RA effect,

and GRK2 may be a target for its treatment of RA.
Other

Natural medicines with anti-RA activity are concentrated in

polyphenols, flavonoids, alkaloids, terpenes (including

sesquiterpenes, monoterpenes, diterpenoids and triterpenes),

and glycosides (including saponins, glycosides, cardiac

glycosides and iridoid glycosides). In addition to the above,

some natural medicines have been proved to have anti-RA

activity (Table 1): polyphenols including curcumin,

chlorogenic acid and punicalagen, flavonoids including

hesperidin, 7,3’-dimethoxyhesperidin, kaempferol and

genistein, terpenes including pentaacetyl geniposide,

gentiopicrin and betulinic acid, glycosides including emodin,

and cyanidin-3-O-glucuronide, alkaloids including berberine
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and matrine, a-mangiferin (a xanthone derivative of

mangosteen pericarp), cinnamaldehyde (an aldehyde active

compound Chinese medicine herb Cinnamomum cassia),

thymoquinone (the main component of the volatile oil in

Nigella sativa L.), periplocin (one of the main active

components in Periploca sepium Bunge).
Mechanism of action against RA

Anti-inflammation and anti- oxidation

COX-2, a key mediator in the inflammatory process,

catalyzes the hydrolysis of glycerophospholipids to release

arachidonic acid, which is converted to PGs, including

prostacyclin, thromboxane A2, PGE2 and PGD2 during

inflammation (185). Among them, PGE2 is a lipid signaling

molecule involved in pain and inflammation, which is involved

in various pathological processes and overproduced in patients

with RA. Clinically, non-steroidal anti-inflammatory drugs

(NSAIDs) for the treatment of RA are achieved by inhibiting

COX to inhibit the expression of PGE2. The selective COX-2

inhibitors are a new class of NSAIDs, such as etodolac (186) and

indomethacin (187). The synovial tissues and fluids of patients

with RA have high levels of MMP-1, MMP-3, MMP-9 and

MMP-13, which play a key role in the degradation of connective

tissue components in RA cartilage (156, 188). The migration and

invasion of RA-FLS cells may be mediated by the production of

MMP-2 and MMP-9, and exogenous MMP-9 pretreatment can

reverse the inhibitory effect of artesunate on the invasion of RA-

FLS (119). MMPs are the main proteases involved in the

invasion and degradation of the anatomical barrier. They play

a key role in cartilage destruction of inflamed joints by assisting

RASFs in attacking the microvascular basement membrane and

stroma and destroying the extracellular matrix of the joint

structure in RA (189). Therefore, reducing the production of

MMPs, inhibiting the activation of MMPs or increasing the

production of endogenous inhibitors of MMPs are feasible

strategies for the treatment of RA. It is known that cytokines

play a key role in the pathogenesis of RA. For example, TNF-a,
IL-1b, IL-6, IL-8 and IL-17A can stimulate inflammatory

reactions in arthritic joints and synovial tissues (3). Among

them, IL-1b and TNF-a can enhance the expression of COX-2,

PGE2 and MMPs in human RASFs (158, 188, 190), and play an

important role in the development of RA. In recent years,

targeted therapy has become a hot research topic and a new

therapeutic approach in the treatment of RA, and the cytokines

TNF-a and IL-6 have become mature targets in the treatment of

RA (191). IL-6 is also a major pro-inflammatory factor in the

pathogenesis of RA, but FLSs does not express membrane IL-6

receptors, and transmits IL-6 pro-inflammatory signals mainly

through the connection of IL-6 with sIL-6R, which is present in

RA joints (192).
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ROS production, lipid peroxidation, protein oxidation and

DNA damage in RA patients are increased, and the activity of

antioxidant defense system is decreased, resulting in oxidative

stress (193). Chronic oxidative stress in synovial T-lymphocytes

of patients with RA results from intracellular ROS production

(mainly H2O2) (194), and ROS may be involved in destructive

pathological events of RA. A recent study has shown that fatty

acid oxidation (FAO) metabolism is involved in bone

destruction in RA patients (195). Selegiline was able to

improve the progression of RA (196), possibly by reducing the

decomposition of catecholamines in synovial fluid to reduce

H2O2 production and inhibit pro-inflammatory cytokines in

situ. Oxidative stress can promote the production of

inflammatory cytokines, and free radicals can react with

pro t e in , l i p id s , nuc l e i c ac ids and other ce l lu l a r

macromolecules, playing an important role in the pathogenesis

of RA (197). Considering the important roles of inflammation

and oxidative stress in the pathogenesis of RA, the researchers

focused on the treatment of RA with new drugs with potent anti-

inflammatory and antioxidant activities. Many natural

medicines, such as resveratrol, EGCG, hesperidin, CA,

sinomenine, AD, ARS, and gentiopicroside, have significant

anti-inflammatory and antioxidant effects on RA (Figure 1).
Immunoregulation

RA is a common autoimmune disease. Patients with RA have

immune system dysfunction, and immune dysfunction is one of the

important factors for the development of RA. Adaptive immunity

plays a central role in the pathogenesis of RA. Synovial T cells are

involved in the induction of antibody production and local

inflammation (198). In particular, CD4+ T cell subsets can

differentiate to produce a variety of pro-inflammatory cytokines

and chemokines, which are involved in the pathogenesis of RA. The

epigenetic stability of Treg is unstable. CD4+ CD25+ Foxp3+ Tregs

cell dysfunction is common in autoimmune diseases (199), and it

may be converted into pathogenic Th17 cells after repeated

amplification (200). Foxp3 is the main regulator of

immunosuppression of Treg cells. One of the strategies for the

treatment of RA is to convert traditional Treg cells into Foxp3+ Treg

cells with stable inhibitory function, and reduce the related

inflammation caused by the conversion of Treg cells into Th17

cells (199, 200). B-cell infiltration in the synovial membrane,

especially new B-cell infiltration of ectopic lymph, is associated

with the severity of RA. Part of B cells in the synovial membrane

differentiate into plasma cells to produce autoantibodies such as

anti-citrulline protein antibody (ACPA), and the other part

differentiate into effector B cells to produce proinflammatory

cytokines, including IL-1, IL-6, IL-12, TNF-a, and express

RANKL. RANKL can promote osteoclastogenesis and participate

in bone and joint destruction of RA (201). BAFF is necessary for the

growth and development of B cells. B-cell function was regulated by
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inhibiting the activation of BAFF receptors, thereby reducing CIA

inflammation in mice.

Innate immunity also plays an important role in the

pathological development of RA. Synovial macrophages, which

are directly involved in the formation of RA synovitis and joint

destruction, are the core target cells of RA (202). Activated

macrophages (M1 type macrophages) invade the synovium, and

the imbalanced ratio of M1 type and anti-inflammatory
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macrophages (M2 type) in synovial tissues as well as the

differentiation of macrophage precursor cells into osteoclasts are

important characteristics of RA (203). Zheng et al. (204) prepared

IL-10 pDNA/DSP-NPs that could actively target macrophages in

synovial tissues, which had good therapeutic effects on CIA rats. IL-

10 inhibits the inflammatory response by down-regulating the

synthesis and expression of pro-inflammatory cytokines in

macrophages and promoting M1-M2 polarization of
TABLE 1 Other Natural medicines of targeted RA and their mechanism of action.

Natural
medicines

Model/
Cell

Dosage Mechanism of action Ref.

Curcumin CIA rats
FLSs

200 mg/kg
5, 10, 20 ng/ml

MAPK, ERK1/2, AP-1, mTOR and NF-kB↓ (147–149)

Chlorogenic acid FLSs
CFA rats

50, 100 mmol/L 5,
25, 50, 100 mg/kg

activation of JAK/STAT and NF-kB pathway↓. IL‐17/IL‐17RA/STAT‐3 cascade pathway↓, TLR‐
3, IL‐23, GM‐CSF, Cyr61, RANKL↓

(150–152)

Hesperidin AIA mice 20 mg/kg PI3K/AKT signaling pathway↓, levels of MMP3, MMP9, and MMP13 in FLSs↓, the polarization
of macrophages to M1↓

(153)

7,3
′-dimethoxyhesperidin

AIA rats 20,40, 80 mg/kg activation of JAK2/STAT3 pathway↓, regulate the expression of Bcl-2/Bax (154, 155)

Kaempferol CIA mice
FLSs

100, 200 mg/kg
2, 5, 10, 20, 40 mM

activation of NF-kB and MAPK pathway↓, AKT/mTOR pathways↓, bFGF-induced FGFR3-
RSK2 signaling pathway↓

(156, 157)

Matrine CIA rats
CIA FLSs

100 mg/kg
0.75 mg/ml

NF-kB pathway↓, regulate the imbalance of Th1/Th2 cytokine response, activation of JAK/STAT
pathway↓

(158, 159)

Berberine CIA rats 75, 150 mg/kg regulate the PI3K/Akt, Wnt1/b-catenin, AMPK/lipogenesis and LPA/LPA1/ERK/p38 MAPK
pathways, regulate the balance between Treg/Th17 cells, DC activation↓

(160, 161)

Pentaacetyl geniposide AIA FLSs
MH7A

50, 100, 200 mM
12.5, 25, 50 mM

activation of NF-kB and Wnt/b-catenin pathway↓ (162, 163)

Gentiopicrin HFLS
AIA rats
RA-FLS

5-25 mM
100, 200 mg/kg
50, 100 mM

p38 MAPK/NF-kB pathway and the ROS-NF-kB-NLRP3 axis↓ (164, 165)

Betulinic acid AIA rats
RA-FLS
CIA mice

20, 40 mg/kg
2.5, 5, 10, 20 mM
20 mg/kg

Rho/ROCK signaling pathway↓, block the activation of AKT/NF-kB pathway and NF-kB
nuclear accumulation↓

(166–168)

Emodin CIA mice
AIA mice

10 mg/kg
30 mg/kg

NF-kB pathway↓, neutrophil apoptosis↑, neutrophil autophagy and NETosis↓ (169, 170)

a-mangiferin AIA rats
RA‐FLS

40 mg/kg
10, 50, 100 mM

the polarization of M1 macrophages↓, activate CAP, SIRT1↑, PPAR-g↑, ROS production and
ERK1/2 phosphorylation↑

(171, 172)

Cinnamaldehyde MH7A
CFA rats
CFA FLSs

40, 60, 80 nM
20 mg/kg, 20 mM

JAK/STAT and PI3K/AKT pathway↓ (173, 174)

Thymoquinone RAW
264.7
RA-FLS

2.5, 5, 7.5, 10 mM
1, 5 mM

RANKL-induced activation of NF-KB and MAPKs signals and ROS production↓, ASK1-p38/
JNK pathway↓

(175, 176)

Cyanidin-3-O-
Glucoside

CIA mice
FLS,
RASF,
MNCs

25, 50 mg/kg
10, 20, 40 mM

activation of NF-kB and MAPK signaling pathways↓, relieve inhibition of CD38+ NK cells on
Treg cell differentiation

(177, 178)

Genistein MH7A
RA-FLS

15, 20, 25 mmol/L
37 mM

JAK2/STAT3/VEGF pathway↓, Erk1/2-mediated RA-FLS proliferation and EGF-induced MMP-
9↓

(179, 180)

Punicalagin RA-FLS,
CIA mice

12.5, 25, 50 mM
10, 20, 50 mg/kg

block the activation of NF-kB↓, M1 phenotypic polarization and focal ptosis↓ (181, 182)

Periplocin AIA rats
RA-FLSs

50 mg/kg
10, 20, 30 mM

T-bet, GATA3, and C-Jun genes↓, cleaved caspase-3 and caspase-9↑, regulate the expression of
Bcl-2/Bax, NF-kB pathway↓

(183, 184)
front
↑, increase, up-regulate, promote or improve; ↓, suppress, down-regulate, reduce, or inhibit; bFGF, basic fibroblast growth factor; RSK2, p90 ribosomal S6 kinase 2; LPA, lysophosphatidic
acid; CAP, Cholinergic anti-inflammatory pathway; ASK1, apoptosis-regulated signaling kinase 1; RA-FLS, fibroblast-like synoviocytes from human RA patients; CIA FLSs, FLSs from CIA
rats; MNCs, mononuclear cells; RASFs, RA synovial fibroblasts; GM‐CSF, granulocyte-macrophage colony stimulating factor; Cyr61, Cysteine-rich angiogenesis inducer 61; T-bet, T-box
transcription factor; GATA3, GATA binding protein 3.
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macrophages. This indicates that inhibiting the M1 polarization of

macrophages is a feasible measure for the treatment of RA. NET

and NETosis are involved in the pathological process of

autoimmune diseases such as RA. The extracellular citrulline

autoantigen present in the joints of RA patients is mainly derived

from the increased NET, which can cause the inflammatory

response of synovial fibroblasts in patients and release a series of

inflammatory mediators (such as pro-inflammatory cytokines,

adhesion molecules and chemokines) to drive the progression of

RA (205). Some natural medicines, such as andrographolide,

emodin and triptolide, can improve RA by inhibiting

inflammatory function of neutrophils, and inhibiting NETosis,

autophagy and migration. Nowadays, neutrophils are also

considered as potential targets for the treatment of RA.

The existence of autoantibodies is a key factor in RA. The

detection of RF and ACPA is extremely important in the

diagnosis and classification of RA. ACPA can stimulate

the release of macrophages and FLSs cytokines, leading to the

development of inflammation (201, 206). Patients with RA have

been found to have significantly elevated serum IgG4 levels

compared to the general population (207). RF recognizes the Fc

domain of IgG4 and forms the RF-IgG4 immune complex,

which may activate the complement system and cause synovial

damage, with a pathogenic effect in RA. IgG4 is likely to be an

active biomarker of RA.
Main related signaling pathways and
transcription factors of RA

The activation of synovial cell TLR leads to exacerbation of

arthritis (208), in which the expression of TLR2, TLR3, TLR4
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and TLR5 in RA synovial cells is increased and they are involved

in the regulation of inflammatory factor production in RA

synovial cells. TLR-dependent MAPK signaling pathway is a

key pathway for mediating the occurrence of RA (209). Studies

have shown that NF-kB and MAPKs (three major kinases: JNK,

p38 and ERK) are expressed in cultured RA-FLSs and easily

activated by IL-1b and TNF-a (58, 59), involving in RA

inflammation and joint destruction. Inhibition of activation or

downregulation of MAPK signaling pathway weakens the

inflammatory response and oxidative stress in RA model,

inhibits the proliferation, migration and invasion of FLSs,

regulates the body immunity, and inhibits osteoclastogenesis.

The transcription factor NF-kB is an important regulator of

immune and inflammatory responses, and NF-kB p65-mediated

increased trans-activation plays a key role in the pathogenesis of

chronic inflammatory diseases (210). The beneficial effects

(down-regulation of inflammatory factors) of some natural

compounds (such as s inomenine , te trandrine and

paeoniflorin) in RA are attributed to the reduction of NF-kB
p65 signal. The above studies have shown that down-regulation

of RANKL inhibits osteoclastogenesis and reduces bone loss and

joint destruction, which is related to the inhibition of NF-kB
signal activation. The reduction of bone erosion and osteoclast

differentiation by NOR is associated with inhibition of nuclear

translocation of NF-kB p65. Therefore, targeted p65 activation

may also be a feasible strategy for RA treatment in the future.

HIF is a transcription factor that responds to cellular oxygen

supply. As one of the important mediators of RA, it can induce

angiogenesis, promote FLSs migration and cartilage destruction,

and inhibit the apoptosis of synovial cells (211). HIF-1a can

regulate the expression of VEGF gene under hypoxic stimulation

(212), which is related to the adaptation of RA synovial
FIGURE 1

The main mechanism of natural medicines acting on RA. ↑: increase, promote or up regulation; ↓: decrease, down regulation or inhibit; Blue
arrow: inhibit.
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membrane to the hypoxic microenvironment (211). The down-

regulation of HIF-1a significantly reduces synovitis and

angiogenesis, which may be a potential therapeutic target for

RA (213). Transcription activator AP-1 (a heterodimer

consisting of c-Fos and c-Jun) and Nrf2 are also redox-

sensitive transcription factors, which are closely related to the

pathogenesis of RA (214). In RA, AP-1 regulates cytokine and

MMP production (215), which are important in arthritis. C-Fos/

AP-1 can trans-activate MMP gene, thus mediating the

degradation of cartilage and bone matrix (216). In addition, c-

Fos/AP-1 and IL-1b affect each other’s gene expression and

activity to drive osteoclasts and interact with osteoclasts to

promote joint destruction (216). Nrf2, involved in

osteoclastogenesis, PGs secretion and ROS production (62,

116), is very important for regulating oxidative stress,

inflammation, immune response and cartilage and bone

metabolism (217), and serves as an important target for

inflammatory disturbance and oxidative stress in RA. Nrf2

binds to antioxidant response elements (ARE) and oxidative

stress-related proteins (including GSH, HO-1, and

oxidoreductase I), and then scavenges cytotoxic electrophiles

together with ROS (218). Activation of Nrf2-ARE may inhibit

the production or expression of pro-inflammatory mediators to

reduce early inflammation-mediated tissue damage (219). In

addition, activation of Nrf2 leads to the synthesis of HO-1 and

the formation of a large number of bioactive metabolites, which

may control the activation and metabolism of joint cells and play

a regulatory role in joint destruction (220). Targeted Nrf2 may

be an effective treatment.

The JAK/STAT signaling pathway, as the main target for

inhibiting the action of a variety of cytokines (221), is involved in

the signal transduction of many key cytokines for the pathogenesis

of RA and has been considered as a potential target for the

treatment of RA (222). After the effector molecules of JAK (such

as cytokines, IFN, colony-stimulating factors, and growth factors)

bind to type I and type II receptors (these receptors consist of

various subunits, each of which is associated with a JAK molecule),

JAK is activated and provides a docking site for STAT molecule by

transferring phosphate to the tyrosine residues of receptor subunits

through autophosphoryla t ion, fo l lowed by STATs

phosphorylation-mediated signal transduction of the nucleus

(223). Inhibiting the JAK/STAT pathway to inhibit Th17

differentiation and expression of inflammatory factors (TNF-a,
IL-1b, IL-6, IL-17, etc.) in the RA model, promote FLSs

apoptosis, inhibit FLSs inflammatory apoptosis, and inhibit the

expression of MMP-2 and MMP-9. Triptolide inhibits IL-6/sIL-6R

complex-induced FLSs proliferation and inflammatory cytokine

expression by inhibiting the JAK2/STAT3 signaling pathway.

Studies have shown that both classical and trans IL-6 signals can

trigger STAT3 phosphorylation and activate the JAK/STAT3

pathway in a time-dependent manner (224). However, the IL-6

trans signal results in more intense STAT3 phosphorylation than

classical signals. JAK inhibitor is a disease-modified anti-rheumatic
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drug targeting JAK. It can interfere with JAK signal transduction

and STAT signaling pathway by inhibiting the activity of one or

more JAKs, and simultaneously inhibit the production of multiple

cytokines to reduce inflammation and inflammation-related pain

(225, 226).

Elevated levels of pro-inflammatory cytokines are considered to

be an important factor in the development of RA. Some pro-

inflammatory cytokines (such as TNF-a, IL-1b, IL-6, and IL-34)

can activate a variety of signal transduction pathways, including

NF-kB, MAPK, JAK/STAT and PI3K/Akt pathways. The activated

signaling pathways promote the release of pro-inflammatory

cytokines, leading to further aggravation of RA (227, 228). PI3K/

Akt signaling pathway is involved in the regulation of many basic

cellular processes, including cell growth, transcription, translation,

proliferation, motility, and glycogen metabolism. Under the

stimulation of growth factors, PI3Ks are recruited onto the

plasma membrane to catalyze the phosphorylation of the 3-

hydroxy group of PIP2 to generate PIP3, which then acts as the

second messenger, recruiting PDK1 and AKT proteins onto

the plasma membrane to partially activate AKT by PDK1. The

activated AKT will further activate the downstream regulatory

pathway (the downstream target is mTOR), and the conversion

process can be reversed by PTEN (a negative regulatory factor of

PI3K) through dephosphorylation of PIP3 (229). PI3Ks are

involved in a wide range of intracellular regulatory mechanisms,

and their functional deregulation has been associated with a variety

of human diseases (230). Studies have shown that the PI3K/Akt

signaling pathway plays an important role in multiple mechanisms

of RA development, including angiogenesis, the proliferation,

apoptosis and metastasis of FLS, and the expression of MMPs

(43, 117, 153, 173), and it can also be considered as a potential target

for the treatment of RA.

SIRT1, a nicotinamide adenine dinucleotide (NAD)-dependent

histone deacetylase, is able to regulate inflammation, oxidative

stress, mitochondrial function, immune response, cell

differentiation, proliferation, and metabolism, and its dysfunction

may participate in the development of autoimmune diseases (231).

In recent years, there are more and more studies on the regulation

of energy metabolism and immune function of SIRT1 in RA (232).

Moreover, SIRT1 can positively affect cartilage by promoting the

survival of chondrocytes under stress conditions (233). Studies (14,

234) have shown increased expression levels of SIRT1 in serum

from RA patients or in FLS and chondrocytes from CIA mice. A

recent study (235) has shown that some variants of the SIRT1 gene

(rs3740051, rs7069102, and rs1467568) are associated with RA

susceptibility in the Chinese Han population. In RA model, some

natural medicines (such as resveratrol, baicalin and a-mangiferin)

antagonize the transcriptional activity of NF-kB by up-regulating

the expression of SIRT1, thereby inhibiting the expression of a

variety of inflammatory cytokines (such as TNF, IL-6 and IL-1b),
and inhibiting the proliferation, invasion and migration of FLSs,

which has a positive effect on RA. Therefore, SIRT1 may be a new

target for the treatment of RA.
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Discussion

For thousands of years, Chinese herbal medicine has played a

pivotal role in maintaining human health and treating various

diseases. At present, Chinese herbal medicine is considered to be an

important source for screening and seeking new candidate drugs,

and natural medicines derived from Chinese herbal medicine have

received more and more attention at home and abroad. Similarly,

Chinese herbal medicines that have played an active and significant

role in the treatment of rheumatic diseases such as RA, such as

Radix Gentianae Macrophyllae, Radix Stephaniae Tetrandrae,

Caulis Sinomenii, and Caulis Lonicerae, have also become the

targets for finding and screening new potential therapeutic agents

for RA. Studies have also proved that the active ingredients in these

Chinese herbal medicines (gentiopicroside, tetrandrine, sinomenine

and chlorogenic acid) do have anti-RA potential.

In this paper, the natural medicines with obviogentiamarinus

anti-RA activity were reviewed. These natural medicines are mainly

classified as: flavonoids, polyphenols, alkaloids, glycosides and

terpenes. Reducing the expression of inflammatory mediators,

immune regulation, anti-oxidative stress, preventing angiogenesis,

inhibiting the proliferation and migration of FLSs, and inhibiting

the differentiation of osteoclasts are all important mechanisms of

natural medicines in the treatment of RA. The main related

signaling pathways and transformation factors are summarized as

follows: NF-kB, MAPK signaling pathway, JAK2/STAT3 signaling

pathway, PI3K/Akt signaling pathway, AP-1, Nrf2, SIRT1, and

HIF-1a. Some natural medicines, such as curcumin, sinomenine,

andrographolide, emodin and GCK, can get better therapeutic

effects and/or less side effects when being used in combination

withMTX for the treatment of RA. These fully show the advantages

of natural drugs in the treatment of RA: multi-channel, multi-target,

natural and effective, with little toxic and side effects.

At present, there are four kinds of western medicines used

clinically to treat RA: nonsteroidal anti-inflammatory drugs,

glucocorticoids, anti-rheumatic drugs and biological agents.

However, these drugs are not satisfied with the treatment effect

because of their big toxic and side effects, poor tolerance and

compliance of patients, high price and other reasons. MTX is the

most commonly used anti-rheumatic drug, and it is often used in

combination with other drugs (glucocorticoids or non-steroidal anti-

inflammatory drugs) to achieve better therapeutic effects. From the

research and development in recent years, it is an important

development trend to make full use of the advantages of natural

medicine and combine western medicine to treat RA with

considerable effect.

At present, there are few kinds of natural medicines for clinical

treatment of RA, and most of them are in the stage of preclinical

research. Sinomenine, tripterygium glycosides and total glucosides

of paeony have been clinically used for the treatment of RA.

Resveratrol, a star natural medicine, has been found to have

beneficial effects on the treatment of a variety of diseases,
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showing great therapeutic potential in the study of RA.

Triptolide, the main active ingredient of tripterygium glycosides

tablet, has significant curative effect in the treatment of RA due to its

anti-inflammatory and immunosuppressive effects. However, its

toxic and side effects, mainly gastrointestinal adverse reactions and

reproductive toxicity, will also affect the liver and kidney function

and cardiovascular system to a certain extent, which is still a thorny

problem. In order to improve the therapeutic effect of natural

medicines, the research and development of natural medicines

derivatives are also one of the current hot spots. Compared with

the parent natural medicines, their derivatives have attracted much

attention due to their stronger pharmacological effects. For example,

hesperidin and its derivative 7,3’-dimethoxyhesperidin, geniposide

and its derivative pentaacetyl geniposide, paeoniflorin and its

derivative paeoniflorin-6 ‘-o-benzenesulfonate.

Therefore, finding effective and low-toxic active substances

from traditional Chinese medicines for treating rheumatoid

diseases, or developing more efficient and quality-controlled

drugs based on them, is also an important development

direction for treating RA at present and in the future. In the

future, with more extensive and in-depth research and clinical

trials, it is hoped that natural medicines, including diet and

herbs, will be more widely accepted, used alone or as adjuvant

drugs for the treatment of RA.
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