
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yongsheng Li,
Cancer Hospital, Chongqing
University, China

REVIEWED BY

Adil Bhat,
University of California, Los Angeles,
United States
Irina V. Larionova,
Tomsk National Research Medical
Center of the Russian Academy of
Sciences, Russia

*CORRESPONDENCE

Xiaocang Cao
caoxc@tmu.edu.cn
Jianpeng Sheng
shengjp@zju.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 18 May 2022
ACCEPTED 23 September 2022

PUBLISHED 07 November 2022

CITATION

Yang W, Zhao Y, Ge Q, Wang X, Jing Y,
Zhao J, Liu G, Huang H, Cheng F,
Wang X, Ye Y, Song W, Liu X, Du J,
Sheng J and Cao X (2022) Genetic
mutation and tumor microbiota
determine heterogenicity of tumor
immune signature: Evidence from
gastric and colorectal
synchronous cancers.
Front. Immunol. 13:947080.
doi: 10.3389/fimmu.2022.947080

COPYRIGHT

© 2022 Yang, Zhao, Ge, Wang, Jing,
Zhao, Liu, Huang, Cheng, Wang, Ye,
Song, Liu, Du, Sheng and Cao. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 07 November 2022

DOI 10.3389/fimmu.2022.947080
Genetic mutation and tumor
microbiota determine
heterogenicity of tumor
immune signature: Evidence
from gastric and colorectal
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Both colorectal and gastric cancer are lethal solid-tumor malignancies, leading

to the majority of cancer-associated deaths worldwide. Although colorectal

cancer (CRC) and gastric cancer (GC) sharemany similarities, the prognosis and

drug response of CRC and GC are different. However, determinants for such

differences have not been elucidated. To avoid genetic background variance,

we performed multi-omics analysis, including single-cell RNA sequencing,

whole-exome sequencing, and microbiome sequencing, to dissect the

tumor immune signature of synchronous primary tumors of GC and CRC.

We found that cellular components of juxta-tumoral sites were quite similar,

while tumoral cellular components were specific to the tumoral sites. In
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addition, the mutational landscape and microbiome contributed to the distinct

TME cellular components. Overall, we found that different prognoses and drug

responses of GC and CRC were mainly due to the distinct TME determined by

mutational landscape and microbiome components.
KEYWORDS

single-cell RNA sequencing, microbiome, whole-exome sequencing, colorectal
cancer, gastric cancer
Introduction

Both colorectal and gastric cancers are aggressive solid-tumor

malignancies, leading to the second and third most common

causes of cancer-associated deaths worldwide (1, 2). Colorectal

cancer (CRC) and gastric cancer (GC) share many similarities,

possibly due to their similar origin of intestinal epithelial cells. Both

CRC and GC display comparable progression patterns, from the

incidence of submucosal invasion and lymphatic infiltration to

lymph node metastasis (3). CRC and GC also show a similar

genetic landscape. For example, APC mutation is often identified

in both CRC and GC (4). Molecular features are also identical

between CRC and GC, e.g., an overactivated KRAS signaling

pathway can be detected (4, 5).

Although CRC and GC share many similarities, they also

display distinct prognoses, drug response to chemo, and

immunotherapy. The 5-year survival rate for GC patients with

localized disease is 68.6%, while the 5-year survival of GC

patients with advanced disease is only 5.3% (2). Meanwhile,

the 5-year survival rate for CRC is about 64% but drops to 12%

for advanced CRC patients (6). Chemotherapy is the major

option for CRC and GC patients nowadays. Current

chemotherapy includes single-agent therapy, which is mainly

fluoropyrimidine (5-FU), and multiple-agent regimens

including oxaliplatin (OX), irinotecan (IRI), and capecitabine

(CAP or XELODA or XEL) (6). CRC and GC responses to

chemotherapy are also different. FOLFOX (5-FU+OX)

chemotherapy in patients with advanced CRC has increased

their overall survival (OS) time to almost 20 months (7).

In contrast, gastric cancer responded poorly to the FOLFOX

regime. Regarding OS of patients with advanced gastric cancer,

the FOLFOX regime only increased the patients’ OS to 11

months only (8). Immune checkpoint inhibitors (ICIs) such as

the PD-1 antibody aim to enhance immune surveillance and

control against cancer by releasing the brakes of an antitumor

immune response. Currently, ICIs have been investigated in

various solid tumors with favorable responses. However, CRC

and GC also respond differently to ICI treatment.
ing; mIHC, multiplex

astric cancer
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The tumor microenvironment (TME) is critical for a patient’s

prognosis and drug response. The TME comprises cellular

components including endothelial cells, fibroblasts, and immune

cells, and non-cellular components such as cytokines, growth

factors, hormones, and extracellular matrix, interacting with

tumor cells. While the TME plays a critical role in the progress

of tumor development from tumor initiation and progression to

metastasis, it also has pivotal effects on therapeutic efficacy (9).

Thus, the distinct drug response of CRC and GC is likely due to

their different tumor microenvironment (TME). Genetic

alterations are critical elements in the carcinogenic process and

have become one of the significant determinants of the TME (10).

In addition, the cross talk between host microbiomes and the

TME is also essential. It continuously affects the TME by

influencing host immunity and the intestinal epithelium to

promote or inhibit the development of tumors (11). A detailed

comparison of the TME, genetic landscape, and microbiota of GC

and CRC might contribute to a comprehensive understanding of

the shaping process of the GC and CRC TME. The TME study

needs to exclude the difference in the genetic background of the

individual patient, and cancer survivors with second primary

malignancies (SPMs) provide such a chance.

SPMs could be divided into synchronous and metachronous

malignancies in the same individual, according to the International

Agency for Research on Cancer (IARC) (12). Synchronicity was

defined as two or more primary malignancies that were diagnosed

within 6 months in different sites. In contrast, metachronous

malignancies were defined when diagnosis intervals were more

than 6 months. Synchronous SPMs were a more suitable system for

comparing the TME of the different tumors. About 8.3% of cancer

survivors developed an SPM, most of whom died of their second

malignancy (13). The incidence of SPMs in adults with gastric

cancer (GC) is significantly increased than in the general population

(14, 15). Likewise, the patients with colorectal cancer (CRC) were

reported to have a higher risk of SPM development (16) and worse

survival than patients developing an SPM (17). The synchronous

tumor of CRC and GC provides an ideal opportunity to dissect the

determinants of distinct TME of CRC and GC in the real world

since the genetic background in the same patient is identical.

In the current study, we performed single-cell RNA

sequencing (scRNA-seq), WES, and microbiome analysis to

depict the TME and dissect the determinants of different
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TMEs based on the synchronous tumor of CRC and GC. We

found that germline mutation created a genetic basis for

synchronous CRC and GC, while tumor site-specific mutation

and microbiome shaped distinct TMEs.
Materials and methods

Single-cell RNA sequencing

The RNA expression of single cells was screened using a 3′
whole transcriptome analysis (WTA) approach through the BD

Rhapsody™WTA Amplification Kit for samples that have been

labeled using the BD® Single-Cell Multiplexing Kit for three

patients. For each patient of the synchronous patients, pinched

biospecimen from CRC, JuxtaCRC, GC, and JuxtaGC sites were

digested into single cells with Collagenase D (Roche, 11 088 858

001) and DNase I (Thermo Fisher, 18047019) at 37° for 1 h.

Immune cells were enriched via a two-layer Percoll (Cytiva, 17-

0891-01) density gradient (40% and 70%). For each patient,

single-cell solutions from different sites were first barcoded and

pooled before library construction. Briefly, the cDNA of mRNA

targets is first encoded on BD Rhapsody™ Cell Capture Beads.

The barcode information from BD Rhapsody Cell Capture Beads

is also added to Sample Tags during reverse transcription, which

enables the amplification of Sample Tags in solution. To

generate the Sample Tag sequencing libraries, the extended

Sample Tags are first denatured from the BD Rhapsody Cell

Capture Beads and later amplified through a series of PCR steps.

The whole transcriptome amplification library is generated

directly from the BD Rhapsody Cell Capture Beads using a

random priming approach, followed by an index PCR step. Both

the whole transcriptome mRNA and Sample Tag libraries can be

combined for sequencing on Illumina sequencers.
Processing of scRNA-seq data

According to the handbook, sequencing data were aligned

toward the human genome (GRCh38) handled by BD

Rhapsody™. Briefly, the paired-end FASTQ R1 and R2 files

generated from Illumina sequencers were firstly filtered by reading

quality. Then, R1 and R2 reads were annotated respectively and

combined. Next, the same UMI reads were collapsed into a single

raw molecule. The artifact molecules were removed using the

Recursive substitution error correction (RSEC) and Distribution-

based error correction (DBEC) UMI adjustment algorithms. The

putative cells and the sample of origin were further determined.

The output molecule expression matrix was loaded into Seurat

(version 4.0.3) (18) for downstream analysis. High-quality cells were

kept and processed for normalization and scaling. The top 2,000

highly variable genes were identified using the default parameter.

Canonical correlation analysis (CCA) was applied for data
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integration to remove the batch effect. The integrated data were

normalized and scaled. Principal component analysis (PCA) was

employed for linear reduction. For visualization, the top 20 principal

components (PCs) were selected and fed to the non-linear reduction,

Uniform Manifold Approximation, and Projection (UMAP). The

clusters were detected using the graph-based clustering algorithm at

a resolution of 0.8. Clusters were manually annotated using the

typical marker and the top 20 cluster-specific features.
Whole exome sequencing

For each patient of the these synchronous cancer patients,

pinched biospecimen from CRC, GC, and PBMC were collected.

DNA was isolated from tissue and PBMC (Qiagen Tissue DNA

Kit, 69504), and the quality of isolated genomic DNA was

verified using 1% agarose gels and Qubit® DNA Assay Kit in

Qubit® 2.0 Fluorometer (Invitrogen, USA). A total amount of

0.6 mg genomic DNA per sample was used as input material for

the DNA sample preparation. Sequencing libraries were

generated using Agilent SureSelect Human All Exon V6 Kit

(Agilent Technologies, CA, USA) following the manufacturer’s

recommendations, and index codes were added to each sample.

The index-coded samples were performed on a cBot Cluster

Generation System using HiSeq PE Cluster Kit (Illumina) for

clustering. The DNA libraries were sequenced on the Illumina

HiSeq platform, and 150 bp paired-end reads were generated.
Processing of WES data

The sequence artifacts of raw data were removed. The clean

sequencing data were mapped to the reference human genome

(UCSC hg19) by Burrows–Wheeler Aligner (BWA) software (19).

SAMtools (20) and Picard (http://broadinstitute.github.io/picard/)

were employed for duplicate marking, local realignment, and base

quality recalibration. SAMtools, mpileup, and bcftools were used

to do the variant calling and identify SNP and InDels. ANNOVAR

(21) was performed to annotate VCF (variant call format) based

on dbSNP, 1000 Genome, and other related existing databases.

The somatic SNV was detected by MuTect (22), and the somatic

InDel by Strelka (23).
Microbial DNA extraction and 16S rRNA
gene sequencing

For each patient of the these synchronous cancer patients,

pinched biospecimen from CRC and GC were collected.

Extraction of total genome DNA from samples was extracted

using the CTAB method. 16S rRNA/18SrRNA/ITS genes of

distinct regions were amplified using a specific primer with the
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barcode. PCR products were purified with Qiagen Gel Extraction

Kit (Qiagen, Germany).

Sequencing libraries were generated using TruSeq® DNA

PCR-Free Sample Preparation Kit (Illumina, USA) following the

manufacturer’s recommendations, and index codes were added.

The library quality was assessed on the Qubit@ 2.0 Fluorometer

(Thermo Scientific) and Agilent Bioanalyzer 2100 system. The

library was sequenced on an Illumina NovaSeq platform, and

250-bp paired-end reads were generated.
Processing of OTU data

Paired-end reads were spat by UMI and merged using

FLASH (24) for sequence assembly. QIIME (V1.9.1) (25) was

applied for data filtration to obtain high-quality clean tags. The

UCHIME algorithm (26) was used for chimera removal to get

effective tags mapping to the SILVA database (27).

Sequence analysis was performed by UPARSE software

(UPARSE v7.0.1001) (28). Sequences with ≥97% similarity were

assigned to the same OTUs. For each representative sequence, the

SILVA database (27) was used based on the Mothur algorithm to

annotate taxonomic information. The alpha diversity analysis was

performed using MicrobiomeAnalyst R package.
Multiplex immunohistochemistry

Opal™ 7-Color Multiplex IHC Kit (Akoya Biosciences,

NEL861001KT) was employed to perform multiplex staining.

The protocol was referred to the manufacturer’s construction.

FFPE sections were incubated at 65°C for at least 18 h as

preprocessing. The slide underwent a serial deparaffinization

step and then immersed to quench peroxidase followed by

washing. The following steps were repeated for multiple-

marker staining. The slides were successively treated for

primary antigen retrieval, blocking of unspecific binding,

secondary antibody conjugating, and stripping. After

completing multiple stainings, the slides were scanned on the

PerkinElmer Vectra 3® Polaris™ platform and imaged on the

inForm Advanced Image Analysis software (inForm 2.4.1;

Akoya Biosciences, USA) with the DAPI (Akoya Biosciences)

filter set. The antibodies and reagents are listed in Table S1.
Statistical analysis

Additional statistical analysis was performed in R software

(version 4.1.1). The ggplot2 package was used for visualization.

In addition, the R package “Survminer” was implemented to

analyze survival differences between different groups. Statistical

tests were selected based on the appropriate assumptions for the

data distribution and variability characteristics. Sample data
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were analyzed by a two-tailed Student’s t-test to identify

statistically significant differences between CRC and GC

groups. One-way ANOVA with the Bonferroni posttest was

used to identify differences among the GC, CRC, JuxtaCRC, and

JuxtaGC groups. A p-value less than 0.05 was considered

statistical significance.
Results

scRNA-seq reveals the distinct features
of TME between CRC and GC

The malignancy (CRC and GC) and adjacent normal

(JuxtaCRC and JuxtaGC) samples were analyzed by single-cell

RNA sequencing, whole-exome sequencing (WES), and

microbiome sequencing to cover cellular mutations and

microbiome components of the TME and gain a comprehensive

understanding of the heterogeneity of a dual-malignancy tumor

immune signature (Figure 1A). Moreover, the clinical details of

patients enrolled are listed in Table S2.

After single-cell RNA sequencing, 2,982 cells passed the

quality control threshold (minimum of 200 genes, maximum

of 6,000 genes, and <20% mitochondrial reads per cell), selected

for the downstream analysis. scRNA-seq data revealed five main

cell populations characterized by the typical markers

(Figure 1B). The majority of cells (cluster 0: 1,665 cells with a

proportion of 55.84%) were defined as T cells characterized by

the expression of T-cell receptor beta constant 2 (TRBC2)

(Figures 1C, D). The high expression of calprotectin (S100A9

and S100A8) and chemokines (CXCL8) confirmed the presence

of myeloid cells (cluster 1). Epithelial cells (cluster 2) were

defined by the epithelial cell adhesion molecule (EPCAM)

gene. Macrophages (cluster 3) were characterized by the genes

engaged in complement activation (C1QA and C1QB). Cluster 4

harboring the genes associated with immunoglobulin (IGHG1,

IGKC, and IGHG3) was annotated as plasma B cells. The

frequency of each population is displayed in Figure 1D.

Our cell isolation procedures mainly purified immune cells.

Thus, stromal cells were missing in our scRNA-seq profiling of

the TME. Stromal cells like endothelial cells (VWF+ and VAM+)

were not identified (Figure 1E).

The distribution of each population across samples is shown

in Figures 1F, G. We found that the components of adjacent

normal samples (JuxtaCRC and JuxtaGC) were analogous. T

cells hold a dominant position, and the proportion of

granulocytes, epithelial cells, macrophages, and plasma B cells

was comparable, which were found in both JuxtaCRC and

JuxtaGC. Compared to the corresponding adjacent normal

sample, there was a significant enrichment of immune cells in

the GC sample. Notwithstanding, the macrophages and myeloid

cells were dramatically increased in the GC sample, showing the
frontiersin.org
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diversity of the TME between CRC and GC. All the above results

were validated by mIHC staining as well (Figure 1H).

Based on a detailed dissection of TME cellular components

via scRNA-seq, we could observe a similar cellular distribution

pattern between adjacent normal samples of GC and GRC,

originating from the same genetic background. However, even

based on the same genetic background, the TMEs of GC and CRC

were quite different, indicating other cofounding factors of TME

determination, such as mutational profiles and microbiome.
Frontiers in Immunology 05
T-cell subsets enrichment in GC

Next, we investigated the T-cell population to see the T-cell

subset difference between GC and CRC. A refined UMAP

analysis was performed. The in-depth clustering analysis

revealed seven refined subsets (Figures 2A, B), including 2

CD8+ T-cell subsets, cytotoxic CD8+ T cells (CytCD8T, cluster

0), and resident CD8+ T cells (ResCD8+ T, cluster 2),

distinguished by the expression of GZMK and CD69 (29).
B C

D E F

G

H

A

FIGURE 1

The overview of scRNA-seq profiles of CRC and GC. (A) The schematic of experimental design in this study. ScRNA-seq, WES, and OTU
investigated the primal malignancy sites’ transcriptomics, genomics, and metagenomics profile. (B) UMAP plot of scRNA-seq data identified five
cell populations, including T cells, myeloid cells, epithelial cells, residential macrophages (ResMj), and plasma B cells. (C) Dot plot showed the
top 3 cluster-specific feature genes, dot size indicated the percent expressed, and the level of color indicated the average expression. (D) The
distribution frequency and proportion of each cell population. (E) Feature plots showed the expression pattern of the diagnostic marker genes
for endothelial cells, including VWF and VCAM1. (F) Bar plot displayed the proportion of each cell population across samples. (G) UMAP plots of
scRNA-seq data spat by samples. (H) mIHC staining of CD3 (magenta), CD11b (cyan), PanCK (orange), CD68 (yellow), CD138 (red), and DAPi
(blue) in CRC, GC, JuxtaCRC, and JuxtaGC sites.
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Cluster 1 expressed CD69 and CD4 simultaneously. Thus,

cluster 1 was defined as resident CD4 T cells (ResCD4T). The

other CD4 positive T-cell subset was annotated as regulatory T

cells (Treg, cluster 3) according to the expression of the Treg-
Frontiers in Immunology 06
specific marker, FOXP3. Clusters 4 and 5 that expressed both T-

cell marker CD3E and NK cell marker KLRD1/FCGR3A were

recognized as NK T cells (NKT), and cluster 4 was further

identified as gamma delta NK T cells (gdNKT) based on the
B

C D

E

F

A

FIGURE 2

T-cell diminishment in CRC. (A) UMAP plots of the T-cell population reveal seven cell subsets, namely, cytotoxic CD8+ T cells (CytCD8T), CD4 T cells
(ResCD4T), resident CD8+ T cells (ResCD8T), regulatory T cells (Treg), gamma delta NK T cells (gdNKT), NK T cells (NKT), and proliferating T cells (ProlT).
(B) Dot plot shows the top three cluster-specific feature genes, dot size indicates the percent expressed, and the level of color indicates the average
expression. (C) Feature plots show the expression pattern of the diagnostic marker genes for cluster annotation, including CD3E (T cells), CD8A (CD8+ T
cells), CD4 (CD4+ T cells), GZMK (CD8+ T cells), TRDC (gamma delta T cells), CD69 (resident T cells), FOXP3 (Treg), KLRD1 (NK cells), and MKI67
(proliferating cells). (D) Bar plot displays the population of each T-cell subset across samples. (E) UMAP plots of the T-cell population spat by samples.
(F) mIHC staining of CD4 (magenta), CD8 (cyan), CD69 (yellow), FOXP3 (orange), KI67 (red), gdT (white), and DAPi (blue) in CRC, GC, JuxtaCRC, and
JuxtaGC sites.
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presence of TRDC. The marker of proliferation, Ki-67 (MKI67),

was used to define proliferating T cells (ProlT, cluster

6) (Figure 2C).

The UMAP plot highlighted by samples implied that the

majority of the T population was contributed by JuxtaCRC,

followed by JuxtaGC (Figures 2D, E). Moreover, both JuxtaCRC

and JuxtaGC shared similar cellular components (Figure 2E). T-

cell diminishment was observed in CRC compared with T-cell

subsets in corresponding normal tissue (Figure 2E). In addition,

regulatory T cells (Treg) and proliferating T cells (ProlT) were

detected in GC (Figure 2E).

Overall, we could observe that T-cell subsets predominated

in the juxta-tumoral normal site and the distribution pattern of

T-cell subsets was also similar between adjacent areas of GC and

CRC. However, the distribution of T-cell subsets within GC and

CRC tumoral sites was distinct. T-cell subsets were diminished

in CRC while the GC site was enriched for Treg and proliferating

T cells (Figure 2F).
Myeloid cell enrichment in GC

To explore the heterogeneity of myeloid cells in GC and

CRC, we conducted an in-depth UMAP analysis. More

narrowly, the myeloid population was subdivided into three

clusters (Figure 3A), HSP+ cluster 0, S100A8+ cluster 1, and

CCL3/4+ cluster 2 (Figure 3B).

To investigate the detailed cell identification of different

clusters in the myeloid lineage, we explored the relationship

between myeloid subsets and tumor-infiltrating leukocytes

(TILs). The TIL frequency was estimated by the Cell-type

Identification by Estimating Relative Subsets of RNA

Transcripts (CIBERSORT) algorithm (30) based on bulk tissue

gene expression profiling of CRC and GC extracted from The

Cancer Genome Atlas (TCGA).

The fraction of 22 subpopulations of immune cells per

sample was calculated using the CIBERSORT algorithm.

Samples with a p-value no less than 0.05 were removed. The

correlation test was performed on CRC and GC, respectively,

between the immune components of bulk RNA-seq and GSVA

scores of three myeloid subsets in scRNA-seq.

Cluster 0 exhibited the highest correlation with M1

macrophage, implying that cluster 0 harbored a similar

phenotype to M1 macrophage. The other phenotype of

macrophage M2 was identified as the cluster 2-associated

immune type. The most substantial relationship between

cluster 1 and neutrophils suggested that the constituents of

cluster 1 were neutrophil-like cells. Myeloid cell identity was

confirmed on CRC and GC datasets (Figure 3C).

We could observe that most myeloid cells were identified in

the GC site (Figures 3D, E), while myeloid cells were minimal in

the CRC site. In addition, myeloid cells in juxta-tumoral sites

were also less than at the GC site (Figures 3D, E), indicating that
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myeloid cells were mainly recruited into the GC site. Moreover,

the distribution pattern of myeloid cells were also verified by

mIHC staining (Figure 3F).
Specific epithelial subset enrichment in
different TMEs

Next, we took a deeper insight into the epithelial cell

population to illustrate the distribution of malignant cells. The

reclustering analysis revealed three subsets of epithelial cells

(Figures 4A, B).

We first performed copyKAT (31) to identify malignant

cells, and only epithelial subset 1 had aneuploid malignant cells

(Figure 4C). Also, epithelial subset 1 was enriched in the CRC

site, while diploid epithelial subsets 0 and 2 were increased in the

juxta-CRC and GC sites, respectively (Figures 4D, E).

Surprisingly, the dominant epithelial subset 2 in GC was

diploid (Figures 4C, D).

In addition, we dissected the relationship of each epithelial

subset to the patient’s prognosis. The GSVA score for each

epithelial subset was calculated using bulk RNA-Seq data from

TCGA based on epithelial subset feature genes (Table S3).

Moreover, the correlation between the epithelial subset-specific

GSVA score and patients’ prognosis was investigated. We found

that the survival time was shorter in the high group than in the

low group based on the GSVA score of epithelial subset 2 in GC

and CRC patients (Figure 4F). We also observed that a higher

frequency of aneuploid epithelial subset 1 was not associated

with a worse prognosis. The higher frequency of aneuploid

epithelial subset 1 indicated a better prognosis in the GC

patients (Figure 4F), probably due to the better neoantigen

generation based on a higher mutational burden.

Overall, we noticed distinct epithelial subset enrichment in

GC and CRC subsets, possibly due to different mutation profiles

between GC and CRC (as described below). Moreover, it seems

that aneuploid malignant cells are not necessarily linked to

worse prognosis in GC patients since aneuploid malignant

cells could be associated with higher levels of antigen generation.
Different mutational profiles lead to
distinct drug responses of CRC and GC

To gain insights into the genetic alterations associated with

the pathogenesis and drug response of GC and CRC, we

performed whole-exome sequencing of GC, CRC, and the

corresponding juxta-tumoral normal samples. A total of nine

DNA repair-associated susceptible genes (PARP2, MSH3, MSH6,

XRCC4, NUDT1, POLI, HERC2, RECQL4, and RECQL5) were

detected as germline mutations (Figure 5A), which engaged in

poly(ADP-ribose) polymerase (PARP) enzymes that bind to DNA

(PARP), mismatch excision repair (MMR), non-homologous end-
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joining (NHEJ), modulation of nucleotide pools (MNP), DNA

polymerases (DNAp), ubiquitination and modification (U&M),

diseases associated with sensitivity to DNA damaging agents

(sDNAda), and other known or suspected DNA repair function

(sDNArf). Seven out of nine genes (PARP2, MSH3, MSH6, POLI,

HERC2, RECQL4, and RECQL5) alternated in CRC and GC. The

pattern of alternations was consistent, indicating that multiple
Frontiers in Immunology 08
alternations in DNA repair genes were likely to be the oncogenic

divers of synchronous malignancies. The other two genes (XRCC4

and NUDT1) were only detected in GC. Moreover, we noticed

that splice site was the dominant target of mutation.

Somatic mutation analysis revealed that the top 10 genes

(TP53, APC, FBXW7, ABCA2, ACADL, UCP1, VASH2, ZNF488,

TACC3, and TREML2) were rearranged in the site of two primary
B

C

D E

F

A

FIGURE 3

Myeloid cell enrichment in the GC site. (A) UMAP plots of the myeloid cell population reveal three cell subsets, namely, clusters 0, 1, and 2.
(B) Dot plot shows the top three cluster-specific feature genes, dot size indicates the percent expressed, and the level of color indicates the
average expression. (C) Heatmaps show the correlation relationship between subset GSVA score and the fraction of 22 subpopulations of
immune cells of CRC and GC, respectively, generated by CIBERSORT (left: CRC, right: GC). (D) Bar plot displays the population of each myeloid
cell subset across samples. (E) UMAP plots of the myeloid cell population spat by samples. (F) mIHC staining of CD11b (cyan), CD68 (yellow),
and DAPi (blue) in CRC, GC, JuxtaCRC, and JuxtaGC sites.
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malignancies that participated in chromosomal instability (CIS),

Wnt signaling pathway (WNT), negative regulation of lipid

biosynthetic process (LBP), mitochondrial inner membrane

(MiM), microtubule-binding (MB), gliogenesis (Gilo), spindle

(Spindle), and T-cell activation (TAct) (Figure 5B, Figure S1).

TP53 is a critical tumor-suppressor gene, one of the most

frequent somatic alterations in human cancer. The alternation of

the TP53 gene was found in both CRC and GC. Nevertheless, the

mutation pattern was distinct. Frameshift deletions occurred in

CRC, and frameshift insertions were detected in GC, reflecting

that the mutation of the TP35 gene was vital to both CRC and

GC tumor initiation (Figure 5B).

Five mutated somatic genes were specific to CRC, namely,

APC, FBXW7, ACADL, UCP1, and VASH2, while GC was

characterized by the remaining four genes, which were

ABCA2, ZNF488, TACC3, and TREML2. Interestingly,

inactivating mutations in the APC gene merely appeared in

CRC, which has been reported as a critical genetic factor in the

initiation and progression of CRC (32), demonstrating that the

loss of APC may be one of the main driving forces of CRC
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tumorigenesis in synchronous malignancies. Additionally, the

somatic mutation of APC as a regulator of chromosome integrity

(33) may contribute to developing aneuploid epithelial subset 1

enrichment in the TME of CRC (Figure 5B).

Next, we deciphered the role of epithelial subsets in drug

response, and the connection between drug sensitivity and three

epithelial subsets was analyzed. The RNA-sequencing results of

an extensive collection of GC and CRC cell lines and AUC values

of drugs to the GC and CRC cell lines representing the overall

drug effect on each cell line were obtained from the Genomics of

Drug Sensitivity in Cancer (GDSC) database (34). The GSVA

score of each subset was calculated using the top 20 subset-

specific genes (Table S3) using the RNA-sequencing results of

each cell line. Interestingly, aneuploid epithelial subset 1

enriched in the TME of CRC was highly susceptible to the

APC inhibitor, consistent with the APC mutation detected

specifically in CRC, while epithelial subset 2 enriched in the

TME of CRC was sensitive to kinase inhibitors (Figure 5C).

Our findings revealed common and distinct mutational

profiles underlining the CRC and GC. The common mutation
B C

D E
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A

FIGURE 4

Specific epithelial subset enrichment in different TMEs. (A) UMAP plots of the epithelial cell population reveal three cell subsets, namely, clusters
0, 1, and 2. (B) Dot plot shows the top three cluster-specific feature genes, dot size indicates the percent expressed, and the level of color
indicates the average expression. (C) UMAP plot of epithelial cell population highlighted by copyKAT results; red refers to aneuploid, yellow
refers to diploid, and green refers to NA. (D) Bar plot displays the population of each epithelial cell subset across samples. (E) UMAP plots of
epithelial cell population spat by samples. (F) Kaplan–Meier plots show the survival results of the epithelial cell subset GSVA score for CRC and
GC based on TCGA database. Red refers to the high group, and blue refers to the low group (top panel: CRC, bottom panel: GC).
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in DNA repair and p53 pathways could contribute to the genetic

background of synchronous tumor initiation. Moreover, distinct

mutation profiles might explain the specific cellular subset

distribution of GC and CRC. Particular mutation profiles also

contributed to different drug responses.
DNA repair and metabolism-related
microbiome in the CRC and GC TME

To investigate the diversity of microbial communities

between CRC and GC sites, we performed 16S rRNA gene

sequencing. In total, 1,454 variants were identified at the level

of genus. Five hundred forty-eight microbiotas are commonly

microbially detected in CRC and GC. Such similarity might

result from the similar origin of intestinal locations. The primary

malignancy-specific microbiotas were also observed, 93 in CRC
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and 265 in GC (Figure 6A). We also observed that microbiota

diversity was much higher in the GC site (Figure 6B).

We performed a closer examination to gain a deeper insight

into the community composition in synchronicity tumors. The

top 10 most abundant microbiotas are displayed in Figure 6C

Fusobacterium, Bacteroides, and Ruminococcus were highly

enriched in CRC. Streptococcus , Acinetobacter , and

Brevundimonas were dominated in GC (Figures 6C, D). In gut

microbe studies, Fusobacterium has been reported as a

dominant genus associated with CRC (35, 36).

Functional characteristics of microbiotas were further

assessed through Tax4Fun (37). We noticed that the GC

microbiotas were related to central carbon and amino acid

metabolism pathways (Figure 6E), such as glyoxylate and

dicarboxylate metabolism and glycine/serine/threonine

metabolism (Figure 6E). Interestingly, GC sites were enriched

with immunes. Immune-metabolism connection was consistent
B

C

A

FIGURE 5

Mutational profiles of GC and CRC. (A) Oncoplot shows the germline mutations in CRC, GC, and normal sites. The top bar shows the counts of
alterations type in each sample. The left annotation indicated the functions of the genes. The right bar shows the counts of alteration type of
each gene. (B) Oncoplot shows the somatic mutations in CRC and GC sites. The top bar shows the counts of alteration type in each sample.
The left annotation indicates the functions of the genes. The right bar shows the counts of alteration type of each gene. (C) Heatmaps show the
correlation relationship between the subset GSVA score and the drug sensitivity for CRC and GC, respectively, collected from the GDSC
database (top panel: CRC, bottom panel: GC).
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FIGURE 6

microbial profiles of CRC and GC. (A) Venn diagram shows the overlap of microbiotas from CRC and GC. Five hundred forty-eight microbiotas
were shared between GC and CRC. Two hundred sixty-five microbiotas unique to GC, 93 microbiotas unique to CRC. (B) Plot shows the chao 1
alpha diversity index distribution between CRC and GC groups. (C) Bar plot shows the relative abundance of the top 10 microbiotas in CRC and
GC at the genus level. (D) Dot plot shows the top 10 differentially abundant OTUs between CRC and GC at the species level. (E) Heatmap shows
the function enrichment pathway of microbiotas in CRC and GC. (F) A brief summary of major differences between CRC and GC in
synchronous cancer patients.
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with the previous report that immune cells, rather than the

tumor cells in the TME, carried high metabolic activity (38).

Consistent with the WES and copyKAT results, DNA repair-

associated microbiota were also observed in CRC, probably

related to the enrichment of aneuploid malignant cells

(Figure 6E), including mismatch repair, DNA repair, and

recombination proteins and DNA replication proteins.

Overall, we found the specific distribution of microbiota in

GC and CRC with different functions. Moreover, the functional

features of microbiota were consistent with the cellular and

mutational landscapes of the GC and CRC TME.
Discussion

We utilized the same genetic background of the synchronous

primary tumor to comprehensively illustrate the TME of CRC

and GC via scRNA-seq, WES, and microbiome analyses. We

found that the cellular components of the juxta-tumoral sites of

CRC and GC are very similar. CRC was mainly composed of

aneuploid malignant cells, and GC was composed of diploid

epithelial cells, Tregs, and myeloid suppressor cells. Germline

mutation in the DNA repair process provides the genetic

background of the synchronous GC and CRC. Moreover,

chromosome integrity mutation was specific in the CRC site,

corresponding to the aneuploid malignant cells identified in the

CRC. Microbiomes related to the metabolism were enriched in

the GC, consistent with the infiltration of immune cells in GC.

Furthermore, the microbiome-related DNA repair process was

enriched with chromosome integrity mutations in the CRC.

Overall, the mutational landscape and microbiome determine

the TME together (Figure 6F).

Calprotectin (S100A9 and S100A8) and chemokines

(CXCL8) expressing myeloid cells were also identified in other

scRNA-seq studies about infectious diseases (39) and tumors

(40). S100A8/9+ myeloid cells were reported to recruit

neutrophils (41). In addition, S100A8/9+ myeloid cells could

promote angiogenesis and exacerbate cancer through the

S100a8/S100a9–Emmprin–Vegfa axis (42).

Macrophages were characterized by the genes engaged in

complement activation (C1QA and C1QB). C1QA/B+

macrophages were often referred to as resident macrophages in

several scRNA-seq profiling studies for different types of cancer (43,

44). It has been shown that tumor cells could hijack macrophage-

produced C1QA/B proteins to promote tumor growth (45).

APC mutation could be identified in both GC and CRC (46,

47). Our current study detected APC mutation specifically in the

CRC site. Moreover, APC mutation was associated with the cold

tumor (48). Thus, the immune dessert phenotype of CRC was

due to the APC mutation. The GC TME was enriched with

myeloid suppressor cells, including macrophages and

neutrophils. Consistently, the Treg frequency was also higher

in GC, probably due to the immune inhibitory function of
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myeloid suppressors (49). We also found that Brevundimonas

was enriched in gastric cancer with more Tregs, consistent with

the previous report that regulatory T cells within the tumor

microenvironment in gastric cancer were correlated with gastric

microbiota (50).
Limitations of the study

Our analysis mainly compared normal/adjacent tissue with full-

blown cancer. Thus, we might miss the critical preventative

treatment targets on non-T immune cells and other cell types in

the tumor microenvironment, such as stromal cells. In addition, the

stromal cells might be missing during our cell isolation procedures,

which was designed for immune cell enrichment, while stromal cells

were also essential players of the TME and missing such cells were

significant limitations of our current study (51).
Conclusions

Based on the same genetic background of the synchronous

tumor, GC and CRC TME were dissected comprehensively. We

found that the TME was mainly determined by the mutational

landscape and microbiome, which shed light on future

combinational therapy targeting the mutation and

microbiome together.
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