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MicroRNA clusters are microRNAs (miRNAs) that are distributed in close proximity on
chromosomes. In this study, we report a miRNA cluster identified from grass carp
(Ctenopharyngodon idella), miR-462-731, which plays a positive role in host
antibacterial immunity. The expression of miR-462-731 was disrupted after infection by
Aeromonas hydrophila. Transcription factor ETS transcription factor ELK1 was identified
to bind to the promoter of the miR-462-731 cluster and suppress its expression. In
addition, miR-731 negatively regulates the expression of elk1, forms an elk1/miR-462-731
double negative feedback loop. In addition, we found that miR-731 directly targets ezrin a
(ezra), participates in inducing PI3K/AKT signaling in macrophage, to induce macrophage
polarization to the M1 phenotype with stronger phagocytosis. Our results demonstrate a
novel elk1/miR-462-731 feedback loop. The data deepen our understanding of the
relationship between macrophage polarization and phagocytosis in teleost fish.

Keywords: elk1, miR-462-731, macrophage, polarization, phagocytosis
INTRODUCTION

Studies have shown that miRNA genes tend to form clusters rather than being randomly distributed
on chromosomes (1, 2). Genome duplication and de novo formation are important mechanisms for
generating miRNA clusters (3). miRNAs in the same miRNA cluster may be transcribed in a
polycistronic manner from common pri-miRNA transcripts, similar to the operon regulation
systems in prokaryotes (3, 4). The consistency of the expression of miRNAs in miRNA clusters
implies that they share common cis-regulatory elements, resulting in a cooperated function for
those miRNAs (5). Furthermore, increasing evidence suggests that clustered miRNA genes are often
co-expressed with neighboring miRNAs and host genes (6). Therefore, an increasing number of
org July 2022 | Volume 13 | Article 9468571
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studies have reported that miRNAs in the same cluster can
regulate functionally-related genes. For instance, overexpression
of the miR-183-96-182 cluster suppresses the expression of zinc
transporters (7); and the miR-23a~27a~24-2 cluster regulates
mouse macrophage polarization (8).

miRNAs have emerged as powerful post-transcriptional
regulators of gene expression (9), and it is estimated that over
30% of genes in the human genome are regulated by miRNAs
(10). Studies showed that miRNAs regulate the differential
expression of transcription factors in biological processes (11,
12). Transcription factors (TF) act as additional gene regulators
that can bind to DNA and control transcriptional activation or
repression (13, 14). Numerous studies have shown that TFs
further regulate miRNA expression by binding to miRNA
promoters (15–19). For example, transcription factor pu.1
activates miR-424 by binding to its promoter to encourage
human macrophage differentiation (20). Notably, the
mechanism of action of the feedback loops of the interactions
between transcription factors and miRNAs are important for
homeostasis (21, 22). Negative feedback control is a ubiquitous
regulatory motif in many biological systems, essential for
dynamic control in response to perturbations (23). Zebrafish
possess the pu.1/miR-462-731 negative feedback loop, in which
miR-731 negatively regulates the transcription factor PU.1,
which in turn decreases the expression of miR-462-731 (24).
However, there have been no studies on the regulatory
mechanism of the miR-462-731 feedback loop in grass carp.

Macrophages are an important part of the immune system
and play diverse roles during infection, inflammation, tissue
damage, and repair (25, 26). Diversity and plasticity are two
hallmarks of macrophages (27). During acute inflammation,
macrophages exhibit an M1 activation state, including an
enhanced ability to kill and phagocytose pathogens (28).
Numerous studies have supported the notion that M1
macrophages have stronger phagocytosis (29). Phagocytosis is
a critical cellular process for the induction of antimicrobial
responses and regulation of adaptive immunity, and both
teleost and mammalian macrophages show pro-inflammatory
and homeostatic responses after phagocytosis (30). Phagocytosis
in macrophages is regulated by LPS recognition receptors, such
as TLR4 and CD14 (26). However, CD14 does not exist in teleost
genome. Have study beloved to be ezrin was involved in the
intracellular signal transduction, links TLR4 and PI3K/AKT
signaling for induction in response to macrophages activation
phagocytosis (31). Nevertheless, there have been few studies on
the effect of miRNAs on phagocytosis after the regulation of
macrophage polarization.

In a previous study, we identified 21 miRNAs significantly
associated with antibacterial immune processes in spleen of grass
carp that were susceptible and resistant to Aeromonas hydrophila
(32). Additionally, higher expression of a miRNA cluster
comprising miR-462 (33) and miR-731, only found in teleost, was
observed in the spleen of resistant grass carp. In the current study,
we aimed to explore the regulatory relationship between miR-462-
731 and the transcription factor elk1, and discover whether the elk1/
miR-462-731 feedback loop exists. Functional experiments
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demonstrated that miR-731 regulates macrophage polarization
and phagocytosis.
MATERIALS AND METHODS

Experimental Fish and Treatments
The experimental grass carp (average weight, 750 g) were
obtained from Binhai Farm of Shanghai Ocean University,
Shanghai, China. Before fish acclimation, the rearing tank was
disinfected, the water in the tank was fully aerated, and suitable
lighting conditions, 12 h light and 12 h dark, were provided for
fish growth. The water temperature was maintained at 28 ± 2°C
using a heater. The fish were fed for 2 weeks before the
experiment. The fish were fed with 5% of their total body
weight three times a day. The grass carp (n =180) were divided
equally and randomly into six tanks, three tanks served as the
control group, in which the fish were injected with 100 mL of
phosphate buffered saline (PBS), while in the other tanks, the
grass carp were injected into 100 mL of A. hydrophila (1 × 108

colony forming units (CFU)/mL). Then, all tissues were
randomly sampled at 4, 8, 12, 24, and 48 h and immediately
frozen in liquid nitrogen at −80°C. All sampling tools were
sterilized using 75% ethanol.

Culture of C. idella Kidney Cells
The C. idella kidney cells (CIK) were provided by the China
Center for Type Culture Collection (Wuhan, China). The cells
were cultured in a 25 cm2 culture dishes with 6 mL of nutrient
solution. The nutrient solution was M199 medium (Life
Technologies, Carlsbad, CA, USA) supplemented with 10%
heat-inactivated fetal bovine serum (FBS; Life Technologies)
and 1% penicillin-streptomycin solution (100 ×) (Life
Technologies). The cells were cultured at 28°C in a 5% CO2

incubator. Before the experiment, the CIK cells were adjusted to
2 × 106 cells/mL final concentration and incubated in 6-well or
24-well plates for 24 h. All samplings and analyses were
performed in triplicate. The cell samples were treated with 1
mL of TRIzol reagent (Invitrogen, Waltham, MA, USA) for
RNA extraction.

Grass Carp Macrophage Isolation and
Primary Cell Culture
Fish livers were dissected out using sterilized scissors and
tweezers. All tissues were washed three times in PBS
containing 1% penicillin-streptomycin solution to eliminate
impurities. Then, the tissues were homogenized using a syringe
pushing head and filtered using a 70-mesh cell filter. The tissue
filtrate was added dropwise to a 51% percoll solution to ensure
that the interface was not broken. Centrifugation was performed
at 4°C, 400g for 30 minutes. The white liquid in the middle layer
was collected and re-suspended, centrifuged again at 4°C for 10
minutes, and the supernatant was discarded. The collected cells
were seeded in the 6-well plates and cultured at 28°C for 6 h.
Non-adherent cells were removed and adherent cells were
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incubated in complete medium (Dulbecco’s modified Eagle’s
medium (DMEM), 10% FBS, 100 U/mL penicillin, 100 mg/mL
streptomycin) at 28°C with 5% CO2.

Sequence Analysis
The mature miRNA and miRNA precursors sequences of
different species were obtained from the miRBase database
(http://www.mirbase.org/). Alignment analysis of different
species of mature miRNA sequences was performed using
BioEdit software, and a phylogenetic tree derived from
alignment of these miRNAs precursor sequences was
constructed using the neighbor-joining (NJ) algorithm with
bootstrapped 1000 times using the MEGA-X software (34). In
addition, prediction of the secondary structure was carried out
using the online tools RNAfold (35) and RNAalifold (36), to
verify the hairpin structures of the precursors.

Plasmid Construction
To construct an elk1 expression plasmid, the full-length coding
sequence of grass carp transcription factor elk1 was amplified by
PCR and inserted into vector pEGFP-N1 (Promega, Madison,
WI, USA) to generate pEGFP-elk1. The sequence of the elk1
promoter was inserted into vector pGL3-basic (Promega) to
generate pGL3-pelk1. At the same time, the elk1 and ezra
fragment containing presumptive miR-731 target sequences
were amplified by PCR. The amplicon was cloned into the dual
luciferase vector pmirGLO (Promega) to generate pmirGLO-
elk1-WT and pmirGLO-ezra-WT. Mutation of target sequences
was performed using a MutanBEST Kit (Takara, Dalian, China)
following standard procedures using the corresponding primers
in Table 1. Pyrobest DNA Polymerase was used for PCR
involving 30 cycles at 94°C for 30 s, 55°C for 30 s, and 72°C
for 5 min. The resulting DNA fragment was blunted using
Blunting Kination Enzyme Mix and ligated using ligation
solution I at 16°C for 1 h. The ligation product was
transformed into DH5a and all the constructed plasmids were
confirmed by Sanger sequencing and were extracted using an
Endotoxin-Free Plasmid DNA Miniprep Kit (Tiangen Biotech,
Beijing, China) for further luciferase reporter assays. All primer
sequences are listed in Table 1.
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RNA Extraction and Quantitative Real-
Time Reverse Transcription PCR
Total RNA was extracted using the TRIzol reagent. The
concentration was measured using a Nanodrop 2000
instrument (Thermo Fisher Scientific, Waltham, MA, USA)
and the RNA integrity was visualized using agarose gel
electrophoresis. Then, 1 mg of the total RNA was reverse
transcribed using an Evo M-MLV RT Kit with gDNA Clean
for qPCR (Accurate Biotechnology, Hunan, China). For miRNA,
cDNA was prepared using a miScript II RT Kit (Qiagen,
Germany). The qPCR step was conducted on a CFX96
instrument (Bio-Rad Laboratories, Hercules, CA, USA) using a
SYBR Green Premix Pro Taq HS qPCR Kit (Accurate
Biotechnology) to quantify the expression of ezra. qPCR was
performed in a final volume of 25 mL and each reaction included
9.5 mL ddH2O, 12.5 mL of 2 × SYBR Green Pro Taq HS Premix,
0.5 mL forward primer (10 mM), 0.5 mL reverse primer (10 mM),
and 2 mL of the prepared cDNA. The following qPCR cycling
conditions were used: 1 cycle at 95°C for 10 s; followed by 40
cycles at 95°C for 5 s, 60°C for 20 s, and dissociation curve
analysis was performed after each assay to determine target
specificity. miR-101 for miRNA and 18S rRNA for mRNA
were used to normalize the relative expression of miRNA (37)
and mRNA, respectively. The primers used for qPCR are listed in
Table 1. Each experimental group was analyzed in quadruplicate.

Transfection and Dual Luciferase
Reporter Detection
For the transfection experiment, CIK cells from 24-well plates were
cultured in M199 medium containing 10% FBS and 1% penicillin-
streptomycin solution with 5% CO2 at 28°C. After 24h, pmirGLO-
ezra or empty vector were transfected into CIK cells simultaneously
with 100 nM miR-731 agomir or miR-731 antagomir
(GenePharma, Shanghai, China) or the negative control (NC)
using the Lipofectamine 3000™ (Invitrogen) transfection reagent.
pEGFP-elk1 or pEGFP-N1 empty plasmid were cotransfection
with pGL3-pelk1 into CIK cells. At 24h or 48h after transfection,
firefly and Renilla luciferase activities were measured using a dual
luciferase reporter assay (Promega). Firefly luciferase activity was
normalized to Renilla luciferase activity.
TABLE 1 | Primers used in the present study.

Target Forward primer (5’ - 3’) Reverse primer (5’ - 3’)

miR-731 AATGACACGTTTTCTCCCGGATCG 10 x miScript Universal primer
miR-101a TACAGTACTGTGATAACTGAAG 10 x miScript Universal primer
ezra ACTGACAATGCCTAAGCCTATC AGTACCAGACCTCACGCAAA
pmirGLO-ezra-WT GCTAGCTGAATGGCAGAACAGGGCTA TCTAGATGCTGGTGCTCGAGGTTTAC
pmirGLO-ezra-MUT AATGTACTAGGACCAGGGGACAAGTACAAGACGCTTCG CCCTGGTCCTAGTACATTTTCATTGTGCAGAATGTC
elk1 AGTGCCTGTCCCTGGAGTTA GATGCCGTATTGGTGTCCTC
pmirGLO-elk1 GTGGTGTATTTCACTGTCATTC CCTGTTCCAACCTCTGGT
pEGFP-elk1 GCTAGCATGGAGTCCAACCCGCTGAT GAGCTCTCAAGGTTTCTGTGGTCCAG
pGL3-pelk1 GAGCTCCCTCTTGTTCATCACAGTGACA GCTAGCAGAAGGAGAAGGGGGGGTTA
il1b TGAAGTCTGTGATTCGGCTA TTGAAGGAGGTCACTGAAAC
tnfa ACCCTGAAGTCTCTAATAAAACCC GTGGCTCATATGCACAATGTCT
il10 ACGAGAACGTGCAACAGA TGGCAAACTCAAAGGGAT
tgfb TTACGGCTTCGGATTAAG TGGCAGTGTCACCTCTCT
18s rRNA GGACACGGAAAGGATTGACAG CGGAGTCTCGTTCGTTATCGG
July 2022 | Volume 13 | Article 946857

http://www.mirbase.org/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


He et al. Grass Carp elk1/miR-462-731 and Macrophages
Fluorescein Isothiocyanate Fluorescent
Labeling of A. hydrophila
An overnight culture of A. hydrophila was washed three times
with PBS. Then, 0.1 M Na2CO3 was added together with FITC
dissolved in PBS (1 mg/mL). The tube containing the cells was
wrapped in foil, fixed to the turntable machine, and rotated for
30 min. Finally, the cells were washed with PBS until the
supernatant showed no color.

Phagocytosis Assay
After the isolated macrophages were cultured for 6 h, they were
washed three times with PBS and fresh medium was added. In
addition, the miR-731 agomir, antagomir, and NC were
transfected into macrophages. After 5 h, FITC-labeled A.
hydrophila (2 × 109 CFU/mL) were infected into macrophages
for 30 min. Then, cell scrapers were used to scrape off
macrophages, and prepare a single cell suspension. All sample
data were the acquired on an ImageStream®X Mark II (Luminex
Corp., Austin, TX, USA) using a 495 and 519 nm laser. A total of
10000 events were collected for each sample.

Statistical Analysis
Gene expression data were obtained and calculated using the
2−DDCT method. The data among different groups were analyzed
using one-way analysis of variance (ANOVA) followed by
Duncan multiple comparison test. All data were presented as
the mean value ± SD. Significant differences between each two
groups were determined using a two-tailed Student’s t-test. *p <
0.05, **p < 0.01, ***p < 0.001 indicated statistical significance.
RESULTS

Characteristic Analysis of miR-462-731
and Orthologs miR-191-425
Alignment of the mature sequences of miR-462-731 and miR-
191-425 from different species revealed that the mature
sequences shared a high conservation region that corresponded
to the seed sequences (Figure 1A). RNAfold and RNAalifold
prediction of the secondary structure showed that the precursor
sequences of miR-462-731 and miR-191-425 have diverse
structures (Figure 1B). A phylogenetic tree derived from these
alignments indicated that teleost miR-462-731 grouped with
mammalian miR-191-425, indicating a close genetic
relationship in the evolutionary chronogram (Figure 1C).
Compared with that of the pre-miR-462-731 sequence, the
seed sequence is highly conserved.

elk1/miR-462-731 Negative
Feedback Loop
Previous studies confirmed that miR-462-731 is a specific
miRNA cluster in teleost fish. To better understand the
regulatory mechanism of miR-462-731 cluster , the
transcription factor elk1 binding sites on the miR-462-731
promoter ( −334 to -340 bp) were predicted (Figure 2A). To
confirm this analysis, we constructed a luciferase reporter
Frontiers in Immunology | www.frontiersin.org 4
plasmid for the upstream promoter of miR-462-731 and an
overexpression vector for elk1 (pEGFP-elk1). As shown in
Figure 2B, lower luciferase activity was produced by the
luciferase reporter pGL3-pelk1 + pEGFP-elk1 compared with
that achieved with pGL3-pelk1 + pEGFP-N1 empty plasmid. The
results showed that overexpression of elk1 inhibited the
expression of miR-462-731 (Figure 2C).

On the other hand, elk1 was identified as a potential target of
miR-731, with a complementary binding site on elk1 according to
miRanda and Targetscan (Figure 3A). First, an miR-731 agomir
was co-transfected with the construct pmirGLO-elk1 into CIK
cells, with NC as a control. At 24 h after transfection, the cells were
harvested and assayed for luciferase activity and normalized to
Renilla luciferase activity. Overexpression of miR-731 significantly
reduced the relative luciferase activity (Figure 3B). Furthermore,
when the miR-731 agomir and antagomir were transfected into
CIK cells, the expression of miR-731 was increased and decreased,
respectively. The expression of elk1 was decreased and increased
A B

C

FIGURE 1 | Evolutionary analysis of miR-462-731. (A) Alignment analysis of
different species of mature miRNA sequences was performed using BioEdit
software. (B) Analysis of the precursor structures of miR-191-425 cluster and
miR-462-731 cluster. (C) phylogenetic tree derived from alignment of miR-191-
425 and miR-462-731 sequences was constructed using the neighbor-joining
(NJ) algorithm with bootstrapped 1000 times using the MEGA-X software.
A

B

C

FIGURE 2 | Transcription factor ELK1 can bind to the miR-462-731 cluster
promoter fragment and regulate the expression of miR-462-731. (A) Predicted
binding site of ELK1 to the promoter fragment of the miR-462-731 cluster.
(B) CIK cells were transfected with the recombinant plasmids pEGFP-elk1 or
pEGFP-N1, along with pGL3-pelk1 for 48 h, and the luciferase activity was
determined. (C) Expression profiles of elk1 miR-462 and miR-731 in C.Idella
Kidney cells (CIK) cells at 24, 48, 60 and 72 h following transfected pEGFP-
elk1 or pEGFP-N1. All values represent the mean ± SD of three independent
experiments. Asterisks indicate significant differences (*p < 0.05, ***p < 0.001).
July 2022 | Volume 13 | Article 946857
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after transfection with the miR-731 agomir and antagomir,
respectively (Figure 3C).

Ezra Is a Target Gene of miR-731
The miRanda and Targetscan programs predicted ezra as a target
gene of miR-731 (Figure 4A). The ezra reporter plasmid
(pmirGLO-ezra-WT) was constructed to investigate the
interaction between miR-731 and ezra, and the mutation
Frontiers in Immunology | www.frontiersin.org 5
vector at the miR-731 binding site was used as the control
(pmirGLO-ezra-MUT) (Figure 4B).

After transfection of the miR-731 agomir, the luciferase
activity of pmirGLO-ezra-WT was significantly inhibited,
whereas both the control and miR-731 agomir showed no
effect on the activity of the luciferase reporter containing the
pmirGLO-ezra-MUT (Figure 4C). The expression of elk1 was
decreased after transfecting the miR-731 agomir and increased
A

B

C

FIGURE 3 | Prediction and validation of the relationship of elk1 and miR-731. (A) Binding site of miR-731 and elk1. (B, C) C. idella Kidney cells (CIK) were
transfected with miR-731 agomir or control solution, along with the recombinant plasmids pmirGLO-elk1 for 24 h, and the luciferase activity was determined. All
values represent the mean ± SD of three independent experiments. Asterisks indicate significant differences (*p < 0.05, ***p < 0.001).
A

B

D

C

FIGURE 4 | Prediction and validation of target genes of miR-731. (A) Binding site of miR-731 and ezra. (B) Schematic diagram of the NheI/Xbal sites. (C, D) C. idella
Kidney cells (CIK) were transfected with miR-731 agomir or control solution, along with the recombinant plasmids pmirGLO-ezra-WT or pmirGLO-ezra-MUT for 24 h,
and the luciferase activity was determined. All values represent the mean ± SD of three independent experiments. Asterisks indicate significant differences (*p < 0.05).
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after antagomir transfection (Figure 4D). These results showed
that miR-731 directly targets ezra in grass carp.

The Expression of miR-731 and ezra Was
Disordered Upon A. hydrophila Infection
In this study, we found miR-731 was constitutive expressed in all
tested tissues, and was significantly and highly expressed in the
spleen and intestine in vivo (Figure 5A), while ezrawas significantly
and highly expressed in the kidney (Figure 5B). Furthermore, the
expression levels of miR-731 and ezra were determined at various
time points after A. hydrophila stimulation. Compared with that in
the PBS-injected grass carp, the expression levels of miR-731 and
ezra in grass carp kidney and intestines fluctuated after A.
hydrophila (108 CFU/mL) infection (Figure 5C).

miR-731 Promotes Phagocytosis of
Macrophages and the Expression of
Inflammatory Cytokines
In CIK cells, the mRNA expression levels of downstream
inflammatory factors, tnfa and il1b, were significantly
upregulated in the elk1 overexpression group (Figure 6A) and
in the miR-731 inhibition group (Figure 6B). Moreover, to
investigate the effect of miR-731 on the response of A.
hydrophila-stimulated macrophages, miR-731 agomir/
antagomir or NC were transfected into macrophages for 5 h,
which were then infected with A. hydrophila for 30 min. We
found increased expression of pro-inflammatory cytokines (tnfa
and il1b), but reduced expression of anti-inflammatory cytokines
(tgfb and il10) (Figure 6C).

To assess phagocytosis, macrophages were exposed to FITC-
labeled A. hydrophila for 30 min. The ImageStream imaging-flow
platform showed increased FITC fluorescence in the
macrophages transfected with the miR-731 agomir compared
with that in the control, but decreased FITC fluorescence in the
macrophages transfected with the miR-731 antagomir
(Figure 6D). These results suggested that miR-731 promoted
phagocytosis of A. hydrophila via macrophages during the
defense against bacterial infection.
Frontiers in Immunology | www.frontiersin.org 6
DISCUSSION

The miR-462-731 cluster has only been described in teleost fishes
but is highly conserved among them. Studies showed that the
teleost miR-462-731 cluster ortholog, the miR-191-425 cluster, is
found in human and mammals, and in a more primitive
cartilaginous fish, elephant shark (Callorhinchus milii) (38, 39).
Despite the miR-462-731 cluster and miR-191-425 cluster being
highly conserved, the differences in the expression regulation
indicate that they are functionally diverse in different vertebrates
(38). In teleost, the miR-462-731 cluster is mainly involved in
hypoxia and immune responses. In addition, studies have shown
that the interaction between miRNAs and TFs can form a
negative feedback loop. In this study, we focused on the
evolution of the miR-462-731 cluster, the negative feedback
loop of elk1/miR-462-731, and the function of miR-731 in the
immune response of grass carp infected with A. hydrophila.
A

B

C

FIGURE 5 | Analysis of miR-731 and ezra expression by qRT-PCR. (A, B) in 9 tissues of grass carp. (C) in grass carp intestine and kidney 4, 8, 12, 24 and 48 h
after A. hydrophila infection. All values represent the mean ± SD of three independent experiments. Different lowercase letters indicate statistically significant
differences (p < 0.05), asterisks indicate significant differences (*p < 0.05).
A B D

C

FIGURE 6 | C. idella Kidney cells (CIK) were transfected with either the
pEGFP-elk1 (A) or miR-731 antagomir (B). After 48 h, the level of il1b and
tnfa expression was determined using qPCR. Macrophages were transfected
with miR-731 agomir or antiagomir or control solution, and after 5h the
macrophages were infected with A. hydrophila. The mRNA levels of il1b, tnfa,
il10, and tgfb (C) were analyzed by qRT-PCR 0.5 h after infection. (D) FITC
fluorescence in the macrophages were analyzed by the ImageStream
imaging-flow platform. All values represent the mean ± SD of three
independent experiments. Asterisks indicate significant differences (*p < 0.05,
**p < 0.01, ***p < 0.001).
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Although the seed sequences of miR-462-731 and miR-191-425
are highly conserved, their target genes and function are different.
Studies have demonstrated that the miR-191-425 cluster is involved
in humans cell proliferation and tumorigenesis (40, 41). In zebrafish,
the miR-462-731 cluster not only inhibits cell proliferation, but also
participates in the regulation of the hypoxia response (42). In
addition, the miR-462-731 cluster found in rainbow trout
(Oncorhynchus mykiss) can act as a key switch to suppress the
antiviral immune response in teleost. In this study, the stem-loop
structure in the secondary structure of teleost miR-462-731 and
mammalian miR-191-425 were shown to be quite different. The
secondary structure of miRNA can affect the processing of mature
miRNAs (43), andcanalter the regulationof target genes (44), further
illustrating the functional differential evolution of miR-462-731 and
miR-191-425 regulation. Earlier analyses showed that conservation
of miRNA sequences between distantly related species might not
necessarily imply functional conservation, especially between species
with larger physiological differences (45). This was further illustrated
by our findings that the miR-462-731 cluster has generated new
functions during evolution.

Positive feedback loops and double negative feedback loops in
cell signaling systems act as bistable switches that directlydetermine
cell states (46, 47). miRNAs and their target transcription factors
mainly ensure the stability of the state through interactions in
double negative feedback loops (48), two switches in a double
negative feedback loop counterbalance each other. For example, the
miR-200-Zeb1 double-negative feedback loop is reversible, the
transcription factor zeb1 represses the transcription of miR-200,
which in turn targets and represses zeb1 expression (49). Genome-
scale TF-miRNA regulatory network studies revealed not only the
existence of reciprocal regulation between miRNAs and TFs, but
also TFs and miRNAs coordinate regulation of gene expression
(22). Our results showed that there is a double negative feedback
loop between miR-462-731 and elk1 in grass carp. Gene
overexpression and dual luciferase reporter assays suggested that
elk1 repressed themiR-462-731 cluster promoter and decreased the
miR-462-731 expression level in CIK cells. Besides, we also
identified that miR731 negatively regulates elk1 expression. ELK1
is amember of the ETS domain family of transcription factors (50),
which are implicated in regulating cell migration, inflammation,
and the immune response (51). The overexpression of elk1 in
macrophages significantly inhibited the phagocytosis of
macrophages on cancer cells (52). More recently, studies showed
that miR-462 and miR-731 could regulate inflammation and
apoptosis in grass carp (33, 53). In addition, studies have
demonstrated that the transcription factor c-Myc regulates the
expression of E2F1 by regulating the transcription of the miR-17-
92 cluster (54). Herein, we found that overexpression elk1 and
inhibitionmiR-731 couldupregulate the expressionof tnfa and il1b.
However, further research is needed on themechanism of the elk1/
miR-462-731 feedback loop in fish immunity.

WehaveverifiedthatmiR-731candirectly targetandregulateezra.
In addition, the expression of ezra was also affected by elk1. EZRA, a
member of the ezrin/moesin/radixin (ERM) family, is involved in
signal transduction. ezrin directly links cystic fibrosis transmembrane
conductance regulator (CFTR) to phosphatidylinositol-4,5-
Frontiers in Immunology | www.frontiersin.org 7
bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling,
and loss of ezrin results in compromised PI3K/AKT signaling that
promotes macrophage resistance to bacterial invasion (31).
Macrophages are a heterogeneous cell population (55), whose main
functional variability depends on two polarization states. M1
macrophages show a strong phagocytic activity to eliminate bacteria
and damaged cells, and have been shown to have anti-tumorigenic
properties, while M2 macrophages exhibit a phenotype roughly
opposite to that of M1 macrophages (56–59). Overexpression of
miR-451a enhanced the phagocytic capacity of macrophages, and
miR-451a also increased the proliferative capacity of M1 and M2
polarized macrophages (60). In this study, the levels of inflammatory
factors (il1b, tnfa, il10, and tgfb) showed thatmiR-731 overexpression
promotesM1polarization, and the increasedFITCfluorescence in the
macrophages showed that M1 macrophages have a stronger
phagocytic ability for A. hydrophila. Overall, these findings
expanded our understanding of the effect of miRNAs on
macrophages and the correlation between macrophage polarization
and phagocytosis in teleost fish.

In summary, the results showed that the transcription factor elk1
represses the expression of the miR-462-731 cluster, and that miR-
731 negatively regulates elk1 expression, forming a double negatively
feedback loop.miR-731 targeting ezrapromotespolarization intoM1
macrophages and stronger phagocytosis of A. hydrophila. This
observation suggests that the miR-462-731 cluster plays an
important role in promoting the antibacterial immune response of
teleost fish. However, the precise regulatory mechanism between
miR-731 and the transcription factor elk1 requires further study.
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