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TP53, a gene with high-frequency mutations, plays an important role in breast

cancer (BC) development through metabolic regulation, but the relationship

between TP53 mutation and metabolism in BC remains to be explored. Our

study included 1,066 BC samples from The Cancer Genome Atlas (TCGA)

database, 415 BC cases from the Gene Expression Omnibus (GEO) database,

and two immunotherapy cohorts. We identified 92 metabolic genes associated

with TP53 mutations by differential expression analysis between TP53 mutant

and wild-type groups. Univariate Cox analysis was performed to evaluate the

prognostic effects of 24 TP53 mutation-related metabolic genes. By

unsupervised clustering and other bioinformatics methods, the survival

differences and immunometabolism characteristics of the distinct clusters

were illustrated. In a training set from TCGA cohort, we employed the least

absolute shrinkage and selection operator (LASSO) regression method to

construct a metabolic gene prognostic model associated with TP53

mutations, and the GEO cohort served as an external validation set. Based on

bioinformatics, the connections between risk score and survival prognosis,

tumor microenvironment (TME), immunotherapy response, metabolic activity,

clinical characteristics, and gene characteristics were further analyzed. It is

imperative to note that our model is a powerful and robust prognosis factor in

comparison to other traditional clinical features and also has high accuracy and
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clinical usefulness validated by receiver operating characteristic (ROC) and

decision curve analysis (DCA). Our findings deepen our understanding of the

immune and metabolic characteristics underlying the TP53 mutant metabolic

gene profile in BC, laying a foundation for the exploration of potential therapies

targeting metabolic pathways. In addition, our model has promising predictive

value in the prognosis of BC.
KEYWORDS

TP53, prognostic model, immune heterogeneity, metabolic heterogeneity,
breast cancer
Introduction

Breast cancer (BC) is the most common cancer that

threatens women’s health around the world (1). Thanks to the

spread of early diagnosis based on advanced medical technology

and comprehensive and precise treatment, the survival of early

BC patients has greatly improved (2, 3). However, a certain

number of BC patients relapse following therapy or develop

metastatic cancer within a short period, with unsatisfactory

treatment efficacy and only a 30% 5-year survival rate, which

has become a clinical challenge nowadays (4). Several lines of

evidence have shown that BC progression is associated with

changes in cellular metabolism, and a high level of metabolic

heterogeneity within breast tumors is one of the main causes of

these changes (5–8). Over the past decades, burgeoning studies

have focused on the metabolic heterogeneity of BC, due to its

tumor-promoting function and important impact on prognosis

and therapeutic response, and attempted to overcome it to

develop novel approaches, including genomic profiling, the

development of biomarkers, and targeted metabolic therapies

(9, 10). Nevertheless, there are few types of research on the

detailed elaboration of the association between metabolic

phenotypes and BC prognosis.

TP53 (P53) gene, widely regarded as a tumor suppressor

gene, is the most frequently mutated gene in cancer (11). Protein

p53 encoded by human gene TP53 has diverse biological

functions, primarily acting as a transcription factor to initiate

gene transcription and participate in cell cycle arrest,

metabolism, DNA repair, cell senescence, apoptosis, and

ferroptosis (12, 13). The majority of TP53 mutations in

human cancer are missense mutations in its DNA-binding

domain that generate mutant p53 protein, thus affecting its

transcriptional ability and abnormal downstream signaling

pathway (14). Numerous studies have revealed that mutant

p53 can lose their tumor-suppressive function and obtain

dominant−negative activities that are independent of wild

−type p53, which may confer them oncogenic functions to
02
participate in cancer development (15, 16). Although the

clinical relevance of TP53 mutation status in BC has been

recently debated, it is also worth noting that TP53 mutations

are linked with worse survival in BC, supported by credible

results from several large samples of clinical data (17–19).

Therefore, more efforts to further discover the roles of TP53 in

BC progression are warranted.

As observed in multiple studies, mutant p53 may exert its

oncogenic functions primarily by regulating cancer metabolism

(20, 21). Thus, we speculate that the prognosis of BC patients

with TP53 mutations may be related to cancer metabolism

regulation mediated by mutant p53. In our research, a

comprehensive analysis of TP53 gene status in BC was

conducted to reveal the relationship between TP53 mutations

and metabolic phenotypes. Furthermore, a TP53-related

metabolic gene profile containing 24 metabolic genes was

identified and characterized by a high degree of metabolic and

immune microenvironmental heterogeneity according to

differential gene expression analysis in patients with TP53

mutations and TP53 wild type. Importantly, we developed a

prognostic risk score model based on TP53-associated metabolic

gene profiles that could contribute to risk stratification in BC

patients and guidance of clinical decision making. The validation

of The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) data proves the excellent predictive value of

this model for BC prognosis.
Materials and methods

Sources of breast cancer datasets and
preprocessing

The RNA sequencing data (HTSeq-Counts) and copy

number variation (CNV) data of BC were retrieved from

TCGA website (https://portal.gdc.cancer.gov/) and the

University of California, Santa Cruz (UCSC) Xena website,
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respectively. In addition, Breast Invasive Carcinoma TCGA

PanCancer data of 1,084 samples containing somatic mutation

data, especially TP53 gene condition, and the matched clinical

information were downloaded from cBio Cancer Genomics

Portal (http://cbioportal.org/), which collected a large number

of comprehensive multidimensional cancer genome databases

(22, 23). Patients without survival data were removed from

further analysis. To facilitate comparability among samples,

HTSeq-Counts data were normalized to transcripts per

kilobase million (TPM) values and transformed to log2TPM

for the following analysis (24).

For microarray data from the GEO database (https://www.

ncbi.nlm.nih.gov/geo/), we downloaded GSE20685 (n = 327)

and GSE20711 (n = 90) datasets with the matrix files of the gene

expression profile and full clinical information based on the

same platform GPL570 and developed a GEO cohort of 415 BC

cases. Gene expression data of the GEO cohort were log2-

transformed. Batch effects from non-biological technical biases

were corrected by using the “ComBat” algorithm of the

“SVA” package.

To validate the ability of our model to predict response to

anti-PD-1/L1 therapy, we adopted two immunotherapeutic

cohorts after a series of searches: IMvigor210 cohort

(advanced urothelial cancer treated with atezolizumab) (25)

and GSE78220 (metastatic melanoma with the intervention of

pembrolizumab (26). The count data of IMvigor210 and

microarray data of GSE78220 were converted to log2TPM and

log2-transformed as described above, respectively.

Generally, the average expression value of genes was used in

the present study if gene duplication was detected. Data used in

this study are publicly available from TCGA and GEO databases.
Gene set variation analysis

We performed gene set variation analysis (GSVA)

enrichment analysis among different groups or patterns to

reveal metabolic heterogeneity in BC by the “GSVA” R

packages, as visualized in the heatmap (27). The file of

“c2.cp.kegg.v7.4.symbols” was obtained from the MSigDB

database for GSVA. We screened for statistically significant

pathways between different clusters depending on the adjusted

p < 0.05.
Estimation of tumor microenvironment
cell infiltration

To describe meaningful variations among distinct groups or

clusters in tumor microenvironment (TME) cell infiltration, a

single-sample gene set enrichment analysis (ssGSEA) algorithm

was employed to quantify the relative abundance of 28

subpopulations of tumor-infiltrating lymphocytes (TILs) in the
Frontiers in Immunology 03
BC TME for differential analysis. The natural killer T cells,

activated CD8+ T cells, activated CD4+ T cells, activated

dendritic cells, macrophages, and other representative human

immune cell subtypes are included in this study (28, 29).
Differentially expressed genes associated
with TP53 condition

We classified 1,003 BC patients with gene expression data

and TP53 mutation information from TCGA cohort into TP53

wild-type (n = 659) and TP53 mutant (n = 344) groups. The

“edgeR” package was conducted on the real count data of BC

samples to identify differentially expressed genes (DEGs)

between the two groups in BC (|logFC|>1 and adjusted p <

0.05). The results were visualized in volcano plots and heatmap.
Metabolic gene source and functional
analysis

With the use of the Kyoto Encyclopedia of Genes and

Genomes (KEGG) metabolic pathway-related gene sets on the

KEGG website (https://www.kegg.jp/), a total of 3,067 metabolic

genes were extracted from 86 KEGG metabolic pathways and

collected (Supplementary Table 1) (30). The intersection of the

DEGs and metabolic genes were selected as metabolism-related

genes (MRGs) associated with the TP53 condition for

subsequent analysis. By using the “clusterProfiler” R package,

the analysis of KEGG pathways was utilized to explore the

significant pathways associated with TP53-related MRGs,

highlighting the biological implications of the prognostic

model (31). The notable pathways were shown in the bar plot

using “ggplot2” R packages.
Consensus clustering

Consensus clustering was performed to identify distinct

TP53-related metabolic patterns based on the expression of 24

TP53-associated MRGs by the k-means method. Notably, the

optimal cluster number of clusters depended on the consensus

clustering algorithm by applying the “ConsensuClusterPlus”

package. We carried out 1,000 repetitions to further verify the

robustness of our classification (32).
Gene set enrichment analysis

Based on the gene set database of “c2.cp.kegg.v7.5.1.symbols,”

GSEA version 4.2.2 (33) was used to discover different underlying

mechanisms of enrichment in the high- and low-risk groups,

with a particular focus on MRG sets. In terms of key parameter
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setting, “high risk versus low risk” was assigned the phenotypic

label, and the number of random sample permutations was set

at 1,000.
Development of the risk score model
based on TP53-related metabolism-
related genes

We selected a total of 1,039 BC cases with gene expression

data and survival information from TCGA database as the

training cohort and 415 BC patients from the GEO cohort as

the testing cohort. Before subsequent analysis, the gene

expression data of two cohorts were corrected by the “scale”

method. In the training cohort, we performed the prognostic

analysis for TP53-related MRGs with an application of the

univariate Cox regression model. Those TP53-related MRGs

with p-values <0.05 were regarded as significant in statistics and

then enrolled into the least absolute shrinkage and selection

operator (LASSO) regression analysis for the foundation of the

prognostic risk score model.

Risk Score =o
n

i=1
KiXi

where n, Ki, and Xi represent the number of included genes,

the coefficient index, and the gene expression, respectively. With

median risk score as a cutoff point, the patients in the training

cohort were stratified into low- and high-risk subgroups. We

attempted to evaluate the predictive accuracy of the model via

time receiver operating characteristic (ROC) analysis.
Statistical analysis

All statistical tests and drawings were conducted using R

statistical software (version 4.1.2). Two-group comparisons were

carried out using Student’s t-test and Wilcoxon’s test, and the

Kruskal–Wallis tests for comparisons of three or more groups.

The overall survival (OS) differences among diverse groups were

analyzed by the Kaplan–Meier method, and the statistical

significance of differences was identified using the log-rank

test. Univariate Cox regression analysis was performed to

assess the prognostic value of genes and visualized with forest

plots by “Survival” R packages. The measure of the correlation

between 24 metabolic genes was implemented using “psych” R

packages. The waterfall plots for the mutation landscape of

patients with or without TP53 mutations in TCGA cohort

were generated via the function of the “maftools” R package.

Univariate and multivariate Cox regression analyses were

executed to assess whether the risk score in combination with

clinical characteristics had independent prognostic power. A p <

0.05 was considered statistically significant.
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Results

Functional changes associated with TP53
mutations in breast cancer

In TCGA cohort, TP53 mutation frequency was up to 35%,

among which missense mutations accounted for the largest

proportion, as shown in Figure 1A. Analysis of p53 protein

mutation sites displayed the most mutation sites in the DNA-

binding domain that initiated their principal functions,

indicating that the functional changes of mutant p53 were

affected by DNA-binding ability (Figure 1B). In our research,

no remarkable variable in OS for BC patients was observed

between the TP53 mutated and unmutated groups (log-rank p >

0.05, Supplementary Figure 1). To identify differences in the

biological pathway activities of the two groups, we employed

GSVA to determine that BC cases with TP53 mutation exhibit

enrichment of energy metabolism (galactose metabolism, and

pentose phosphate pathway), amino acid metabolism

(methionine and cysteine), and immunologic function (natural

killer cell-mediated cytotoxicity), as compared to those without

TP53 mutation (Figure 1D, Supplementary Table 2). In addition,

we found a high degree of immune cell infiltration in the TP53

mutation group by ssGSEA (Figure 1C). In brief, our results

confirmed that TP53 mutations led to changes in metabolic and

immune characteristics in BC, which may be biological

hallmarks of malignancy.
The identification of metabolism-related
differentially expressed genes based on
TP53 status

DEG analysis was performed between the TP53 mutant

group and TP53 wild-type group using the “edgeR” package

among a total of 1,003 samples with complete data on gene

expression and TP53 status, and we finally identified 1,271

DEGs related to the TP53 condition (false discovery rate (FDR)

< 0.05 and |log2 FC| > 1.0, Figures 2A, B). To further analyze

the relationship between TP53 mutations and metabolism in

BC, 3,067 MRGs assigned to metabolic pathways were obtained

from the official website of the KEGG database, and then 92

TP53-related DEGs relevant to metabolic regulation were

ultimately ascertained (Figure 2C). Among them, 47 genes

were upregulated (FDR < 0.05 and log2 FC > 1.0), and 45 genes

were downregulated (FDR < 0.05 and log2 FC < 1.0). In

addition, KEGG pathway analysis revealed that 92

metabolism-related DEGs (MRDEGs) were mainly involved

in 20 metabolic pathways, including amino acid metabolism

(tryptophan, tyrosine, cysteine, methionine, glutathione,

glutamate, serine, threonine, and arginine metabolism),

glucose metabolism (glycolysis, gluconeogenesis, galactose,
frontiersin.org
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fructose, and mannose metabolism), and tricarboxylic acid

(TCA) cycle and followed by oxidative phosphorylation, lipid

metabolism (biosynthesis of unsaturated fatty acids), and

drug metabolism (Figure 2D, Supplementary Table 3).

Similar to those of other studies, these results demonstrated

the pivotal role of TP53 status in metabolic regulation for

BC patients.
Frontiers in Immunology 05
The features of metabolic genes profile
with TP53 mutations

First, we used univariate Cox analysis to estimate the

survival prognostic value of 92 MRDEGs, and eventually, 24

prognostic genes were determined and regarded as the metabolic

genes profile with TP53 mutation (Figure 2E). The network
A

B

C

D

FIGURE 1

The overall characteristics of TP53 mutations in breast cancer. (A) Frequency and types of TP53 gene alterations in TCGA Breast Invasive
Carcinoma samples from cBioPortal. (B) The distribution of amino acids in TP53 protein in TCGA Breast Invasive Carcinoma samples from
cBioPortal. (C) The abundance of each TME infiltrating cell between TP53 mutant and wild-type groups (ns, no significance; *p < 0.05;
***p < 0.001). (D) Heatmap for GSVA enrichment analysis showing the activation states of biological pathways between TP53 mutant and wild-
type groups. TCGA, The Cancer Genome Atlas; TME, tumor microenvironment; GSVA, gene set variation analysis.
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diagram depicts the intricate but close correlations and their

prognostic significance for BC patients among 24 prognostic

genes (Figure 3A). Of them, we found 5 prognostic risk factors,

as follows: CA9, CHAC1, FUT3, MTHFD1L, and PLCH1. As

shown in the heatmap (Figure 3B), these 5 risk genes were highly

expressed in the mutant TP53 group, and survival analysis

indicated that BC cases with elevated expression of these genes

were more likely to have a poor survival outcome (Figure 3C).

Furthermore, Gene Ontology (GO) and KEGG enrichment

analyses of the metabolic genes profile were conducted to

discover enriched biological processes and activities. We found

that they were mainly involved in the regulation of various

substances’ metabolism that promoted tumor growth, including
Frontiers in Immunology 06
amino acids, l ipids, and nucleic acids (Figure 3D,

Supplementary Table 4).

We further studied the genomic alterations of 24 key

metabolic genes associated with TP53 mutations, thereby

deepening our understanding of the metabolic gene profile

based on TP53 status. Combined with the copy number

information of 1,002 samples and corresponding TP53 status

information, 343 patients in the TP53 mutant group and 659

patients in the TP53 wild-type group were used to analyze copy

number gain and loss frequencies, respectively. The findings

showed that the TP53 mutant group tended to have higher copy

number gain or loss frequencies than the TP53 wild-type group

(Figures 3E, F). Next, we also explore 24 metabolic genes
A B

C

D E

FIGURE 2

Identification of TP53 mutation-related metabolic gene profile. (A) Heatmap of the DEGs between TP53 mutant and wild-type groups in breast
cancer cases. (B) A volcano plot exhibiting the identified DEGs including upregulated (red) and downregulated (green) genes. (C) Venn diagram
summarizes the TP53-related metabolic genes intersected by 3,067 MRGs and 1,271 DEGs. (D) KEGG analysis of 92 metabolic genes related to
TP53 showing the main significantly enriched pathways. (E) Overall survival in univariate Cox regression of TP53-related metabolic genes. DEGs,
differentially expressed genes; MRGs, metabolism-related genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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A B

C D

E F

G H

FIGURE 3

The features of TP53 mutation-related metabolic gene profile. (A) A network of the interactions among the 24 metabolic genes associated with
TP53 mutations. (B) Heatmap of TP53 mutation-related metabolic gene expression profile between TP53 mutant and wild-type groups. Seven
upregulated genes including CA9, PLCH1, FUT3, CHAC1, CD38, MTHFD1L, and PLA2G2D in the TP53 mutant group. (C) Kaplan–Meier survival
analysis of breast cancer patients with high and low gene expression of 5 prognostic risk genes (CA9, CHAC1, FUT3, MTHFD1L, and PLCH1). (D)
GO enrichment analysis of TP53 mutation-related metabolic gene profile in cellular component terms, biological process terms, and molecular
function terms. (E, F) Lollipop charts depict the CNV frequency of TP53 mutation-related metabolic gene profiles in TP53 mutant (E) and wild-
type groups (F). (G, H) The waterfall plot of tumor somatic mutation in TP53 mutant (G) and wild-type groups (H). GO, Gene Ontology; CNV,
copy number variation.
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mutation between two groups, with detailed TP53 mutation

data. As displayed in Figures 3G, H, the mutation rate of the 24

genes did not differ apparently between the two groups, as well

as the overall mutation rate.
The heterogeneity of TP53 mutation-
related metabolic gene profile

To investigate the metabolic heterogeneity of 92 MRDEGs in

BC, 24 prognostic genes were under intensive study. The

unsupervised clustering method was utilized to classify

patients with qualitatively different metabolic regulation
Frontiers in Immunology 08
patterns based on the expression of 24 prognostic genes.

Considering the principle of high intragroup correlation and

low intergroup correlation, we finally determined that the

optimal cluster number was three (Figures 4A, B). We termed

these clusters as Clusters A–C: 363 cases in Cluster A, 448 cases

in Cluster B, and 228 cases in Cluster C. Furthermore, the

Kaplan–Meier survival analysis exhibited striking differences in

OS among the three clusters, notably showing a conspicuous

survival disadvantage in Cluster A compared with the other two

clusters (log-rank p = 0.002, Figure 4C). To explore the

distinctions in biological processes of the three clusters, we

subsequently performed a GSVA enrichment analysis.

Obviously, from the perspective of metabolic regulation,
A B

C D

E F

FIGURE 4

Heterogeneity of TP53 mutation-related metabolic gene profile. (A) Consensus clustering matrix of 1,039 TCGA samples for k = 2, k = 3, and k = 4.
(B) Relative change in area under CDF curve according to various k values. (C) Kaplan–Meier survival analysis of three clusters in TCGA samples.
(D) The abundance of each TME infiltrating cell among three clusters (ns, no significance; **p < 0.01; ***p < 0.001). (E, F) Heatmap for GSVA
enrichment analysis showing the activation states of biological pathways between Clusters A and B (E) and between Clusters A and C (F). TCGA,
The Cancer Genome Atlas; CDF, cumulative distribution function; TME, tumor microenvironment; GSVA, gene set variation analysis.
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Cluster A was mainly enriched in tyrosine metabolism and fatty

acid metabolism pathways, Cluster B was closely related to

nitrogen metabolism and selenoamino acid metabolism

pathways, and Cluster C was intimately associated with

pathways that regulate the metabolism of cysteine, methionine,

and galactose (Figures 4E, F, Supplementary Table 5).

Meanwhile, we sought to further distinguish the three clusters

in TME cell infiltration via the ssGSEA method. It was worth

noting that multiple subpopulations of TILs, presented in

Figure 4D, were significantly different among the three

clusters, revealing immune heterogeneity of TP53 mutation-

associated metabolic gene profile in BC patients. Taken together,

the discovery of metabolic and immune heterogeneity among

the three clusters enabled us to speculate that there may be a
Frontiers in Immunology 09
complicated pattern of immune metabolic cross-talk regulation

in BCs with TP53 mutations.
Construction of a prognostic risk score
model based on metabolic genes (The
cancer genome atlas)

To better quantify the metabolic features and prognosis of

each individual, the expression data of 24 metabolic genes

associated with TP53 mutations that had been proved above

the significance in differentiating BC patients were used to

establish a scoring model. Under the application of the LASSO

regression model that effectively avoids overfitting conditions, 9
A B C

D E

F G

FIGURE 5

Construction of a prognostic risk model associated with TP53 mutations. (A, B) LASSO regression analysis of the 24 metabolic genes associated
with TP53 mutations. (C) PCA of breast cancer patients with high- and low-risk scores in TCGA. (D, E) Kaplan–Meier survival analysis of high-
and low-risk groups in TCGA (D) and GEO cohorts (E). (F, G) ROC curves indicating the sensitivity and specificity of predicting 3-, 5-, and 8-year
survival with the TP53 mutation-related signature in TCGA (F) and GEO cohorts (G). LASSO, least absolute shrinkage and selection operator;
PCA, principal component analysis; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; ROC, receiver operating characteristic.
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of 24 metabolic genes were retained for the construction of risk

scoring formulas with a minimum of l (Figures 5A, B). The

specific risk scoring formula is defined as a linear combination of

included gene variables weighted by their respective Cox

regression coefficients (Table 1). Next, we attempted to further

probe the clinical implication of this scoring model. In the

training cohort, 1,039 samples from TCGA database, with risk

scores calculated using the risk scoring formula, were then

divided into high- and low-risk groups according to the

median score. The risk scatter plot described that BC patients

with high-risk scores also have a high risk of death

(Supplementary Figure 2A). We can see from Figure 5D that

BC cases at low risk showed a remarkable survival advantage as

compared with the high-risk group (log-rank p < 0.001).

Furthermore, principal component analysis (PCA) results

showed a high degree of differentiation between the high- and

low-risk groups (Figure 5C). To verify the predictive power of

this model, a time-dependent ROC analysis was performed to

chart the corresponding ROC curves, and the area under the

curve (AUC) was 0.822 for 3-year survival, 0.742 for 5-year

survival, and 0.676 for 8-year survival (Figure 5F), exhibiting a

good predictive accuracy. These findings pointed out that the

risk score was expected to be a promising predictor for the

prognosis of BC patients.
Validation of the prognostic risk score
model

To certify the universal applicability of the scoring model, a

testing cohort consisting of 415 BC samples from GSE20685 and

GSE20711 in the GEO database has been analyzed. First of all,

GEO gene expression data were integrated after removing the

batch effect and finally standardized by the “scale” method. A

total of 415 BC patients were separated into high-risk (n = 95)

and low-risk (n = 320) groups with the same cutoff from the

training set (Supplementary Figure 2B). As depicted in the

Kaplan–Meier curve, a prominent difference in OS did exist

between the two groups, and cases at high risk had a worse
Frontiers in Immunology
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clinical outcome than those with low-risk scores (Figure 5E).

Furthermore, ROC curve analysis confirmed the high predictive

ability of our model, and the AUC values for 3, 5, and 8 years

were 0.589, 0.644, and 0.682, respectively (Figure 5G).
Metabolic characteristics of the high-
and low-risk groups

To map metabolic alterations between the high- and low-risk

groups, we employed a GSEA on 1,039 BC samples from both

groups. In the high-risk group, we observed that 17 gene sets

representing functions or pathways were significantly upregulated

in the KEGG signatures (p < 0.05), among which the main

metabolic pathways included glucose metabolism (galactose

metabolism, fructose/mannose metabolism, glycolysis/

gluconeogenesis, and starch/sucrose metabolism) as well as redox

pathways (the pentose phosphate pathway and cysteine/

methionine metabolism) (Figure 6A, Supplementary Table 6).

Remarkably, some pathways have been proven to be associated

with tumor development and poor prognosis (34–36). In contrast,

in the low-risk group, 34 KEGG gene sets were significantly

enriched (p < 0.05), with lipid metabolism as the dominant

metabolic pathway, typically comprising arachidonic acid

metabolism, glycerophospholipid metabolism, alpha-linolenic

acid/linoleic acid metabolism, and JAK_STAT signaling pathway

(Figure 6A). It may reflect that activation of lipid metabolism-

related pathways plays a dominant role in tumorigenesis and

progression in BC patients with low-risk scores. Finally, there is a

bold idea that BC patients in the high-risk group may benefit from

therapy targeting glucoseMRGs, such as HK3 (37) and PFKP (38).

Meanwhile, the novel therapy targeting genes associated with lipid

metabolisms, such as HMGCR (39) and FASN (40), may be

effective in those at low risk. Before that, further research

is indispensable.
The immune landscape of the high- and
low-risk groups

Todescribe the immunecharacteristics between low-andhigh-

risk groups, we first calculated the immune infiltrate scores of 28

subpopulationsofTILsacrossTCGABCsamplesusing the ssGSEA

method, and then we performed a differential analysis. Compared

with patients in the high-risk group, multiple subpopulations of

TILs, such as CD8+ T cells, macrophages, mast cells, natural killer

cells, and Type 1 T helper cells (Th1 cells), exhibited enrichment in

those with low-risk scores (Figure 6B). It was revealed that the low-

risk group had an abundance of immune cell infiltration,

speculating that patients with low-risk scores may possess more

antitumor immunity, such as that mediated by CD8+ T cell.

Moreover, we further sought to investigate the correlation

between risk scores and important immune checkpoint molecules
TABLE 1 Gene variables and their respective coefficients in the risk
scoring formula.

Gene Coefficien

ABAT −0.082288109

CYP4F8 −0.124018768

ELOVL2 −0.252333184

ACSM1 −0.048626551

GSTM2 −0.546619727

CHAC1 0.070470329

CD38 −0.696837951

PDE6B −0.111403019

UGCG −0.1220607
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in TCGA cohorts. As illustrated in Figure 6C, the expression of a

series of potentially targetable immune checkpoints (PD-L1,

CTLA4, HAVCR2, and TIGIT) all tended to be higher in the

low-risk group than the high-risk group, implying that low-risk

patients may easily benefit from immunotherapy and achieve an

improved survival.

To advance this research, we made a meaningful comparison

between risk score and 6 immune subtypes (C1–C6) identified

by previous researchers based on 30 tumor types (41)

(Supplementary Table 7). The features of the TME varied
Frontiers in Immunology 11
substantially across 6 immune subtypes, where C1 was

characterized by an increased expression of angiogenic genes,

abundant Th2 cell infiltrates, and an elevated proliferation rate,

while C2 showed the highest M1/M2 macrophage polarization, a

strong CD8 signal, and the greatest T-cell receptor (TCR)

diversity. Next, particular immune features of the two groups

were then further analyzed (Figures 7B–D). We observed that

Th1 cells and leukocyte fractions were enriched in cases within

the low-risk group, which had a high proportion of immune

subtype C2, making a major involvement in cell-mediated
A B

C

D E

FIGURE 6

Immune and metabolic differences between high- and low-risk groups. (A) GSEA shows a significant enrichment of biological processes in BC
patients with low-risk scores compared to those with high-risk scores. (B) The abundance of each TME infiltrating cell between high- and low-
risk groups (ns, no significance; *p < 0.05; **p < 0.01; ***p < 0.001). (C) PD-L1, CTLA4, HAVCR2, and TIGIT gene expression differences
between high- and low-risk groups. (D) Kaplan–Meier survival analysis of high-risk and low-risk groups in immune cohort IMvigor210. (E) The
proportion of anti-PD-L1 response in the high- and low-risk groups of the immune cohort IMvigor210. GSEA, gene set enrichment analysis; BC,
breast cancer; TME, tumor microenvironment.
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immunity possible (Figures 7A, B). In contrast, patients with

high-risk scores, consisting mostly of immune subtype C1,

showed a high proliferation rate, intratumoral heterogeneity

(ITH), and aneuploidy score, which may account for the poor

prognosis of cases with high-risk scores.
The risk score model in the role of anti-
PD-1/L1 immunotherapy

We attempted to verify the value of the risk score model to

predict the efficacy of anti-PD-1/L1 immunotherapy in other
Frontiers in Immunology 12
independent cancer cohorts (IMvigor210, GSE78220). The

median risk score was selected as the cutoff value to stratify

cases into low- and high-risk groups in both cohorts. It was

shown that patients with low-risk scores are correlated to a

satisfactory prognosis in the IMvigor210 cohort, which was

consistent with the previous results (Figure 6D). In both

cohorts, additional consequences indicated that most cases in

the high-risk group displayed discouraging responses to

immunotherapy, whereas the low-risk patients showed the

opposite (Figure 6E, Supplementary Figure 3B). Although the

exploration and analysis of the relationship between risk score

and clinical efficacy did not show a marked difference, they still
A B

C

D

FIGURE 7

Immune characteristics of the high- and low-risk groups in TCGA cohort. (A) The proportion of distinct immune subtypes in the high- and low-
risk groups. (B) Key characteristics of high- and low-risk groups. (C) DNA damage measures of high- and low-risk groups, including non-silent
mutation rate, copy number burden scores (number of segments and fraction of genome alterations), and homologous recombination
deficiency. (D) Values of key immune characteristics between high- and low-risk groups. TCGA, The Cancer Genome Atlas.
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displayed a trend of poor responses in high-risk cases

(Supplementary Figures 3C, E). Intriguingly, in comparison

with the high-risk group, the elevated expression of the PD-L1

gene as a pivotal target for immunotherapy was observed in the

low-risk group, possibly contributing to favorable responses to

anti-PD-1/L1 therapy (Supplementary Figures 3D, F).
Independence evaluation of risk score
model

A total of 934 BC samples with detailed clinical features were

obtained from TCGA and summarized in Table 2. A univariate

Cox regression model was performed to seek the prognostic

connection between OS time for BC cases and several special

characteristics, including age, clinical stage, T classification, N

classification, molecular subtype, TP53 condition, and risk score.
Frontiers in Immunology
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Among them, only 4 significant factors with a p-value <0.001

were closely related to OS and subsequently incorporated into

the multivariate Cox analysis (Figures 8A, B). Collectively, the

result in Figures 8C–E underlined the stronger role of risk score

based on our model as an independent prognostic factor for

BC patients.

To further evaluate the predictive sensitivity of the risk score

in distinct stratified subgroups, the differences in OS between the

high- and low-risk subgroups were compared by using the

Kaplan–Meier survival analysis in TCGA cohort. In most

subgroups, it was well demonstrated that BC cases with high-

risk scores were linked to worse prognosis, especially in the <65

years, Luminal A, Luminal B, T3–4, N1–3, stage III–IV, and

TP53 wild-type subgroups (Figure 8F).

The following analyses were also presented for the

correlation between risk scores and various clinicopathological

features (Supplementary Figure 4). As a result, patients in the

TP53 mutant subgroup were indicative of a higher risk score in

comparison to those without mutated TP53, which reflected

poorer survival outcomes as well. In terms of molecular subtype,

patients with basal-like subtype and her2-enriched subtype were

close related to high-risk scores. Moreover, we found that several

known risk factors, such as larger tumor size, lymph node

metastasis, and advanced clinical stage, were accompanied by

superior risk scores.
Discussion

Considering the high heterogeneity of BC, clinicians are

confronted with great challenges in the improvement of the

survival rate for BC patients who exhibit poor responses to

treatment (11, 42). With the advances in medicine, multiple

novel approaches have emerged as indispensable tools in patient

classification, disease status monitoring, and personalized

treatment regimens, including molecular biomarkers,

prognosis, and diagnostic gene signatures (43, 44). Therefore,

it is necessary to explore the promising genetic signatures to

better predict the prognosis of BC patients and assist in making

individualized treatment options.

Currently, many researchers have proved that the status of

TP53 gene is closely related to the prognosis of BC (45, 46), but it

could not improve the prognostic accuracy in the absence of

comprehensive bioinformatics and clinicopathological factors

analysis. In this study, we are the first to identify a metabolic

gene profile associated with TP53 mutations using a large cohort

of TCGA BC patients and, further, reveal its underlying

immunological and metabolic heterogeneity. Furthermore, a

powerful TP53 mutation-related prognostic model was figured

out via the LASSO regression methods and validated in two

GEO datasets. Meanwhile, through various bioinformatics

methods, we summarized that patients with different risk

scores varied in the immune microenvironment, metabolic
TABLE 2 Baseline characteristics of breast cancer cases in TCGA
cohort.

Characteristics TCGA

Patients (n) 934

Mean follow-up time (months, range) 27.0 (0, 282.9

Age (years)

<65 647

≥65 287

Stage

I–II 716

III–IV 218

AJCC pathologic T

T1–2 797

T3–4 137

AJCC pathologic N

N0 463

N1–3 471

AJCC pathologic M

M0 794

M1 15

Mx 124

Risk group

Low 472

High 462

TP53

Wild type 604

Mutant 330

Subtype

BRCA_Normal 34

BRCA_LumA 477

BRCA_LumB 186

BRCA_Her2 72

BRCA_Basal 165
TCGA, The Cancer Genome Atlas; AJCC, American Joint Committee on Cancer.
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activities, and responses to immunotherapy, providing a guide

for targeted metabolic therapy of BC. This is also a prognostic

model that goes beyond traditional clinical features and a single

gene to accurately identify those patients with poor survival and

better guide clinical therapy.

Mutant TP53 has attracted much attention in tumorigenesis

and development since its first description in 1989 (47).
Frontiers in Immunology 14
Clinically, patients with mutant TP53 have been associated

with a discouraging prognosis in various cancers, but the

results remain controversial (48). In a study of 859 BC

patients, the researchers determined that patients with mutant

TP53 had worse BC-specific and all-cause mortality than those

with wild-type TP53, which is consistent with other studies (17–

19). In our study, we finally illustrated no statistically significant
A B

C

F

D E

FIGURE 8

Independence evaluation of the prognostic risk model. Univariate (A) and multivariate (B) analyses of traditional clinical features and the
prognostic risk model. (C) ROC curves indicating the sensitivity and specificity of predicting 3-year survival with traditional clinical features and
the prognostic risk model in TCGA cohort. (D) Decision curves for traditional clinical features and the prognostic risk model to predict 3-year
survival probability. (E) Alluvial diagram showing the changes of TP53 condition, molecular clusters, risk group, and survival status. (F) Kaplan–
Meier survival analysis of high- and low-risk groups in the <65 years, Luminal B, N1–3, stage III–IV, TP53 mutant, and wild-type subgroups. ROC,
receiver operating characteristic; TCGA, The Cancer Genome Atlas.
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difference in survival between the TP53 mutant and wild-type

groups from TCGA cohort of 1,003 BC patients. Currently,

many researchers have proved that the status of TP53 gene is

closely related to the prognosis of BC (45, 46), but it could not

improve prognostic accuracy in the absence of comprehensive

bioinformatics and clinicopathological factors analysis. In this

study, we are the first to identify a metabolic gene profile

associated with TP53 mutations using a large cohort of TCGA

BC patients and, further, reveal its underlying immunological

and metabolic heterogeneity. Furthermore, a powerful TP53

mutation-related prognostic model was figured out via the

LASSO regression methods and validated in two GEO

datasets. Meanwhile, through various bioinformatics methods,

we summarized that patients with different risk scores varied in

the immune microenvironment, metabolic activities, and

responses to immunotherapy, providing a guide for targeted

metabolic therapy of BC. This is also a prognostic model that

goes beyond traditional clinical features and a single gene to

accurately identify those patients with poor survival and better

guide clinical therapy. In this regard, it may be caused by

differences in clinical characteristics or treatment options that

affect prognostic determinations. Of note, a large study of the

METABRIC dataset (n = 1,979) elucidated the clear relationship

between TP53 mutation status and survival in different therapy

regimens. Consequently, in patients treated with hormone

replacement therapy (HRT) only, those without TP53

mutation had a survival advantage. Conversely, the TP53

mutant patients obtained a superior rate of pathologic

complete response (pCR) when chemotherapy was only

administrated (45, 49, 50). In brief, the profound impact of

TP53 on the prognosis of BC is indisputable.

Accumulating evidence suggests that TP53 gene is essential

for cancer initiation and progression by reprogramming cancer

cell metabolism in addition to p53-mediated classical regulatory

mechanisms (51). In our research, we identified 92 metabolic

genes related to TP53 mutation, and results of KEGG analysis

showed that mutated TP53 principally participated in glycolysis/

gluconeogenesis, tryptophan metabolism, glutathione

metabolism, glycosphingolipid biosynthesis, and purine

metabolism, which may promote tumor progression via

meeting increased demands for energy, biomass, and nutrients.

Some mechanistic research revealing detailed mutant p53-

mediated metabolic regulatory pathways has been reported. A

study in 2013 demonstrated that mutated p53 protein assisted

GLUT1 transport to the plasma membrane and enhanced

glycolysis and tumorigenesis via a RhoA/ROCK/GLUT1

signaling pathway (52). Additionally, it has been revealed that

mutated p53 tended to bind with the AMP-activated protein

kinase (AMPK) a subunit and then restrained its activation,

resulting in increased lipid production and tumor growth in the

head and neck cancer cells (53). Although there are more and

more in-depth mechanistic studies mentioned above, which

provide a theoretical basis for targeted metabolic therapy,
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metabolic flexibility that enables cancer cells to adapt to the

microenvironmental perturbations and metabolic heterogeneity

are regarded as critical barriers to targeting cancer metabolic

profiles (54, 55). Our subsequent research results referring to

TP53 mutation-related metabolic gene profiles showed that

enrichment of metabolic pathways varied in three clusters,

which embodied metabolic heterogeneity. Cluster A was

enriched in fatty acid metabolism and tyrosine metabolism,

but it had the worst prognosis among the three clusters. This

can be explained by some standpoints in several studies

that aberrantly activated fatty acid metabolism, including

synthesis, lengthening, and desaturation can facilitate tumor

proliferation (56, 57). However, our findings indicated that

Cluster A was expected to benefit from targeted therapy of

fatty acid metabolism.

Using TCGA cohort data as a training set, we constructed a

prognostic risk scoring model based on 9 metabolic genes

associated with TP53 to quantitatively score the risk of an

individual BC patient, so as to improve individualized cancer

treatment and monitoring. GEO data of 415 BC cases were used

as a validation set, which well verified the good accuracy of our

model. We then used the median risk score to classify patients

into the high- and low-risk groups. It has been revealed that

various metabolic mechanisms have an intricate relationship

with the behavior of immune cells and antitumor immune

response and are involved in the process of tumor genesis and

development (58). Therefore, we sought to uncover the distinct

immunological landscape and heterogeneity of metabolic

profiles between the high- and low-risk groups. First, our

results showed that compared with the high-risk prognosis

group, higher abundance of most immune cells, whether

immunosuppressive cells (such as Tregs, tumor-associated

macrophages (TAMs), and myeloid-derived suppressor cells

(MDSCs)) or immune effector cells, was observed in the low-

risk prognosis group, highlighting the existence of a complex

internal immune microenvironment. Further studies indicated

that IFN-g signaling was dominant in the low-risk group, with

high M1/M2 macrophage polarization and strong CD8

signaling. Meanwhile, CD8+ T cell was accepted as a crucial

determinant of favorable clinical prognosis in patients with BC

(59). Of interest, our study found that cases in the low-risk

prognosis group had elevated expression of PD-L1, CTLA4,

HAVCR2, and TIGIT and were more sensitive to anti-PD1

treatment than those with high-risk scores. Taken together,

these results suggest that good outcomes in the low-risk

group may be associated with immune effector cell-

dominated antitumor immunity and those patients may

benefit from immunotherapy. For metabolic activities,

significant enrichment of lipid-related metabolism was found

in the low-risk group, with compelling evidence from other

literature showing abnormally activated lipid metabolism in BC.

Previous studies have demonstrated that JAK/STAT signaling

pathway is closely related to BC stem cells and chemotherapy
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resistance, mainly by inhibiting fatty acid b-oxidation (FAO) (60).
Moreover, arachidonic acid is an important component of

phospholipids in cell membranes, and its metabolism is critical

for the migration of BC cells induced by oleic acid (61). At present,

metabolic-targeting therapy strategies have been put into practice,

with many drugs targeting metabolic enzymes in clinical trials, so

our results provideaprecisedirectionon lipidmetabolismforBC. It

is interesting tonote that other literaturehas reported that activated

T cells can upregulate lipid synthesis and cholesterol uptake to

reprogram lipid metabolism (61, 62). Thus, we hypothesized that

the complicated pattern of immunometabolic intermodulation

played an irreplaceable role in BC survival.

According to the Cox proportional hazards model, univariate

andmultivariate analyses were utilized to identify clinical stage and

risk sore as independent prognostic factors for BC survivors. This

result also indicates that the excellent prognostic ability of our risk

scoring model for BC is comparable to the clinical stage and even

better than age and molecular subtypes. In terms of predicting the

3-year survival of BC patients, ROC curve results intuitively

suggested that our model had higher accuracy than traditional

clinical features. Subsequently, we performed decision curve

analysis (DCA) to show the superior clinical utility of the risk

model,whichwas supportedbyourdiscovery thatourmodel canbe

widely applied to different clinical subgroups.

Certainly, there are some shortcomings that arise in the present

study. First, the data of our study cohort are all obtained from public

databases, which may be incapable of representing the entire

population of BC patients due to large heterogeneity. Another

limitation is that our study could not thoroughly explore the

relationship between the TP53 condition and different treatment

options for BC survivors because of incomplete data on treatment

regimens. Finally, our nomogramand risk scoring systemare limited

by the retrospective nature of data collection, so it is necessary to

develop further prospective studies to validate our findings.

In conclusion, we identified 24metabolic genes associated with

TP53mutationsanddefined themasmetabolic geneprofiles,which

are conducive to a deeper understanding of metabolic pathway

changes caused by TP53mutations and provide therapeutic targets

for targeted metabolic pathways for BC patients with TP3

mutations. Second, five risk metabolism genes (CA9, CHAC1,

FUT3, MTHFD1L, and PLCH1) were found to confer potential

for targeted therapy. In addition, the risk score model based on

TP53-related metabolic genes was constructed and verified for the

first time, providing a new prediction method for the prognosis of

BC and contributing to the clinical decision making and dynamic

monitoring of individuals.
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