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Left ventricle- and skeletal
muscle-derived fibroblasts
exhibit a differential
inflammatory and metabolic
responsiveness to interleukin-6
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Interleukin-6 (IL-6) is an important player in chronic inflammation associated

with heart failure and tumor-induced cachexia. Fibroblasts are salient

mediators of both inflammation and fibrosis. Whereas the general outcome

of IL-6 on the heart’s function andmuscle wasting has been intensively studied,

the influence of IL-6 on fibroblasts of the heart and skeletal muscle (SM) has not

been analyzed so far. We illustrate that SM-derived fibroblasts exhibit higher

basal mRNA expression of a-SMA, extracellular matrix molecules (collagen1a1/

3a1/5a1), and chemokines (CCL2, CCL7, and CX3CL1) as compared to the left

ventricle (LV)-derived fibroblasts. IL-6 drives the transdifferentiation of

fibroblasts into myofibroblasts as indicated by an increase in a-SMA

expression and upregulates NLRP3 inflammasome activity in both LV- and

SM-derived fibroblasts. IL-6 increases the release of CCL7 to CX3CL1 in the

supernatant of SM-derived fibroblasts associated with the attraction of more

pro(Ly6Chi) versus anti(Ly6Clo) inflammatory monocytes as compared to

unstimulated fibroblasts. IL-6-stimulated LV-derived fibroblasts attract less

Ly6Chi to Ly6Clo monocytes compared to IL-6-stimulated SM-derived

fibroblasts. In addition, SM-derived fibroblasts have a higher mitochondrial

energy turnover and lower glycolytic activity versus LV-derived fibroblasts

under basal and IL-6 conditions. In conclusion, IL-6 modulates the

inflammatory and metabolic phenotype of LV- and SM-originated fibroblasts.
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Introduction

Heart failure (HF) and cancer are both main causes of

morbidity and mortality worldwide (1). Increasing evidence

suggests a multifaceted relationship between both disease

entities. The relevance of inflammation as a trigger and

valuable therapeutic target in HF and cancer was shown in the

CANTOS (Canakinumab Anti-Inflammatory Thrombosis

Outcome Study) trial. Beyond the primary observation that

rates of cardiovascular events were lower in canakinumab-

treated patients with previous myocardial infarction as

compared to the placebo group (2), the largest cytokine

inhibition trial ever performed illustrated that interleukin (IL)-

1b antagonism reduced the incidence of lung cancer and cancer-

related mortality (3). Beyond being a common contributor to the

pathogenesis of cancer and HF, inflammation associated with

cancer can provoke HF (4). In addition, there is further

recognition that systemic inflammation associated with HF (5)

stimulates tumorigenesis (6). Furthermore, in both disease

entities, chronic inflammation can lead to cachexia, a

metabolic syndrome that is characterized by high morbidity

and mortality due to involuntary weight loss caused by the

depletion of fat mass and a prominent loss of muscle tissue (7)

leading to a severely impaired muscle function. Less known is

the evidence from experimental (8–10) and patient (11) studies

illustrating that HF-elevated serum cytokine levels are associated

with increased local inflammation in the skeletal muscle (SM).

One of the inflammatory factors secreted from various

cancers known to heavily impact cachexia, and which is

stimulated, inter alia, by IL-1, is IL-6 (12–14). Blocking IL-6

signaling leads to decreased wasting of muscles and prevents

cancer cachexia in melanoma and prostate tumor cachectic

mouse models (15). Permanent excess of IL-6 during chronic

inflammation exerts malignant effects on cardiac function (16),

whereas IL-6 spillover in the peripheral circulation increases

with the severity of HF, and enhanced IL-6 levels are associated

with reduced clinical outcomes (17, 18). IL-6 gene expression is

elevated in the heart of tumor-bearing mice, which are

characterized by impaired cardiac function and increased

fibrosis (19), hinting to the possible involvement of cardiac

fibroblasts in tumor-induced cardiac dysfunction in rodents

and humans (20, 21).

In addition to their function of extracellular matrix (ECM)

regulation, fibroblasts gain more and more recognition for their

role as inflammatory supporter cells in the heart (22–26).

Fibroblasts present a heterogeneous cell population, located at

different sites of the body, and are of mesenchymal origin (27).

Recent single-cell analysis of fibroblasts from the heart and SM

illustrated fibroblast heterogeneity and an organ-specific

fibroblast-mediated ECM profile (28), although how fibroblasts

from the left ventricle (LV) versus SM may exhibit an organ-

specific response to IL-6 has not been analyzed before.
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Although the overall effect of IL-6 on cardiac function (16–19)

and SM function/wasting (15) has been deeply investigated, little is

known so far about the effect of IL-6 on cardiac and SM fibroblasts.

As fibroblasts are one of the main drivers of inflammation (22–26),

including the main source of NLRP3 inflammasome activity (29)

in the heart, and their role as inflammatory supporter cells is

underexplored in the SM, this work aimed to elucidate the impact

of IL-6 on both LV- and SM-derived fibroblasts. These

investigations provide further insights into how fibroblasts from

different organs may respond differently toward a common

systemic inflammatory response (here IL-6) and can support

local and potentially chronic systemic inflammation.
Methods

Animal material

LV and SM tissues were isolated from 12-week-old healthy

male C57BL6/j mice (n = 6; Charles River, Sulzfeld, Germany).

All animals were housed under standard housing conditions (12-

h light/dark cycle, 50%–70% humidity, 19°C–21°C) with free

access to food and water. The experiments were performed in

accordance with the European Directive 2010/63/EU and were

approved by the local ethical committee (Landesamt für

Gesundheit und Soziales, Berlin, T0025/15).
Outgrowth culture of murine left
ventricle- and skeletal muscle-
derived fibroblasts

In order to isolate and expand fibroblasts from the LV and

SM, an outgrowth culture (22) was performed. Therefore, LV

and SM tissues were cut into 1-mm-sized pieces and were

subsequently fixed in 12-well plates by scratching the pieces in

the plastic of the bottom of the plates. During outgrowth, the

fibroblasts were cultured in Dulbecco’s modified Eagle medium

(DMEM; Gibco, Thermo Fisher Scientific Inc., Waltham, MA,

USA) containing 20% fetal bovine serum (FBS) (Bio&Sell

GmbH, Feucht, Germany) and 1% penicillin and streptomycin

(P/S) (Gibco) at 37°C and 5% CO2. Stimulation experiments

were performed between passages 4 and 9.
Immunofluorescence staining of left
ventricle- and skeletal muscle-
derived fibroblasts

To characterize the outgrowth cells of LV and SM tissues,

outgrowth cells in passage 1 were stained with markers of

mesenchymal cells, cardiomyocytes, and endothelial cells, as
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previously described (30), using murine C4 fibroblasts (Sigma

Aldrich, Munich, Germany), HL-1 cells (cardiomyocytes), and

brain-derived endothelial cells (bEnd.3 cells) (ATCC, Tell City,

IN, USA) as reference cells (Supplementary Figure 1). In detail,

each cell type was seeded at a density of 10,000 cells/well in a 48-

well format. Upon reaching 80% confluence, the cells were

washed once with DPBS (Gibco) and subsequently fixed in 4%

paraformaldehyde (PFA) (Sigma Aldrich) for 10 min and stored

at 4°C until staining. For this, the cells were first permeabilized

with Triton X-100 for 5 min, followed by 30 min incubation with

avidin blocking solution (Vector Laboratories, California, USA).

Subsequently, the cells were incubated with the primary

antibody, all diluted at 1:50, for 1 h at room temperature (RT).

The following primary antibodies were used: anti-vimentin

(GTX 100619, GeneTex, distributed via Biozol, Echingen,

Germany), anti-desmin (SC-7559, Santa Cruz, Heidelberg,

Germany), and anti-CD31 antibody (BD550274, BD

Biosciences, Heidelberg, Germany). After washing two times

with DPBS (Gibco), staining with a 1:250 diluted biotinylated

secondary antibody (Dianova, Hamburg, Germany) was

performed. According to our established protocol, cells were

finally incubated with Cy3-conjugated streptavidin diluted at

1:250 (Jackson ImmunoResearch Laboratories Inc., West Grove,

PA, USA). For nuclear staining, the cells were incubated with

1:100 diluted diamidinophenylindol (Invitrogen, Darmstadt,

Germany). Pictures were acquired using an Axio Observer.Z1

(Carl Zeiss Microscopy GmbH, Oberkochen, Germany) at a

magnification of ×200. The microscopic images were taken and

processed with the Axio Vision SE64 software (version 4.9.1,

Carl Zeiss Microscopy GmbH).
Stimulation experiments of left ventricle-
and skeletal muscle-derived fibroblasts

For stimulation experiments, murine fibroblasts were seeded

in 6-well plates (50,000 cells/well) for collection of supernatant

and flow cytometry, in 48-well plates (20,000 cells/well) for RNA

isolation, in 96-well plates (7,500 cells/well) for Crystal Violet

and Sirius Red assay, or in Seahorse 96-well Utility plates

(Agilent Technologies, Santa Clara, CA, USA) (20,000 cells/

well) for analysis of mitochondrial function and glycolysis. The

number of biological and technical replicates for each

experiment is indicated in the legends of the figures. When the

cells reached at least 80% confluency, the medium was replaced,

after washing with DPBS (Gibco), by a DMEM containing 5%

FBS and 1% P/S (basal medium). The cells were next cultured

under basal conditions for 3 h. In the following step, the basal

medium was removed, and the cells were incubated with either

fresh basal medium (no stimulation) or DMEM including 5%

FBS, 1% P/S, and 10 ng/ml of IL-6 (31) (PeproTech, Rocky Hill,

NJ, USA) for up to 72 h.
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RNA isolation

For RNA isolation, the fibroblasts were harvested after 24-h

stimulation with 0 or 10 ng/ml of IL-6, and the TRIzol® (Life

Technologies, Carlsbad, CA, USA) method was used. Following

the addition of chloroform and subsequent centrifugation, the

upper aqueous phase, containing the RNA, was removed and

precipitated with isopropanol (Carl Roth GmbH, Karlsruhe,

Germany). The RNA was washed in 70% ethanol, and the pellet

was next dissolved in 10 ml of RNase-free water (Invitrogen).
cDNA synthesis and real-time PCR

After DNase treatment (DNAse Kit, Peqlab, VWR

International, Radnor, PA, USA) and the addition of an RNase

Inhibitor (Promega, Fitchburg, WI, USA), 1,000 ng of RNA was

transcribed into complementary DNA (cDNA) using the High-

Capacity Reverse Transcriptase Kit (Applied Biosystems,

Darmstadt, Germany). To assess the mRNA expression of the

target genes, real-time PCR was performed using the Quant

Studio 6 Flex TaqMan system (Applied Biosystems).The

following commercially available gene expression assays (all

Applied Biosystems) were used: alpha-smooth muscle actin

(a-SMA; Mm00725412_s1) , col lagen 1a1 (Col1a1;

Mm01302043_g1), collagen 3a1 (Col3a1; Mm00802331_m1),

collagen 5a1 (Col5a1; Mm00489299_m1), glyceraldehyde 3-

phosphate dehydrogenase (GAPDH; Mm99999915_g1), lysyl

oxidase 1 (LOX1; Mm00495386_m1), lysyl oxidase-like 2

(LOXL2; Mm00804740_m1), C-C Motif Chemokine Ligand 2

(CCL2; Mm00441242_m1), C-C Motif Chemokine Ligand 7

(CCL7; Mm00443113_m1), C-X3-C Motif Chemokine Ligand 1

(CX3CL1; Mm00436454_m1), and interleukin-6 receptor (IL6R;

Mm01211445_m1). For quantification of gene expression,

quantitative real-time PCR data were acquired using the

QuantStudio software (version 1.2, Thermo Fisher Scientific).

For the expression analysis under basal conditions, the target

genes were normalized to the GAPDH housekeeping gene and

expressed as 2−DCT. For the stimulation experiments, data were

expressed as 2−DDCT, reflecting normalization of the target genes

toward GAPDH and subsequent normalization toward the mean

of the basal conditions of each tissue.
Crystal Violet and Sirius Red assay

To assess the total collagen content per well of (un)

stimulated LV- and SM-derived fibroblasts, a Sirius Red assay

was performed 24 h after stimulation with or without (basal

condition) 10 ng/ml of IL-6 as previously described (32, 33). The

cells were fixed in 100 µl of methanol (Thermo Fisher Scientific)

per well and stored at −20°C overnight. After washing with
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DPBS (Gibco), 100 µl 25% Direct Red 80 solution was added per

well and incubated for 60 min at RT. The cells were three times

washed with 0.1% acetic acid solution (Thermo Fisher

Scientific). To elude the staining solution, 100 µl of 0.1 N of

natriumhydroxide was added, and the cells were incubated for

1 h at RT while shaking. The absorbance was measured at 540

nm using a spectrophotometer (SpectraMax 340 PC, Molecular

Devices, San Jose, CA, USA), and the spectroscopic data were

acquired using the SoftMax®7Pro software (Molecular Devices).

In order to be able to normalize the total collagen content to

the amount of cells/well, a Crystal Violet assay was performed

according to the same cell culture conditions as the Sirius Red

assay. The cells were fixed in 100 µl of 4% PFA per well, and the

cells were stored at 4°C overnight. Upon washing with bi-

distilled water, 50 µl of Crystal Violet solution (Sigma Aldrich)

was added per well. After 30 min of incubation at RT, the cells

were washed three times with bi-distilled water. Next, 100 µl of a

1% sodium dodecyl sulfate (Sigma Aldrich) solution was added,

and the cells were incubated for 1 h at RT while shaking to

dissolve the Crystal Violet. The absorbance was measured at 595

nm as written above.
CCL2, CCL7, Cx3CL1, and gp130 ELISA

To determine the amounts of secreted CCL2, CCL7, and

Cx3CL1 chemokines (14) from (un)stimulated LV- and SM-

derived fibroblasts, 72 h post-stimulation with 0 or 10 ng/ml of

IL-6, the murine MCP-1 (CCL2) standard ABTS ELISA

Development Kit and murine MCP-3 (CCL7) Standard ABTS

ELISA Development Kit (both PeproTech), and the murine

Cx3CL1 ELISA kit (Abcam, Cambridge, UK) were used

according to the manufacturer’s protocol, respectively. For

analysis of glycoprotein (gp)130 secretion in the supernatant

of (un)stimulated LV- and SM-derived fibroblasts, the mouse

gp130 ELISA kit (Abcam) was used as indicated by the

manufacturer. To enable normalization of CCL2, CCL7,

Cx3CL1, and gp130 to the protein concentration of the

supernatant, a bicinchoninic acid (BCA) assay (Pierce™

BCA™ Protein-Assay, Thermo Fisher Scientific) was

performed according to the manufacturer’s protocol.
CytoSelect™ cell migration assay

To assess the chemotactic potential of fibroblast’s secreted

factors, a cell migration assay (Cell Biolabs, San Diego, CA,

USA) was performed as described by Pappritz et al. (2018) (14).

In detail, 105 splenocytes isolated from 9–12-week-old healthy

male C57BL6/j mice (Charles River, Sulzfeld, Germany) were

plated per well in 100 ml of RPMI 1640 medium containing

0.01% FBS and placed into the migration chamber. In the next

step, 150 ml of pooled supernatant of (un)stimulated LV- or SM-
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derived fibroblasts from three mice was added to the feeder tray

(n = 7 per condition). After incubation for 24 h at 37°C and 5%

CO2, the migrated cells were harvested, pooled (7 wells per

condition), and analyzed via flow cytometry staining for CD11b,

CD115, and Ly6C (see below).
Flow cytometry

Flow cytometry experiments were conducted in order to

assess protein expression of a-SMA and NLRP3 inflammasome

components including NLRP3, caspase-1, and IL-1b in

fibroblasts. LV- and SM-derived fibroblasts were harvested

after 24-h stimulation with 10 ng/ml of IL-6, resuspended in

Fixation/Permeabilization solution (BD Cytofix/Cytoperm™,

BD Biosciences) followed by incubation for 20 min at 4°C, and

washed in BD Perm/Wash™ buffer (BD Biosciences). After an

additional centrifuge step was performed and the supernatant

was removed, the fibroblasts were resuspended in 100 ml of BD
Perm/Wash™ buffer (BD Biosciences) containing the respective

antibody conjugate diluted at a ratio of 1:100. The following

antibody conjugates were used for flow cytometry: anti-a-SMA

Phycoerythrin and anti-NLRP3 AlexaFluor647 (both R&D

Systems, Minneapolis, MN, USA), anti-IL-1b Pacific Blue

(BioLegend, San Diego, CA, USA), and anti-caspase-1 FITC

(Bioss, Woburn, MA, USA). After incubation for 30 min at 18°C

to 24°C in the dark, cells were washed with BD Perm/Wash™

buffer (BD Biosciences) and next resuspended in 100 ml of DPBS
(Gibco) for subsequent analysis using the MACSQuant Erato

(Miltenyi Biotech GmbH, Bergisch Gladbach, Germany)

flow cytometer.

Migrated splenocytes were analyzed by staining of CD11b

(anti-CD11b Alexa488, diluted 1:100), CD115 (anti-CD115

PerCP/Cy5.5, diluted 1:100), and Ly6C (anti-Ly6C Brilliant

Violet 421, diluted 1:50) (all BioLegend). The flow cytometry

data were collected using the MACSQuantify software (version

2.6, Miltenyi Biotech). Appropriate gating (Supplementary

Figures 2–4) and analysis of flow cytometry data were

performed using the FlowJo software (version 8.7, BD Life

Sciences, Franklin Lakes, NJ, USA).
Mitochondrial and glycolytic stress test

To analyze the metabolic activity of LV- and SM-derived

fibroblasts after 4-h stimulation with 10 ng of IL-6,

mitochondrial and glycolytic stress tests using the Seahorse XF

Cell Mito Stress test kit and Seahorse XF Glycolysis Stress test kit

(both Agilent Technologies) were applied, respectively. The kits

were used according to the manufacturer’s protocol. In brief, the

sensor cartridge was hydrated with 200 µl of Seahorse XF

Calibrant (Agilent Technologies) pipetted into each well of the

utility plate and incubated overnight at 37°C and 5% CO2. The
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next day, the assay medium for the mitochondrial stress test

(pre-warmed at 37°C) was prepared, comprising DMEM XF

Base medium (Agilent Technologies), 25 mM of D-(+)-glucose

(Sigma Aldrich), 1 mM of sodium pyruvate (Gibco), and 2 mM

of L-glutamine (Biochrom GmbH, Berlin, Germany). The assay

medium for the glycolytic stress test consisted of 2 mM of L-

glutamine (Biochrom GmbH). As assay reagents for the

mitochondrial stress test, 2 µM of oligomycin (Sigma Aldrich),

1 µm of FCCP (Sigma Aldrich), 0.5 µM of rotenone (Sigma

Aldrich), or 0.5 µM of antimycin (Sigma Aldrich) was added to

the assay media. For the glycolytic stress test, 10 mM of D-

(+)-glucose (Sigma Aldrich), 2 µM of oligomycin (Sigma

Aldrich), and 50 mM of 2-deoxy-glucose (Roth) were used.

Next, 25 µl of each media was pipetted into the respective port of

the sensor cartridge. The cell culture medium in the utility plate

was replaced by the respective assay medium. The plate was

incubated under non-CO2 conditions at 37°C for 10 min. After

the initial calibration of the sensor plate, the utility plate was

placed on the tray to start the Seahorse run using the XFe96

Extracellular Flux Analyzer (Agilent Technologies). The data for

Seahorse experiments were recorded and evaluated by applying

Seahorse Wave Desktop Software (version 2.6.1, Agilent

Technologies). After the assay was finished, the supernatant

was removed from each well, and the plate was frozen at −20°C

for subsequent measurement of the protein content using the

Micro BCA™ Protein-Assay Kit (Thermo Scientific), which was

applied according to the manufacturer’s protocol.
Statistical analysis

Data analysis and graphical presentation were performed

using the software Prism 8 (version 8.4.3, GraphPad Software, La

Jolla, CA, USA). The data were presented as mean ± 95%

confidence interval (CI). All the data were tested for normal

distribution by using the Shapiro–Wilk test. To assess statistical

differences between multiple groups, a one-way ANOVA test or

the Kruskal–Wallis test with post-hoc Benjamini–Hochberg

correction was used. Statistical difference between the two

groups was assessed using the Mann–Whitney U test or Welch

test. Differences between groups are presented to be statistically

different with an (adjusted) p-value smaller than 0.05.
Results

Outgrowth culture from left ventricle
and skeletal muscle tissues generates
primary fibroblasts

The outgrowth cells from LV and SM tissues were

characterized according to their expression of the mesenchymal

marker vimentin, and themarkers desmin and CD31 were able to
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discriminate the generated primary cells from cardiomyocytes

and endothelial cells, respectively, as described previously (30).

LV- and SM-derived cells were positive for vimentin but negative

for desmin and the endothelial cell marker CD31. In parallel, C4

fibroblasts, serving as a positive control, showed the same signal

pattern as compared to LV- and SM-derived fibroblasts. The

cardiomyocyte and endothelial cell lines, which served as

negative controls, were positive for their cell-specific markers

desmin and CD31, respectively (Supplementary Figure 1).
Skeletal muscle-derived fibroblasts
exhibit a higher gene expression of a-
SMA, components of the extracellular
matrix, and chemokines compared to left
ventricle-derived fibroblasts

In view of evaluating potential differences between

fibroblasts from the LV and SM, basal mRNA expression of a-
SMA, ECM components, and modulators as well as chemokines

was analyzed from fibroblasts that originated from the two

different tissues. Under basal conditions, fibroblasts from the

SM showed 3.9-fold (p < 0.0001), 2.0-fold, (p < 0.0001), 2.7-fold

(p < 0.0001), 2.3-fold (p < 0.0001), and 3.1-fold (p < 0.0001)

higher mRNA expression of a-SMA, collagen1a1, collagen3a1,

collagen5a1, and LOX1 compared to LV-derived fibroblasts

(Figure 1A), respectively. Relative to fibroblasts from the LV,

SM-derived fibroblasts revealed higher mRNA expression of the

chemokines CCL2 (2.4-fold, p < 0.0001), CCL7 (7.6-fold,

p < 0.0001), and Cx3CL1 (2.2-fold, p = 0.0132) (Figure 1B).

These results hint at a higher basal activity with regard to ECM

modulation as well as monocyte attraction in unstimulated SM-

versus LV-derived fibroblasts.
IL-6 stimulation leads to
transdifferentiation of left ventricle-
and skeletal muscle-derived fibroblasts
to myofibroblasts

To assess the effect of IL-6 stimulation in LV- and SM-

derived fibroblasts on their transdifferentiation into (myo)

fibroblasts, a-SMA gene and protein expression were analyzed

(34). In addition, the impact of IL-6 on ECM components and

modulators of LV- and SM-derived fibroblasts was determined.

IL-6 did not affect a-SMA mRNA expression in LV-derived

fibroblasts (Figure 2A). In SM-derived fibroblasts, IL-6

stimulation for 24 h led to the reduction of a-SMA on mRNA

level compared to basal conditions (0.7-fold, p = 0.0007)

(Figure 2B). We observed no changes in mRNA expression of

components of the ECM upon IL-6 stimulation, in neither LV-

nor SM-derived fibroblasts (Figures 2A, B). At the protein level,

24-h IL-6 stimulation induced an increase of a-SMA-positive
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cells in both LV- and SM-derived fibroblasts (2.4-fold and 2.6-

fold, p < 0.0001) versus respective unstimulated fibroblasts

(Figure 2C). However, a difference in a-SMA+ cells upon IL-6

stimulation between fibroblasts from both tissues was not

observed. IL-6 increased the number of SM-derived fibroblasts

(p < 0.0001), depicted as Crystal Violet-stained cells, whereas no

difference in cell count was seen following IL-6 stimulation of

LV-derived fibroblasts (p < 0.0001) (Figure 2D). IL-6 did not

affect collagen deposition, in neither LV- nor SM-derived

fibroblasts (Figures 2E, F).
IL-6 stimulation leads to the attraction
of different monocyte subsets to left
ventricle- versus skeletal muscle-
derived fibroblasts

To determine the capacity of IL-6 to stimulate LV- and SM-

derived fibroblasts to attract monocytes, the expression of

different chemokines in LV- and SM-derived fibroblasts

following IL-6 stimulation was analyzed. An impact of IL-6 on

CCL2, CCL7, and Cx3CL1 gene expression could not be found in

neither LV- nor SM-derived fibroblasts (Figures 3A, B). However,

in response to IL-6 stimulation, the secreted CCL7 in the

supernatant of cultured LV- and SM-derived fibroblasts was

increased (1.3-fold, p = 0.0183) and tended to be higher in LV-

derived fibroblasts versus basal conditions (1.2-fold; not

significant). In parallel, IL-6 stimulation raised Cx3CL1 by 1.1-

fold (p = 0.0306) in the supernatant of LV-derived fibroblasts,

whereas no changes were detected in the supernatant of SM-

derived fibroblasts (Figures 3C–E). CCL2 and CCL7 have been

identified as chemokines attracting pro-inflammatory monocytes,

whereas Cx3CL1 attracts anti-inflammatory monocytes (35, 36)

CCL2/Cx3CL1 and CCL7/Cx3CL1 ratios were calculated.
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Whereas the CCL2/Cx3CL1 ratio did not differ among the LV

and SM groups, the CCL7 to Cx3CL1 ratio was 3.0-fold (p =

0.0196) increased in stimulated SM-derived fibroblasts compared

to the respective LV group (Figures 3F, G), indicating that—upon

IL-6 stimulation—fibroblasts from the SM attract a higher

proportion of pro-inflammatory monocytes compared to

fibroblasts from the LV.

Following the observed differences in chemokine expression

profile, we further analyzed the potential to attract different

monocyte subsets by performing a migration assay. We found a

1.4-fold (p = 0.0197) higher attraction of Ly6Chi cells toward

supernatant of unstimulated SM- versus LV-derived fibroblasts.

The higher ratio of CCL7/Cx3CL1 in the supernatant of IL-6-

stimulated SM-derived versus LV-derived fibroblasts went along

with a 2.1-fold (p < 0.0001) higher attraction of Ly6Chi

monocytes. Furthermore, IL-6 stimulation led to a 1.3-fold

(p = 0.0330) lower attraction of Ly6Clo monocytes by the

supernatant of SM-derived fibroblasts compared to basal

conditions. Compared to IL-6-stimulated LV-derived

fibroblasts, the supernatant of IL-6-stimulated SM-derived

fibroblasts resulted in a 2.0-fold (p = 0.0009) reduction in

Ly6Clo monocytes. In accordance with this, IL-6-stimulated

SM- versus LV-derived fibroblasts IL-6 stimulation led to a

4.3-fold (p = 0.0003) increase in attracted Ly6Chi versus Ly6Clo

monocytes by the supernatant of fibroblasts from the SM

compared to the LV (Figures 4A–C).
IL-6 stimulation induces NLRP3
inflammasome activity in left ventricle-
and skeletal muscle-derived fibroblasts

Next, we investigated the potential of LV- and SM-derived

fibroblasts to regulate inflammatory processes in the respective
A B

FIGURE 1

Skeletal muscle (SM)-derived fibroblasts show a higher gene expression of a-SMA, components of the extracellular matrix (ECM), and
chemokines compared to left ventricle (LV)-derived fibroblasts. mRNA expression of (A) a-SMA, ECM components, and modulators (Col1a1,
Col3a1, Col5a1, LOX, and LOXL2) and (B) chemokines (CCL2, CCL7, Cx3CL1) normalized to GAPDH of LV-derived (black) and SM-derived (red)
fibroblasts after 24-h culture with basal medium without IL-6 (basal condition; bright hollow circle). Mean ± 95% CI; n = 36, N = 6; Mann–
Whitney/Welch’s test with post-hoc Benjamini–Hochberg correction; adjusted p-value: *p < 0.05,***p < 0.001.
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tissues in response to IL-6 in more depth. Fibroblasts are the

main source of cardiac NLRP3 inflammasome activity (29),

whereas the inflammatory potential of SM-derived fibroblasts

is still underexplored. Thus, the expression of NLRP3

inflammasome components in LV- and SM-derived fibroblasts

was evaluated. Protein expression of NLRP3 was 1.6-fold

(p < 0.0001) and 2.0-fold (p < 0.0001) increased as compared

to basal conditions in LV- and SM-originated IL-6-stimulated

fibroblasts, respectively. Caspase-1 expression was similarly

upregulated in stimulated fibroblasts of both tissues (2.1-fold

versus 2.5-fold, p = 0.0003 versus p < 0.0001) in LV- versus SM-

derived fibroblasts compared to unstimulated cells. In
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accordance with the previous results, the expression of the end

product of the inflammasome formation, IL-1b, was enhanced in
stimulated LV- (3.5-fold, p < 0.0001) and SM-derived fibroblasts

(4.0-fold, p < 0.0001) compared to respective unstimulated

controls. No difference in NLRP3 inflammasome activity was

observed between LV- and SM-derived fibroblasts, under neither

basal conditions nor IL-6 stimulation (Figure 5A). Following this

observation, we further analyzed whether there was a difference

in the expression of inflammasome components depending on

the a-SMA+ versus a-SMA−
fibroblast population. Independent

of the expression of a-SMA, the NLRP3 inflammasome activity

was increased in LV- and SM-derived fibroblasts upon
A B

D E F

C

FIGURE 2

IL-6 stimulation leads to differential regulation of a-SMA in left ventricle (LV)- and skeletal muscle (SM)-derived fibroblasts. mRNA expression of
a-SMA, ECM components, and modulators (Col1a1, Col3a1, Col5a1, LOX, and LOXL2) normalized to GAPDH and the respective basal condition
of (A) LV-derived (black) and (B) SM-derived (red) fibroblasts after 24-h culture with basal medium without IL-6 (basal condition; bright hollow
circle) or with 10 ng/ml of IL-6 (dark filled circle); n = 36, N = 6, Mann–Whitney/Welch’s test. (C) Percentage of gated a-SMA+ cells (flow
cytometry data) of LV-derived (black) and SM-derived (red) fibroblasts after 24-h culture with basal medium without IL-6 (basal condition; bright
hollow circle) or with 10 ng/ml of IL-6 (dark filled circle); n = 18, N = 3, Kruskal–Wallis/one-way ANOVA. (D) Cell number assessed via Crystal
Violet assay and absorption at 595 nm from LV-derived (black) and SM-derived (red) fibroblasts after 24-h culture with basal medium without
IL-6 (basal condition; bright hollow circle) or with 10 ng/ml of IL-6 (dark filled circle). Total collagen content of LV-derived (black) and SM-
derived (red) fibroblasts after 24-h culture with basal medium without IL-6 (basal condition; bright hollow circle) or with 10 ng/ml of IL-6 (dark
filled circle) measured via Sirius Red assay and absorption at 540 nm (E) unnormalized and (F) normalized to cell number (Crystal Violet assay
data); n = 30, N = 3, Kruskal–Wallis/one-way ANOVA; all data are presented as mean ± 95% CI and tested with post-hoc Benjamini–Hochberg
correction; adjusted p-values: **p < 0.01, ***p < 0.001.
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stimulation with IL-6, and no differences among the fibroblasts

of the different tissues were observed (Figures 5B, C).
Left ventricle- and skeletal muscle-
derived fibroblasts have a differentially
regulated mitochondrial and
glycolytic metabolism

Since increased IL-6 is strongly associated with disturbances

in metabolism in both the heart and SM (37–40) and since

inflammation and cellular metabolism are linked via NLRP3

inflammasome activity (41, 42), we next investigated the impact

of IL-6 on the fibroblast’s mitochondrial function and glycolytic

function using a Seahorse assay. Under basal conditions,
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fibroblasts from the SM showed a higher mitochondrial energy

consumption characterized by increased basal respiration (1.6-

fold, p < 0.0001), ATP production (1.6-fold, p < 0.0001), proton

leakage (1.4-fold, p = 0.0498), maximal respiration (1.8-fold,

p < 0.0001), and spare respiratory capacity (2.1-fold, p = 0.0301)

as compared to LV-derived fibroblasts. In response to IL-6, LV-

and SM-derived fibroblasts showed a decreased mitochondrial

metabolic activity indicated by reduced basal respiration (1.5-

fold versus 1.3-fold, both p = 0.0014), ATP production (1.3-fold

versus 1.2-fold, p = 0.0206 versus p = 0.0024) compared to basal

conditions. Both proton leakage and spare respiratory capacity

were not regulated upon cytokine stimulation with IL-6, in

neither LV- nor SM-derived fibroblasts (Figure 6A). We next

showed that LV-derived fibroblasts have an increased glycolytic

metabolism as compared to fibroblasts from the SM. The
A B

D E

F G

C

FIGURE 3

IL-6 stimulation leads to secretion of anti- and pro-inflammatory chemokines in left ventricle- and skeletal muscle-derived fibroblasts. mRNA
expression of CCL2, CCL7 and CX3CL1 normalized to GAPDH and the respective basal condition of (A) LV-(black) and (B) SM- (red) derived
fibroblasts after 24 h culture with basal medium without IL-6 (basal condition; hollow circle) or with10 ng/ml IL-6 (filled circle); n=36, N=6,
Mann-Whitney/Welch’s test; Protein expression of (C) CCL2, (D) CCL7 and (E) CX3CL1 in the supernatant and ratio of (F) CCL2 and CX3CL1 and
(G) CCL7 and CX3CL1 normalized to total protein content measured via bicinchoninic acid assay and respective basal condition of LV (black)-
and SM (red)-derived fibroblasts after 72 h culture with basal medium without IL-6 (basal condition; bright hollow circle) or with 10 ng/ml IL-6
(dark filled circle); n=24, N=4, Kruskal-Wallis/One-Way ANOVA; All data are presented as mean ± 95 % CI and tested with post hoc Benjamini-
Hochberg correction; adjusted p-values: *p < 0.05.
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A B C

FIGURE 4

IL-6 stimulation leads to attraction of different monocyte subsets to left ventricle (LV)- versus skeletal muscle (SM)-derived fibroblasts.
Percentage of gated (A) CD11b+CD115+Ly6Chi and (B) CD11b+CD115+Ly6Clo monocytes and (C) ratio of Ly6Chi versus Ly6Clo monocytes
attracted by the medium of LV-derived (black) and SM-derived (red) fibroblasts after 72-h culture with basal medium without IL-6 (basal
condition; bright hollow circle) or with 10 ng/ml of IL-6 (dark filled circle), n = 18, N = 3; Kruskal–Wallis/one-way ANOVA. All data are presented
as mean ± 95% CI and tested with post-hoc Benjamini–Hochberg correction; adjusted p-values: *p < 0.05, **p < 0.01, ***p < 0.001.
A

B

C

FIGURE 5

IL-6 stimulation leads to upregulation of NLRP3 inflammasome activity in left ventricle (LV)- and skeletal muscle (SM)-derived fibroblasts.
Percentage of gated (A) NLRP3+, Caspase-1+, and IL-1b+ cells in the global population; (B) NLRP3+, Caspase-1+, and IL-1b+ cells in the a-SMA+

subpopulation; and (C) NLRP3+, Caspase-1+, and IL-1b+ cells in the a-SMA− subpopulation of LV-derived (black) and SM-derived (red) fibroblasts
after 24-h culture with basal medium without IL-6 (basal condition; bright hollow circle) or with 10 ng/ml of IL-6 (dark filled circle), n = 18, N = 3.
All data are presented as mean ± 95% CI and tested with post-hoc Benjamini–Hochberg correction; adjusted p-values: **p < 0.01,***p < 0.001.
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glucose-induced overall glycolysis tended to be higher (1.6-fold;

not significant), and oligomycin-induced glycolysis (glycolytic

capacity) was increased in LV- versus SM-derived fibroblasts

(2.1-fold, p = 0.0246). The competence of the LV-derived

fibroblasts to adapt to the energy demand (glycolytic reserve;

2-DG-induced glycolysis) was 2.7-fold (p = 0.0087) higher under

basal conditions compared to fibroblasts of the SM, further

indicating that LV fibroblasts rather rely on glycolytic energy

production than SM-derived fibroblasts. IL-6 stimulation did

not affect glycolytic function in neither LV- nor SM-derived

fibroblasts. Likewise, IL-6 stimulation did not alter other sources

of extracellular acidification (non-glycolytic acidification)

(Figure 6B). Thus, IL-6 induces a metabolic shift toward

reduced mitochondrial energy production rather than altered

glycolysis in LV- and SM-derived fibroblasts.
Secretion of gp130 receptor in left
ventricle- versus skeletal muscle-
derived fibroblasts

To obtain insights into the different biological responses in

fibroblasts from the LV and SM upon IL-6 stimulation, we

analyzed the expression of the IL-6R and gp130. According to

our data, IL-6 stimulation did not affect IL-6R expression on

mRNA level. However, secretion of the IL-6 co-receptor gp130

tended to be higher in unstimulated (4.3-fold, not significant)

and stimulated LV-derived fibroblasts (3.7-fold, not significant)

compared to fibroblasts from the SM (Figure 7), suggesting a

different potential in the regulation of IL-6 trans-signaling

between LV- and SM-derived fibroblasts.
Discussion

In this study, we showed that LV- and SM-derived

fibroblasts differ in basal expression of ECM components and

chemokines. IL-6 stimulation led to the induction of an a-SMA-

expressing phenotype, increased NLRP3 inflammasome activity,

and de-regulated mitochondrial metabolism in both tissue

fibroblasts, by which LV-derived fibroblasts are characterized

with a chemokines profile attracting anti-inflammatory

monocytes, whereas SM-derived fibroblasts attract pro-

inflammatory monocytes.

Single-cell analysis of fibroblasts from the heart and SM

indicates different fibroblast phenotypes and an organ-specific

fibroblast-mediated ECM profile (28). Biologically, intra-organ

heterogeneity of fibroblasts on a basal level may be related to the

diverse microenvironment of the fibroblasts in different tissues,

including different surrounding cells, different mechanosensation,

and metabolism. Indeed, the LV and quadriceps consist of two

different types of muscles (cardiomyocytes versus SM cells)

exhibiting a location-dependent physiological environment and
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cellular demand. In agreement, we show that LV- and SM-derived

fibroblasts differ in their basal expression of ECM components

and chemokines by which fibroblasts from the SM have a higher

expression, except for basal LOXL2 expression, which is reduced

compared to fibroblasts from the LV. In addition, while LV-

derived fibroblasts seem to be more dependent on glucose

metabolism compared to SM-derived fibroblasts, the

mitochondrial activity is higher in unstimulated SM- compared

to LV-derived fibroblasts.

We next investigated whether LV- and SM-specific

fibroblasts differ in their responsiveness to IL-6, analyzing

potential distinct biological functions of fibroblasts at different

local sites. Stimulation of LV- and SM-originated fibroblasts

with IL-6 led to transdifferentiation of fibroblasts from both

tissues into an a-SMA-expressing phenotype. In addition to

producing and modulating ECM, activated (myo)fibroblasts are

well known to strongly influence cardiac inflammation (29, 34).

A central function of cardiac fibroblasts is the attraction of

immune cells via chemokine expression (34). The comparison of

chemokine expression from fibroblasts of both tissues did not

show any difference in CCL2 expression between LV- and SM-

derived fibroblasts supplemented with IL-6. In contrast, CCL7

expression was increased in IL-6-stimulated LV- and SM-

derived fibroblasts, whereas CX3CL1 was only upregulated

following IL-6 stimulation in LV fibroblasts. CCL7 is a pro-

inflammatory regulator of cardiac remodeling and critical for the

recruitment of monocyte subsets in the myocardium (43, 44).

CX3CL1 functions in a later phase of the myocardial healing

process by mediating the attraction of anti-inflammatory

monocytes and subsequent support of tissue repair by

modulating the aggregation of activated cardiac (myo)

fibroblasts (35). Little is known about the impact of fibroblasts

in the SM on inflammation and notably about the influence on

the induction of tissue-specific immune responses. Here, we

show that IL-6 stimulation increased the release of CCL7 to

CX3CL1 in the supernatant of SM-originated fibroblasts, hinting

to a possible role of SM-derived fibroblasts driving a pro-

inflammatory immune response. This is supported by our

migration assay data, illustrating the attraction of more pro-

inflammatory Ly6Chi than anti-inflammatory Ly6Clo monocytes

versus supernatant of IL-6-stimulated SM fibroblasts. In

addition, IL-6 increased NLRP3 inflammasome activity in SM

fibroblasts. These findings corroborate the contribution of SM

fibroblasts in the less recognized presence of muscle

inflammation (8, 9) and pro-inflammatory monocyte presence

(10, 45) in muscles of patients with HF and circulating cytokines.

Instead, fibroblasts from the LV potentially play an ambivalent

role in driving inflammation following IL-6 by, on the one hand,

supporting anti-inflammatory immune responses attracting

Ly6Clo monocytes and, on the other hand, exhibiting high

NLRP3 inflammasome activity, thus supporting pro-

inflammatory reactions upon IL-6 stimulation. It further

accentuates how LV fibroblasts may act differently on the
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inflammatory response as previously already shown for TGF-b
and IFN-g (22).

Differences in the responsiveness of LV- and SM-derived

fibroblasts to stimulation with IL-6 might be explained by

variations in the fibroblast’s IL-6R expression (46, 47),

involving signaling over membrane-bound IL-6R (via cis

signaling). Following our findings, IL-6R expression did not

differ among LV- and SM-derived fibroblasts, although we

observed a higher secretion of the natural antagonist of the

soluble IL-6R, soluble gp130 receptor (48, 49) by LV- compared

to SM-derived fibroblasts. Fibroblasts also respond to trans IL-6

signaling (47), involving the binding of a IL-6/IL-6R complex to
Frontiers in Immunology 11
the ubiquitously expressed gp130 receptor (50). Thus,

differences in trans IL-6 signaling in LV- and SM-derived

fibroblasts might be a reason for the diverse response to IL-6.

The higher secretion of the natural antagonist of the soluble IL-

6R, soluble gp130 receptor (48, 49), by LV- compared to SM-

fibroblasts hints at a function of LV-derived fibroblasts in

protecting the heart from detrimental systemic effects of IL-6,

which is also supported by the chemokine profile in stimulated

cells. IL-6 is known to be the first protective during acute cardiac

inflammation, but excessive IL-6 during chronic inflammation

leads to malignant effects on cardiac function (16, 51). Here, LV-

derived fibroblasts might play an important role in mediating the
A

B

FIGURE 6

IL-6 stimulation leads to differential regulated mitochondrial and glycolytic disturbances in left ventricle (LV)- versus skeletal muscle (SM)-
derived fibroblasts. Mitochondrial stress test measuring (A) oxygen consumption rate (OCR) describing basal respiration, ATP production, proton
leak, maximal respiration, and spare respiratory and glycolytic stress test assessing (B) extracellular acidification rate (ECAR) describing glycolysis,
glycolytic capacity, glycolytic reserve, and non-glycolytic acidification normalized to protein amount in mg of LV-derived (black) and SM-derived
(red) fibroblasts after 4-h culture with basal medium without IL-6 (basal condition; bright hollow circle) or with 10 ng/ml of IL-6 (dark filled
circle); n = 15, N = 3. All data are presented as mean ± 95% CI and tested with post-hoc Benjamini–Hochberg correction; adjusted p-values:
* p < 0.05, ** p < 0.01, *** p < 0.001.
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balance between cardio-protection and chronic inflammatory

response in the heart. IL-6 induces NLRP3 inflammasome

activity and IL-1b production in macrophages (52). IL-1b
further drives the production of IL-6, creating a positive

feedback loop in fibroblasts (53), which might, due to an

excess of local IL-6, lead to a shift in the fibroblast’s phenotype

in the heart in the course of systemic inflammation.

In the SM instead, the effect of IL-6 on the fibroblasts rather

implicates direct regulation of the immune reaction to pro-

inflammatory responses, further demonstrating the location-

dependent biological function of fibroblasts from different

organs in the context of inflammation. In the SM, it has been

shown that IL-6 induced aberrant mitochondrial metabolism

(37). This further draws attention to the role of the NLRP3

inflammasome activity in linking metabolism and inflammation

not only in the heart (42) but in the muscle as well. The NLRP3

inflammasome is known to become activated upon metabolic

disturbances and boosts pro-inflammatory immune reactions

via IL-1b, which not only drives myocardial remodeling (42) but

also is the hallmark of cachexia, metabolic de-regulation (54, 55).

According to the data presented here, IL-6 could be here an

important mediator between de-regulated metabolism in

cachexia and inflammatory response in fibroblasts from the

LV and SM regarding NLRP3 inflammasome activity.

Furthermore, on a cellular level, analysis of mitochondrial

function revealed that treatment with IL-6 leads to a

significant reduction of basal and ATP-linked respiration in

fibroblasts from both tissues, indicating either deregulation of

ATP use or synthesis of substrates being used for oxidization. In

a physiological state, the heart highly depends on the generation

of ATP via oxidative phosphorylation in the mitochondria

(>95%) and only to a less extent via glycolysis (56). In the SM,
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fast switches from glycolytic to mitochondrial metabolism allow

to metabolically adapt to short-term and sustained

activities (57). Disturbances in mitochondrial energy

production have been reported in both SM cells and the

cardiomyocytes of cachectic mice (19, 58, 59). As a response

to disturbed mitochondrial metabolism in HF, a switch to a

higher contribution of glycolysis to overall energy production is

observed (60). Therefore, we performed a glycolytic stress test to

further understand the shifted metabolic processes in IL-6-

stimulated fibroblasts. Here, we showed that IL-6 did not affect

glycolysis in LV-derived fibroblasts, whereas glycolysis,

glycolytic capacity, and reserve tended to be lower in SM

fibroblasts following IL-6 stimulation, suggesting a higher

sensitivity to change in glycolysis in SM fibroblasts, although

with respect to both tissues, IL-6 mainly regulates mitochondrial

metabolism, which can further drive the fibroblast ’s

inflammatory phenotype. This highlights that the NLRP3

inflammasome might be directly regulated either by IL-6 or

via disturbances in mitochondrial rather than in glycolytic

metabolism in fibroblasts from the LV and SM.

IL-6 is a mediator of systemic inflammatory responses not

only in cancer and HF but also in other inflammatory and

infectious diseases. For instance, a link between cardiovascular

diseases and SARS-CoV-2 infection is represented by high IL-6

levels in patients with severe disease progression. IL-6 is here

discussed not only to be a biomarker describing the severity and

outcome of the disease but also to play a role as a potential

therapeutic target against COVID-19 (61).

Based on our findings illustrating that IL-6 induces NLRP3

inflammasome activity and hence the inflammatory potential of

fibroblasts in the SM and LV, fibroblasts might be able to serve as

positive feedback amplifiers of local and subsequent systemic IL-
A B

FIGURE 7

IL-6 trans-signaling is differently regulated in left ventricle (LV)- versus skeletal muscle (SM)-derived fibroblasts. (A) IL6R mRNA expression
normalized to GAPDH and respective control of LV-derived (black) and SM-derived (red) fibroblasts after 24-h culture with basal medium
without IL-6 (basal condition; bright hollow circle) or with 10 ng/ml of IL-6 (dark filled circle), n = 18, N = 3, Kruskal–Wallis/one-way ANOVA. (B)
Protein expression of gp130 in the supernatant normalized to total protein content measured via bicinchoninic acid assay of LV-derived (black)
and SM-derived (red) fibroblasts after 72-h culture with basal medium without IL-6 (basal condition; bright hollow circle) or with 10 ng/ml of IL-
6 (dark filled circle). All data are presented as mean ± 95% CI and tested with post-hoc Benjamini–Hochberg correction.
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1b and IL-6 production, which would lead to severe functional

effects in the heart (5). Beneficial effects are shown following

NLRP3-, IL-1b-, and IL-6-inhibiting drugs on HF (62, 63),

which might therefore be partly explained by the inhibition of

the pro-inflammatory potential of LV and SM fibroblasts.

We conclude that SM- and LV-derived fibroblasts differ

under basal conditions and following IL-6 supplementation.

Their differential responsiveness to IL-6 in terms of attraction

of different monocyte subclasses suggests a different

contribution of SM and LV fibroblasts to local and (potential)

systemic inflammation in cancer, HF, and hereto related

cachexia. However, the similar responsiveness of SM and LV

fibroblasts related to NLRP3 activation following IL-6 suggests

that SM-derived fibroblasts could be potentially used as a tool to

mirror the cardiac inflammatory NLRP3 response during cancer

progression prior to cardiac damage.
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