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Balancing enough immunosuppression to prevent allograft rejection and yet

maintaining an intact immune system to respond to vaccinations, eliminate

invading pathogens or cancer cells is an ongoing challenge to transplant

physicians. Antibody mediated allograft rejection remains problematic in

kidney transplantation and is the most common cause of graft loss despite

current immunosuppressive therapies. The goal of immunosuppressive

therapies is to prevent graft rejection; however, they prevent optimal vaccine

responses as well. At the center of acute and chronic antibody mediated

rejection and vaccine responses is the B lymphocyte. This review will

highlight the role of B cells in alloimmune responses including the

dependency on T cells for antibody production. We will discuss the need to

improve vaccination rates in transplant recipients and present data on B cell

populations and SARS-CoV-2 vaccine response rates in pediatric kidney

transplant recipients.
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Introduction

The role of pre-existing humoral antibodies against donor cells mediating immediate

graft loss or hyperacute rejection was identified early in the history of transplantation (1).

Genotyping human leukocyte antigen (HLA) class I and class II alleles in donors and

recipients and careful testing of recipients’ serum for anti-donor HLA antibodies before

transplantation to avoid transplanting donors to recipients with preformed antibodies

have essentially eliminated hyperacute rejection (2). However, development of anti-T cell

responses and de novo anti-donor antibodies to allografts remains problematic. Acute
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allograft rejection is strongly related to the development of

biopsy-proven chronic allograft dysfunction and subsequent

graft loss (3). Preventing T cell mediated, and antibody-

mediated destruction of allografts is the goal of induction and

maintenance immunosuppression. However, the intensity of

immunosuppression is tempered by the risks of overwhelming

infections and post-transplant lymphoproliferative disease.
The basics: T cell activation

The immune system is comprised to two components—

innate and adaptive immunity. The innate system involves

natural killer (NK) cells, macrophages, and dendritic cells

(DC), among others, that express receptors for a broad range

of pathogen- or danger-associated molecular patterns (PAMPs

and DAMPs) (4). Once thought to be minimally involved in

transplant rejection, it is now recognized that innate system

activation can set the stage for an adaptive alloimmune response.

This is particularly relevant in that ischemia reperfusion injury

(IRI) is thought to incite an innate response that can prime later

allograft rejection (5). While this is an area of active study, a

detailed discussion of the innate immune system involvement in

allograft rejection is beyond the scope of this review.

In light of this, the adaptive immune response is the most

well characterized aspect of transplant rejection. Adaptive

immune responses are classified as cellular or humoral.

Cellular responses are mediated by T lymphocytes while

humoral responses are characterized by the production of

antibodies by B lymphocytes and plasma cells. Both responses

are intertwined and overlap. CD4 T cells provide critical help to

B cells to produce antibodies and B cells can play a role in T cell

activation via antigen presentation, co-stimulation and cytokine

secretion. In addition, both T cells and B cells have regulatory

functions. The interaction between dendritic cells, naïve T cells,

and B cells is critical for the initiation and differentiation of the

immune response resulting in elimination of the invading

pathogen and induction of a life-long memory response (6).

Naïve lymphocytes circulate between the blood, lymph

nodes and spleen. Within secondary lymphoid organs, naïve T

and B cells are physically separated (7). Dendritic cells reside

within the T cell areas of secondary lymphoid tissue and are the

most potent antigen presenting cells (8). They extend their

dendrites and are constantly contacting and scanning the

surrounding T cells in search of those that are specific for the

antigens they have processed and presented on the surface as

peptide/major histocompatibility complexes (9). The 3-signal

model of T-cell activation in the development of an adaptive

immune response applies to allograft rejection (10–13).

Alloantigen recognition by T cells (signal 1) can occur

through three different pathways: the direct pathway, the

indirect pathway or the semidirect pathway (14–21). The direct

pathway occurs when the T-cell receptor on the surface of the T
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cell interacts with intact allogeneic HLA molecules on the surface

of donor antigen-presenting cells (APCs) that have migrated out

of the graft to secondary lymphoid tissue. The indirect pathway

occurs when donor HLA proteins or other antigens are processed,

and peptides are loaded onto recipient MHC complexes and

presented on the surface of recipient APCs. The semidirect

pathway occurs when recipient APCs acquire and present intact

donor-derived HLA molecules. Although it is typically presumed

that early acute graft rejection is mediated by the direct pathway

while the indirect pathway is responsible for later chronic allograft

rejection, this is likely an oversimplification as the indirect

pathway has a nuanced involvement in both processes (14).

The second costimulatory signal between APCs and T cell is

crucial for productive T cell activation (22). The most

extensively studied of the costimulatory signals is CD28 (23).

Binding of CD28 to its ligands (B7-1, CD80 and B7-2, CD86) on

APCs promotes optimal T-cell receptor (TCR) signaling events

that trigger IL-2 production, clonal expansion and generation of

effector and memory T cells (24). Inflammation initiates a

cascade of events that results in dendritic cell maturation as

well as tight and prolonged interactions between antigen bearing

DCs and antigen specific T cells whereby costimulatory signals

are provided to the T cell (signal 2) resulting in T cell activation

and clonal expansion (25). Many other costimulatory molecules

have been shown to play a role in T cell activation and there are

ongoing efforts underway to block costimulation with the hope

of inducing long lasting tolerance (26).

After activation, CD4 T cells interact with CD8 T cells to

provide help and the necessary proinflammatory cytokines

(signal 3) to promote differentiation into effector and memory

cytotoxic T cells and graft rejection (13). Activated CD4 and

CD8 T cells alter their cell surface phenotype to express different

cell surface molecules enabling cells to migrate from secondary

lymphoid organs into peripheral tissues such as the allograft,

inducing graft destruction (27). Acute T cell mediated rejection,

according to the Banff classification of kidney transplant

biopsies, is diagnosed with the presence of interstitial

lymphocytic inflammation involving >25% of non-sclerotic

cortical parenchyma and tubulitis involving one or more

tubules (28).
B cell activation

Although T cells are sufficient to mediate graft destruction,

they play a key role in activating B cells. With the help of CD4 T

lymphocytes, B cells are able to generate long-lasting, high-affinity

IgG antibodies (29). Within secondary lymphoid tissue, activated

antigen specific CD4 T cells migrate to the edges of the T cell

zones to interact with antigen specific B cells (30, 31). This

interaction is critical for B cell expansion, isotype switching and

antibody production (32). When present on the surface of B

lymphocytes, the immunoglobulin serves as the antigen receptor
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for B cells. B cells that bind antigen via their B cell receptor

upregulate chemokine receptor 7 (CCR7) and Epstein-Barr virus–

induced receptor 2 (EBI2) levels on their cell surface and are able

to migrate to the B-T cell border (33). The B cells internalize the

protein antigen and process it into peptides loaded on class II

major histocompatibility complex (MHC) molecules. It is at the

T-B cell border where they encounter cognate T cells that provide

the necessary costimulatory help. B cells characterized by the

expression of the B cell lymphoma 6 (BCL6) transcription factor

migrate to the germinal centers and undergo clonal expansion,

somatic hypermutation and immunoglobulin isotype class switch

recombination, resulting in affinity selection to generate a highly

specific anti-donor response (34). The germinal center reaction

results in the generation of memory B cells and long-lived plasma

cells, both of which allow for a long-term donor-specific humoral

immune response (35).
B cell memory

Most memory B cells bind their specific antigen with a

higher affinity than their naïve counterparts (36). Upon antigen

re-challenge, memory B cells undergo activation, clonal

expansion and germinal center formation much faster and to a

more enhanced degree compared to naïve B cells. The result is a

rapidly generated high affinity and specific antibody. The

longevity of memory B cells is dictated by the BCR signaling

and thus will influence the secondary response (37–39). The

mechanism underlying control of memory B cell longevity is not

well elucidated. A diversity of the BCR occurs as a result of

somatic hypermutation (SHM) and class-switch recombination.

By uncoupling these two processes, it has been demonstrated

that class switching to IgG1 favors the formation of plasma cells

while SHM can reduce the longevity of memory B cells (37).

Similarly, it has also been suggested that B cell memory relies on

varying numbers of isotype switched immunoglobulins and that

antigen specific memory B cell longevity may also be a result of

genetic predisposition (38, 39). Studies to identify antigen

specific B cells in circulation of transplant recipients would be

a valuable tool to determine who is at risk for chronic antibody-

mediated rejection especially in those cases where donor specific

antibodies (DSAs) are not present in circulation (40).

Long lasting plasma cells are also part of the memory

response and they persist for several years or even lifelong in

the bone marrow (41). They constitutively secrete antibody even

in the absence of antigen (42). When directed against the

allograft, these secondary responses are problematic. The

reactivation of memory B cell responses and generation of

long-lived antibody producing plasma cells cause a long-

lasting humoral anti-donor immune response resulting in

continuous inflammatory damage to the graft that ultimately

leads to graft loss. Current immunosuppressive medications are
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T cell centric and focus on preventing T cell activation. They are

very effective at preventing naïve responses but less effective in

blunting a memory immune response. By preventing T cell

activation, B cell responses and antibody production are

thwarted in most cases. However, T cell independent B cell

responses have the capability to occur despite adequate

maintenance immunosuppression (43). This suggests that

some B cell mediated allograft injury and DSA formation can

occur in the absence of T cell help.
Antibody mediated allograft
rejection

The hallmark of acute and chronic antibody mediated

rejection (AMR) is presence of circulating DSAs, evidence for

antibody binding to the vascular endothelium inducing

complement act ivat ion (e .g . , C4d deposi t ion) and

microvascular inflammation (44, 45). Antibody producing cells

can be short lived while circulating in the blood and long lived

when found in bone marrow, secondary lymphoid tissue and

peripheral tissues such as an allograft (46). Studies are currently

underway to phenotype the various DSA producing cell

populations. DSAs can cause a progressive ischemic insult to

the allograft eventually resulting in graft loss (45). Five isotypes

of antibodies (IgM, IgD, IgG, IgA, and IgE) exist in circulation

and are classified according to the constant regions of the heavy

chain. The constant domains make up the Fc fragment, which

mediates effector functions via Fc receptors and complement

activation. The variable domains of the antibodies determine

antigen specificity and antigen binding. The antibodies that are

involved in allograft rejection are usually IgG (47). There are

four subclasses of IgG antibodies (IgG1, IgG2, IgG3, and IgG4)

with IgG1 being the predominant subclass in circulation. Each

isotype varies in its half-life, ability to cross placenta, the degree

to which it can neutralize pathogens, and activate macrophages

or complement. The nature of the antigen and the cytokine

environment during activation results in the different isotypes.

Various subclasses of donor specific anti-HLA antibodies have

been described in transplant recipients (23, 24, 48) and appear to

have the same distribution in the plasma as the general

immunoglobulin population.

DSAs can be directed again HLA and non-HLA molecules

and have been reported to be associated with poor renal allograft

outcomes (49–51). The presence of circulating DSA is a

biomarker for T cell activation and previous acute or chronic

cellular rejection (52–55). DSAs bind to endothelium of the

allograft and have the potential to cause microvascular

inflammation, ischemia and graft damage (i.e., glomerulitis,

and peritubular capillaritis) (28, 56).

DSA can be of the immunoglobulin subclasses that can fix

complement and those that cannot. The binding of DSA to the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.948379
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Crane et al. 10.3389/fimmu.2022.948379
endothelial cell surface activates the classical complement

pathway by engaging the C1 complex. The membrane attack

complex is generated and the coagulation cascade is initiated

resulting in thrombosis, fibrinoid necrosis, ischemia and loss of

graft function (47). As a covalently bound degradation product

of the classical complement pathway, C4d deposits detected on

the endothelium serve as a marker of AMR (57). In particular, it

has been shown that C1q binding DSA portend a higher risk of

adverse graft outcomes compared to non-C1q binding DSA (55).

Alternatively, circulating DSA that do not fix complement

promote graft damage by engaging the Fcg receptors on

natural killer cells, macrophages and neutrophils (58) resulting

in the release of growth factors, endothelial and smooth muscle

cell proliferation or platelet activation (59, 60).

Chronic AMR has emerged as a leading cause of kidney

allograft loss (61, 62). Chronic AMR appears to be less

responsive to current immunosuppression compared to T cell

mediated rejection (63). As a result, there is intense interest in

understanding the detailed mechanisms of B cell memory

generation, antibody production and plasma cell persistence.

Therapies for AMR include antibody removal with

plasmapheresis, B-cell depletion with agents such as rituximab,

or targeting memory B cells with proteasome inhibitors such

as bortezomib.

While de novo generation of DSAs and subsequent AMR can

be devastating to a kidney allograft, the immunologic process of

antibody production directed against pathogens is protective

and can be lifesaving. Vaccination is a means by which both

cellular and humoral memory responses can be induced to

protect against life threatening pathogens. We measure vaccine

responses with serologic testing however, that does not take into

consideration the essential cellular components i.e., T and B

lymphocytes mentioned above. While immunosuppressive

therapies can successfully prevent graft rejection, they are

problematic in that they prevent optimal vaccine responses.

Ultimately, the goal is to fully vaccinate transplant recipients

prior to transplantation in order to optimize a response before

exposure to an immunosuppressive regimen. In this regard, the

coronavirus disease of 2019 (COVID-19) pandemic has posed

novel challenges to the transplant community.
Vaccinations in transplant recipients

The introduction of routine childhood immunizations has

saved lives (64). Many vaccine preventable diseases have either

been irradicated or reduced in frequency in the general

population due to national vaccine efforts. In the US, the

proportion of unvaccinated children remains low (< 1%), and

thus the benefits of herd immunity can protect pediatric solid

organ transplant (SOT) recipients (65). The American Society of

Transplantation (AST) recommends that pediatric SOT

candidates be immunized prior to transplantation (66).
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Although it is better to vaccinate patients prior to transplant,

vaccination rates in adult kidney transplant recipients remain

low (67). There is no national policy to mandate pre-transplant

vaccinations and as a result some patients are inadequately

vaccinated prior to transplant (68). In some circumstances,

patients under transplant evaluation may be receiving

immunosuppressive therapies that could alter antibody

responses. In those cases, it may be warranted to delay

vaccination for weeks or even months depending on the

immunosuppressive therapies for safety and efficacy reasons.

Although vaccine rates among UNOS kidney transplant centers

are improving (69) continued efforts to implement quality

improvement measures must be ongoing.

All kidney transplant recipients should receive non-live

vaccines based on the Kidney Disease Improving Global

Outcomes (KDIGO) guidelines (70). This is especially true

for those vaccines involved in cancer prevention (eg HPV).

Transplant recipients should not receive live vaccines due to

the risk of developing disease from the vaccine strain (66, 70,

71). Those on the transplant waitlist who receive a live virus

vaccine should wait a minimum of 4 weeks before receiving a

transplant. It is generally recommended to wait for 3–6

months after transplantation and until maintenance

immunosuppression levels are achieved before starting

vaccination in order to maximize the chances of an adequate

immune response (66, 70, 71). For the same concern,

vaccinations should be withheld from SOT recipients during

intensified immunosuppression, such as 2–6 months after

treatment of acute rejection episodes (71). However, in the

setting of a global pandemic, such as with COVID-19,

vaccination, albeit suboptimal, offers the possibility of

decreasing mortality and morbidity of viral infection.
SARS CoV-2 mRNA vaccination

Balancing enough immunosuppression to block the

alloimmune response while permitting antigen specific

immune responses to vaccines is a tightrope walk. Severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

mRNA vaccination is quite effective in a healthy general

population however, lower rates of seroconversion ranging

between 30-56% are seen in adult and pediatric kidney

transplant recipients (72–77). The mechanisms by which

immunosuppression might alter lymphocyte function in this

population remains unclear. An additional wrinkle in the plot

is the risk of inducing an acute rejection episode due to the

heterogeneity of the immune response and possible cross

reactivity (78, 79).

We looked at our single center retrospective cohort of

pediatric and adolescent kidney transplant recipients (KTR)

who received a two or three dose series of an mRNA SARS-

CoV-2 vaccine. Forty-three pediatric and adolescent KTR
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received 2-doses of an mRNA SARS-CoV-2 vaccine and 30

received a third dose. Forty (93%) received BNT162b2

(Pfizer-BioNTech), two (5%) received mRNA-1273

(Moderna) vaccine and one received a mixed vaccine series.

SARS-CoV-2 spike protein antibody levels measured 4-8

weeks after their second vaccine dose and again after the

third vaccine dose. We found that 56% of pediatric kidney

transplant recipients seroconverted following a 2-dose series.

Seroconversion increased to 85% in those who received a

third dose. In the 16 patients who did not seroconvert after a

two-dose series, 12 (75%) seroconverted following the third

dose (Figure 1). We did not observe any post-vaccination

rejection episodes (80).

In a subset of those enrolled in a prospective study to

examine the effects of immunosuppression on B-cell

populations and infections, T and B lymphocyte subsets,

immunoglobulin levels (IgA, IgG, IgM, and IgE), and vaccine

titers (pneumococcal, tetanus, diphtheria, pertussis, and

hepatitis B), and immunosuppressive medication doses

(tacrolimus, mycophenolate mofetil, azathioprine, and

prednisone) were evaluated prior to vaccination and at 6-

month intervals.

No significant difference in immunoglobulin levels, T cell

populations, or vaccine titers was observed. There was a trend

toward lack of seroconversion with higher doses of

mycophenolate mofetil (MMF), at 91 mg/m2/day median

difference (p=0.06). All patients on azathioprine instead of
Frontiers in Immunology 05
MMF seroconverted. Those who did not seroconvert had

lower hemoglobin levels (b=-1.30, p=0.009) and lower

platelet count (b=-56.00, p=0.057). Non-responders to the

vaccine showed a trend toward increased naïve B cell

percentage (b= 12.50, p=0.11) and decreased total memory

B cell percentage (b=-12.54, p=0.080). Increasing MMF

dosage was associated with an increase in naïve B-cell

percentage (b=0.016, p=0.0032) decrease in total memory B

cell percentage (b=-0.016, p=0.0034) (Figure 2), and decreased
in IgG level (b=-0.35, p=0.012).

Disruption in B cell population is likely due to

immunosuppression and associated with the use of MMF.

Non-responders showed non-significant trends toward high

MMF dosage, increased naïve B-cell percentage, and decreased

total memory B cell percentage. Trend toward decreased

hemoglobin levels and normal red blood cell mean cell

volume (MCV) supports that anemia could be due to bone

marrow suppression caused by MMF. Future studies will need

to investigate whether the defect is at the level of T cell

activation or T cell help. Work in adult kidney transplant

recipients has demonstrated additional vaccine doses can

induce a functional maturation of vaccine-reactive T cells

with significantly higher frequencies of IL-2 and IL-4

secreting and polyfunctional T cells being seen after a third

dose (81).

Despite immunosuppression, the underlying immunologic

machinery has the potential to “break through” after repeated
FIGURE 1

Median response and range of anti-S antibody titers (AU/mL) in response to SARS-CoV-2 vaccination in pediatric and adolescent kidney
transplant recipients (80). Of the 26 pediatric and adolescent kidney transplant recipients who received a third mRNA SARS-CoV-2 vaccine
dose, 22 (85%) seroconverted (defined as an anti-spike protein antibody titer >50 AU/mL). There was a significant increase in antibody titers
between dose 2 and 3 from a median of 66 AU/mL after two doses to 881 AU/mL after three doses. In the 16 subjects responding only after a
third dose, there was a significant increase in anti-S titer from 9.4 AU/mL to 682 AU/mL (p < 0.01) versus an increase from 4.9 AU/mL to 7.4 AU/
mL (p = 0.3) in those who did not (80).
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exposure and stimuli. Additional SARS-CoV-2 mRNA vaccine

doses are safe in kidney transplant recipients but may be

necessary to overcome the iatrogenic suppression of T-cell

proliferation and disruption of B-cell populations to optimize

a humoral response. However, the risk of causing enough

inflammation to promote acute rejection of the allograft

remains a potential concern that merits ongoing observation.
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