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on immunological genes to
predict the response to
neoadjuvant therapy in breast
cancer patients
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Yueyin Pan1,2* and Xinghua Han1,2*

1Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and
Medicine, University of Science and Technology of China, Hefei, China, 2Clinical Research Center
for Cancer Bioimmunotherapy of Anhui Province, Hefei, China
Breast cancer (BC) is the most common malignancy worldwide and

neoadjuvant therapy (NAT) plays an important role in the treatment of

patients with early BC. However, only a subset of BC patients can achieve

pathological complete response (pCR) and benefit from NAT. It is therefore

necessary to predict the responses to NAT. Although many models to predict

the response to NAT based on gene expression determined by the microarray

platform have been proposed, their applications in clinical practice are limited

due to the data normalization methods during model building and the

disadvantages of the microarray platform compared with the RNA-seq

platform. In this study, we first reconfirmed the correlation between immune

profiles and pCR in an RNA-seq dataset. Then, we employed multiple machine

learning algorithms and a model stacking strategy to build an immunological

gene basedmodel (Ipredictor model) and an immunological gene and receptor

status based model (ICpredictor model) in the RNA-seq dataset. The areas

under the receiver operator characteristic curves for the Ipredictor model and

ICpredictor models were 0.745 and 0.769 in an independent external test set

based on the RNA-seq platform, and were 0.716 and 0.752 in another

independent external test set based on the microarray platform.

Furthermore, we found that the predictive score of the Ipredictor model was

correlated with immune microenvironment and genomic aberration markers.

These results demonstrated that the models can accurately predict the

response to NAT for BC patients and will contribute to individualized therapy.
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Introduction

Breast cancer (BC) is the most common malignant tumor and

the fifth leading cause of cancer-related death worldwide. In 2020,

about 2,261,419 females were diagnosed with BC, and 684,996 died

from BC globally (1). Neoadjuvant therapy (NAT) plays an

important role in multidisciplinary treatment for early and locally

advanced BC. The latest study has demonstrated that residual

cancer burden after NAT in BC patients is significantly associated

with event-free survival (EFS) (2). Moreover, achieving pathological

complete response (pCR) may indicate longer disease-free survival

(DFS) and overall survival (OS) than others (3). Therefore, the

current purpose of NAT is not only to downstage for surgery, but

also to evaluate therapy response in vivo and improve prognosis. At

present, NAT for BC patients with aggressive phenotypes has been

recommended by several clinical practice guidelines. To achieve

higher pCR rates and better prognosis, anthracycline and/or taxane-

based therapy is currently the preferred treatment regimen.

However, only 14.7%~52.9% (4) patients who undergo NAT will

achieve pCR and have favorable outcomes, others, if initially

operable, may not get additional benefits from NAT, but may

suffer from side effects or even disease progression that may

adversely affect the surgery. Therefore, it is crucial and necessary

to predict the response to NAT to optimize the treatment plan.

In recent years, the development of artificial intelligence has

promoted the progress of precision medicine. It can help

clinicians gain insight into complex and large medical data to

make more accurate decisions and to improve the outcomes for

patients. For example, an intelligent VAB (5), which is a machine

learning algorithm based on clinicopathological, image, and

biopsy features, can identify BC patients who have achieved

pCR after NAT, and exempt them from surgery. For drug

response prediction, many artificial intelligence models have

been reported, such as Deep Drug Response (6), DeepDR (7),

tCNNS (8), DeepTTA (9), and VAE model (10). Although some

complex and state-of-art algorithms were employed in these

models, however, they were trained on an in vitro cell line or a

pan-cancer dataset. This may lead to their prediction failure in

vivo or in patients with specific cancer types and specific

treatments due to the complex and variable biological

environments in vivo. Moreover, a few machine learning

models to predict the response to NAT in BC patients have

also been proposed. Some models integrated clinicopathological

features (11, 12) to predict pCR, but clinicopathological features

are difficult to accurately and adequately characterize the

complex biological properties associated with drug response in

tumors. Other researchers established models using radiomics

features (13). However, due to the low reproducibility (14) of

radiomics features acquired through imaging, manual or semi-

automatic segmentation, and mathematical extraction, these

models are difficult to be widely used in clinical practice.

Compared with the above two types of models, there are more
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prediction models based on gene expression levels that were

determined by microarray (15–20). However, RNA-seq has

replaced microarray as the dominant high-throughput gene

expression level detection platform in recent years. Compared

with microarray, RNA-seq is more accurate because of the

absence of background level caused by cross-hybridization and

wider dynamic detection range, more reproducible for its

quantification by a direct digital other than an analogical

manner, more feasible in clinical practice for its higher

sensitivity and less sample required (21). Therefore, the model

based on gene expression levels determined by the RNA-seq

platform may be more robust and generalized. But to our

knowledge, the RNA-seq platform-based model to predict pCR

with NAT in BC patients has not been reported yet.

On the other hand, the relationship between the tumor

immune microenvironment and the response to NAT in BC

patients was observed more than a decade ago. Takayuki et al.

(22) found immune-related pathways or gene sets were

associated with the response to NAT in estrogen receptor-

positive BC patients. Carsten et al. (23) discovered that the

intratumoral lymphocyte was an independent predictor for pCR

in BC patients who received NAT. Yasmin et al. (24) confirmed

that lymphocyte-predominant BC and stromal lymphocytes

were independent predictors for pCR in a prospective study.

Besides lymphocytes, the expression of immunologic genes was

also connected to the response to NAT in BC patients (25).

Therefore, in this study, we first analyzed the association

between the immune microenvironment and the response to

NAT in BC patients in an RNA-seq dataset. Then, we built

machine learning models to predict the responses to NAT based

on immunological genes in the RNA-seq dataset and validated

the models in independent external datasets. Finally, we further

analyzed the correlation between the model prediction and the

immune microenvironment and genomic aberration.
Materials and methods

Data collection

Immune gene list and category information were obtained

from IMMPORT (https://www.immport.org/). Transcripts per

million (TPM) data and clinicopathological information of

GSE163882 and GSE123845 datasets were obtained from Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)

and the literature (26). GSE163882 was sequenced on Illumina

NextSeq 500 platform and served as a training set in this study.

GSE123845 was sequenced on Illumina HiSeq 2500 platform

and served as an independent external test set in this study. The

detailed information on the training and test datasets was

described in Table S1. Raw sequencing data of GSE163882

were downloaded from Sequence Read Archive (SRA, https://
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www.ncbi.nlm.nih.gov/sra, Accession: PRJNA688066). Raw data

and clinicopathological information of GSE20271 profiled on a

DNA microarray platform (Affymetrix Human Genome U133A

2.0 Array), were obtained from GEO. Samples in the datasets

with incomplete pCR information were removed. Another

RNA-seq dataset of BC patients was downloaded from The

Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/,

Accession: TCGA-BRCA), and the relevant mutation and

immune microenvironment data were obtained from the

literature (27). Hallmark and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway gene sets were collected from

MSigDB (https://www.gsea-msigdb.org/).
Data preprocessing and
model construction

All patients in the datasets had complete pCR information

and none was excluded (Table S1). In total, 1,087

immunological genes were available across all datasets.

Because TPM quantification was affected by the library size,

we used a relative gene expression level, which was calculated as

the proportion of the expression of an immunological gene to

the expression of all immunological genes, to make the

measurements of gene expression more comparable between

samples across datasets. Before building the model, the

Spearman rank correlation test was used for feature selection.

Categorical variable features were encoded by one-hot encoding.

The training set and test set were standardized by Z-score

according to the mean and standard deviation of the training

set. Principal component analysis (PCA) was used for

dimensionality reduction. All the feature engineering was

performed only on the training set and then applied on the

testing set to avoid data leakage. For model development, a

model stacking strategy (28) was used. Base models were trained

on the origin training dataset and meta models were trained

based on the outputs of the base models (Figure S1). Nine

machine learning algorithms, including least absolute shrinkage

and selection operator (Lasso) regression (29), ridge regression

(RR) (30), elastic net regression (ENR) (31), support vector

machine (SVM) (32), random forest (RF) (33), light gradient

boosting machine (lightGBM) (34), fully-connected neural

network (35) with one hidden layer (NNet1), fully-connected

neural network with two hidden layers (NNet2), and fully-

connected neural network with three hidden layers (Nnet3),

were used for training the candidate base and meta models

(Figure S1). The final outputs of the meta models were defined

as prediction score (PS). Due to the imbalance of the ratio

between the pCR patients and non-pCR patients in the training

set, we adjusted the loss functions using class weights according

to the class ratio when training the models. The hyperparameters

of the models were optimized using Bayesian optimization

through stratified 5-fold cross-validation in the training set
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curve (AUROC).
Bioinformatics and statistical analysis

All computations and analyses in this study were implemented

in Ubuntu 20.04.2 LTS using Python 3.8.12 and R 4.0.5. Detailed

software and library information is listed in Table S2. In brief, raw

RNA-seq data of GSE163882 were quality controlled and trimmed

by TrimGalore, aligned by HISAT2 (36), and counted by

featureCounts (37). Differential expression genes (DEGs) were

identified using edgeR (38), DESeq2 (39), and limma (40). Over-

representation analysis was performed using clusterProfiler (41).

GSVA was used for single-sample gene set enrichment analysis

(ssGSEA) (42). ImmuneSubtypeClassifier was used for the

classification of immune subtypes (27). The immune and stromal

cell sores were calculated by estimate (43). The abundance of

immune cell subgroups was estimated using CIBERSORTx (44).

scikit-learn and lightgbm were used for building models, and scikit-

optimize was used for hyperparameters optimization. The genomic

index (GGI) (45), Oncotype DX scores (46), and MammaPrint

scores (47) for patients in the GSE20271 dataset were calculated by

genefu (48). Brier score, area under precision-recall curve

(AUPRC), AUROC, specificity (SPE), sensitivity (SEN), negative

predictive value (NPV), and positive predictive value (PPV) were

calculated by ModelMetrics. The 95% confidence interval and

standard deviation of the metrics were estimated through

stratified bootstrap resampling (2000 replicates). Spearman rank

correlation test was performed to examine the associations. Fisher

exact test and Mann-Whitney U-test or Kruskal-Wallis test were

employed to compare the categorical and continuous data in

different groups respectively. Two-sided P or false discovery rate

(FDR) <0.05 was considered to be statistically significant.
Results

Association between immune profiles
and pCR

Firstly, the association between immune profiles and pCR

was analyzed in the training set. We employed three distinct

methods (edgeR, DESeq2, and limma) to identify DEGs between

patients who achieved pCR and those who did not (Figures

S2A-C). There were 294 overlapping DEGs found, 133 of which

were up-regulated and 161 of which were down-regulated

(Figure S2D). Gene Ontology (GO) over-representation

analysis revealed that the proteins encoded by the DEGs were

the components of extracellular matrix, chromosome, and T cell

receptors (Figure S2E). They were also involved in many

cytokine-related biological functions (Figure S2F) and mainly

participated in immune-related biological processes, especially
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lymphocyte-related (Figure S2G). KEGG pathway over-

representation analysis demonstrated that the DEGs

participated in immune-related signal pathways including viral

protein interaction with cytokine and cytokine receptor,

cytokine-cytokine receptor interaction, and chemokine

signaling pathway (Figure S2H). ssGSEA demonstrated that

the enrichment scores of antigen processing and presentation,

antimicrobials, BCR signaling pathway, chemokines, chemokine

receptors, cytokines, interferon receptor, interleukins,
Frontiers in Immunology 04
interleukins receptor, natural killer cell cytotoxicity, TCR

signaling pathway, TNF family members, and TNF family

members receptors were significantly increased in patients

who achieved pCR (Figure 1A).

Then, we looked at the relationship between pCR and the

immune subtypes and discovered that the pCR rate of IFN-g
dominant subtype patients was significantly high than that of

inflammatory or TGF-b dominant subtype patients (Figure 1B).

The immune scores and ESTIMATE scores for patients who
A

B

D

C

FIGURE 1

Association between immune profiles and pCR. (A) Comparisons of immune-related biological process enrichment scores between pCR and
non-pCR patients. (B) Comparisons of pCR rates among patients with various immune subtypes. (C) Comparison of the level of stromal cell
present, immune cell infiltration, and tumor purity between pCR and non-pCR patients. (D) Comparisons of infiltrating immune cell subsets
between pCR and non-pCR patients.
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achieved pCR were significantly higher than those for

patients who did not achieve pCR, although there was no

significant difference in stromal scores between them,

indicating that patients who achieved pCR had increased

immune cell infiltration and decreased tumor purity (Figure 1C).

Furthermore, we compared immunological cell subsets in

different patient groups and observed that the pCR patients

exhibited increased infiltration of naïve B cells, memory B cells,

CD8+ T cells, activated CD4+ memory T cells, activated NK cells,

M1 andM2macrophages, and activatedmast cells (Figure 1D).All

the above findings suggested that tumor immune profiles may

be closely related to the response to NAT in BC patients.
Model construction

Before building the model, we identified 62 immunological

genes in the training set that were strongly associated with pCR

by the Spearman rank correlation test (P < 0.001, Figure S3A).

Then, we built two prediction models based on the 62

immunological genes and the 62 immunological genes

combined with the clinicopathological characteristics (Table

S1), respectively (hereafter called Ipredictor model and

ICpredictor model respectively). For the Ipredictor model, we

first standardized the training and test sets and implemented

dimensionality reduction via PCA and kept 80% of the

components (Figure S3B). After that, the number of input

features was reduced to 23. Next, we trained nine candidate

base models using different algorithms based on the original

training data. The hyperparameters were optimized using

Bayesian optimization through stratified 5-fold cross-

validation in the training set (Figure S4), and the mean cross-

validation AUROCs of the candidate base models were 0.749,

0.742, 0.748, 0.736, 0.709, 0.742, 0.718, 0.731, and 0.744 for the

Lasso, RR, ENR, SVM, RF, lightGBM, NNet1, NNet2, and

NNet3 base models respectively (Table S3). Because only

when the base models are accurate and diverse can the stacked

model perform better than any base model (49), we chose the

Lasso, ENR, RR, lightGBM, and NNet3 base models, which are

different types of models and whose mean AUROCs were greater

than 0.74, as base models. Based on the predictions of the base

models, we also trained nine candidate meta models using

Bayesian optimization through stratified 5-fold cross-

validation in the training set (Figure S5). The mean cross-

validation AUROCs of the candidate meta models were 0.750,

0.751, 0.751, 0.752, 0.743, 0.741, 0.759, 0.755, and 0.752 for the

Lasso, RR, ENR, SVM, RF, lightGBM, NNet1, NNet2, and

NNet3 meta models respectively (Table S3). Most meta

models were improved compared to the best base model. All

neural network meta models (NNet1, NNet2, and NNet3) were

superior to any linear meta model (Lasso, ENR, or RR). It may

indicate that there may be some nonlinear relationship between

the input features and labels that a linear model may not be
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sufficient to explain. Therefore, we chose the best candidate meta

model NNet1, which was the simplest neural network and had

the highest mean cross-validation AUROC, as the final meta

model. For the ICpredictor model, clinicopathological

characteristics which may be associated with the response to

NAT, including estrogen receptor (ER) status, progesterone

receptor (PR) status, human epidermal growth factor receptor

2 (HER2) status, stage, and histological grade were available in

both the training set and test set (Table S1). However, about 27%

of histological grade information and 33% of stage information

were missing in the test set (Table S1). Therefore, we built the

ICpredictor model by combining the ER, PR, and HER2 status

with the Ipredictor model. Similar to the Ipredictor model

development process, we first trained nine candidate base

models (Figure S6 and Table S4), then selected Lasso, ENR,

RR, SVM, NNet1, NNet2, and NNet3 as base models for their

mean AUROCs greater than 0.8, and then trained nine candidate

meta models (Figure S7). But none of the candidate meta

models was significantly improved compared with the base

models (Table S4). According to Occam’s razor, considering

the complexity and performance of the models, we choose the

simplest Lasso base model as the final ICpredictor model.

Therefore, the final Ipredictor model consisted of five base

models (Lasso, ENR, RR, lightGBM, and NNet3 models) and

one meta model (NNet1 model), and the final ICpredictor model

was the lasso base model (Figure S8). In addition, for

comparison, we also built a model only based on

clinicopathological characteristics, including age, ER status, PR

status, HER2 status, histological grade, and clinical stage, using

the Lasso algorithm (hereafter called CPpredictor). The

hyperparameter of the CPpredictor model was also optimized

by Bayesian optimization through stratified 5-fold cross-

validation in the training set.
Model evaluation

After the models were constructed, we evaluated their

predictive abilities. To compare their predictive abilities with

those of clinicopathological characteristics, we imputed some

missing clinicopathological information in the test set. It has

been demonstrated that patients with a higher histological grade

are more likely to achieve pCR in many studies (50–53). Some

studies have also reported that patients with smaller tumor sizes

and/or negative regional nodes are more likely to achieve pCR,

although this is still controversial (50, 51). Therefore, we

imputed the missing histological grade with Grade 3 if the

patient achieved pCR and with Grade 1 if the patient did not.

The clinical T stage was imputed with T1 for the completely

missing one or earlier T stage for the undetermined one (for

example T1-2) if the patient achieved pCR, and with T3/4 or

more advanced stage if the patient did not achieve pCR. The

regional lymph node status was imputed with negative for
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completely missing one or N0-1 if the patient achieved pCR, and

with positive if the patient did not. These imputations gave the

clinicopathological characteristics and the CPpredictor model

maximum predictive abilities, which are greater than or equal to

the actual predictive abilities.

The PSs for patients calculated by the Ipredictor and

ICpredictor models in the training set and test set were

significantly associated with the actual responses to NAT, and

pCR patients had higher PSs (Figures 2A, B). The Brier scores of

the Ipredictor and ICpredictor models were 0.189 and 0.174 in

the training set (Figure 2C and Table S5), and were 0.194 and

0.187 in the test set (Figure 2D and Table S5). The AUPRCs of

the Ipredictor and ICpredictor models were 0.636 and 0.702 in

the training set (Figure 2E and Table S6), and were 0.64 and

0.658 in the test set (Figure 2F and Table S6). The AUROCs of

the Ipredictor and ICpredictor models were 0.749 and 0.801 in

the training set (Figure 2G and Table S7), and were 0.745 and

0.769 in the test set (Figure 2H and Table S7). These results

suggested that, combined with ER/PR/HER2 status information,

the predictive ability of the ICpredictor model was improved

compared to the Ipredictor model. However, both the Ipredictor

and ICpredictor models outperformed clinicopathological

characteristics or the CPpredictor model in the test set, which

is the main basis for screening for appropriate NAT candidates

in current clinical practice.

Because the PS was a continuous value, we determine the

optimal threshold value of the PS when the sum of SEN and SPE

reached the maximum in the training set. According to the

optimal threshold values, in the training set, the SPE, SEN, NPV,

and PPV were 0.739, 0.637, 0.784, and 0.58 respectively for the

Ipredictor model (Figure 2I and Table S8), and were 0.683,

0.787, 0.851, and 0.583 respectively for ICpredictor model

(Figure 2J and Table S8); in the test set, the SPE, SEN, NPV,

and PPV were 0.957, 0.31, 0.698, and 0.812 respectively for the

Ipredictor model (Figure 2K and Table S8), and were 0.841, 0.5,

0.734, and 0.656 respectively for ICpredictor model (Figure 2L

and Table S8). We also performed logistic regression analysis to

access the independent predictive power of the models.

Univariate analysis demonstrated that age, ER status, PR

status, histological grade, CPpredictor PS, Ipredictor PS, and

ICpredictor PS were related to pCR in the training set, and PR

status, histological grade, clinical N stage, clinical T stage, clinical

stage, CPpredictor PS, Ipredictor PS, and ICpredictor PS were

related to pCR in the test set. Multivariate analysis suggested that

both the Ipredictor PS and ICpredictor PS were the independent

predictors for pCR in both the training set and test sets

(Table S9).

Furthermore, we performed subgroup analyses. In ER+/HER2-

patients, the AUROCs of the Ipredictor and ICpredictor models

were 0.802 and 0.842 in the training set (Figure 3A), and were 0.761

and 0.807 in the test set (Figure 3B). In HER2+ patients, the

AUROCs of the Ipredictor and ICpredictor models were 0.681 and

0.734 in the training set (Figure 3C), and were 0.712 and 0.695 in
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the test set (Figure 3D). In ER-/HER2- patients, the AUROCs of

the Ipredictor and ICpredictor models were 0.752 and 0.752 in the

training set (Figure 3E), and were 0.739 and 0.725 in the test set

(Figure 3F). Other subgroup analysis results were listed in Table

S10. These results demonstrated that the models can predict the

pCR in most subgroups.

Although the Ipredictor and ICpredictor models were

developed based on the RNA-seq platform dataset, we also

calculated the relative gene expression levels, and attempted to

evaluate and compare the model performance in the GSE20271

dataset, which is based on a microarray platform. The AUROCs

for the Ipredictor and ICpredictor models in the GSE20271

dataset were 0.716 and 0.752 respectively, and superior to the

previously proposed DLDA30 scores (15) and GGI (54), whose

AUROCs were 0.682 and 0.594 respectively (Figure 3G and

Table S11). Additionally, it has been reported that Oncotype DX

scores (55) and MammaPrint scores (56) were significantly

related to the response to NAT in ER+/HER2- BC patients.

We also assessed and compared the predictive power of the

models in the ER+/HER2- patients. The results showed that the

AUROCs of the Ipredictor and ICpredictor models were 0.769

and 0.782 respectively, which also outperformed the Oncotype

DX and MammaPrint scores, whose AUROCs were 0.543 and

0.666 respectively (Figure 3H and Table S11).
Model exploration

Since the Ipredictor model was developed based on molecular

features, we further analyzed correlations between the PS and

clinicopathological characteristics in the test set. As expected, the

PS was significantly associated with ER/PR status. The ER- and/or

PR- patients exhibited higher PSs, indicating more likely to achieve

pCR (Figures 4A, B). Although the PS was not significantly

correlated to HER2 status, the ER-/HER2- patients had the

highest PSs, followed by the HER2+ patients, and the ER

+/HER2- patients had the lowest PSs (Figures 4C, D). In

addition, the PS was associated with Ki67 status (Figure 4E),

whereas no significant correlations were found between the PS

and age, clinical T stage, clinical N stage, and clinical stage

(Figures 4F–I).

To explore the biological implications of the model, we

conducted KEGG pathway and GO molecular function over-

representation analyses on the 62 immunological genes that

were significantly associated with pCR and were used for

building models. The results revealed that these genes were

involved not only in immune-related signaling pathways, but

also in HIF-1, JAK-STAT, MAPK, apoptosis, and some cancer-

related signaling pathways (Figure S9A), They also played a role

in many growth factor bindings and protein kinase activity

(Figure S9B). Then, we calculated the enrichment scores using

the ssGSEA algorithm based on the hallmark and KEGG

pathway gene sets and compared the enrichment scores of
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patients with high and low Ipredictor PSs grouped according to

the median PS. For the hallmark gene set enrichment analysis,

the PS was significantly correlated to DNA repair, G2M

checkpoint, apoptosis, PI3K/AKT/mTOR signaling pathways,

E2F and MYC targets, epithelial-mesenchymal transition, and
Frontiers in Immunology 07
angiogenesis (Figure 4J); for the KEGG pathway gene set

enrichment analysis, the PS was significantly associated with

DNA repair, cell cycle, P53, VEGF, and some cancer-related

signaling pathways (Figure S10). We also found that drug

metabolism cytochrome P450 and ABC transporters pathways
A B

D E F

G IH

J K L

C

FIGURE 2

Model performance evaluation in the training and test sets. Comparisons of the PSs in pCR patients and non-pCR patients in the training set (A) and test
set (B). Brier scores of the models and clinicopathological characteristics in the training set (C) and test set (D). AUPRCs of the models and
clinicopathological characteristics in the training set (E) and test set (F). AUROCs of the models and clinicopathological characteristics in the training set
(G) and test set (H). SENs, SPEs, PPVs, and NPVs for the Ipredictor (I) and ICpredictor (J) models in the training set. SENs, SPEs, PPVs, and NPVs for the
Ipredictor (K) and ICpredictor (L) models in the test set.
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were more activated in patients with low PSs, which were

associated with drug resistance (Figure S10).

Next, we analyzed the relationship between the PS and

immune microenvironment. Firstly, we found that patients

with ‘hot’ tumors had higher PSs than patients with ‘warm’

tumors, while patients with ‘cold’ tumors had the lowest PSs

(Figure 5A). The PS was negatively correlated with the tumor

purity (Figure 5B) and positively correlated with the immune

cell infiltration (Figure 5C), but was not associated with the

stromal cell infiltration (Figure 5D). Moreover, the PS was

positively correlated to the tumor infiltrating lymphocyte (TIL)

density (Figure 5E) and the cytolytic activity (Figure 5F). These

results suggested that patients with higher PSs had lower tumor

purity and more infiltrating immune cells, especially TILs. We

further analyzed the correlation between the PS and immune cell

subsets and found that the PS was positively associated with the
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abundance of all kinds of macrophages and T cells, memory B

cells, resting dendritic cells, and activated NK cells, while

negatively associated with the abundance of resting mast cells.

There were no correlations between the PS and the abundance of

naive B cells, plasma cells, resting NK cells, monocytes, activated

dendritic cells, activated mast cells, eosinophils, and neutrophils

(Figure 5G). These results indicated that the PS was mainly

related to the lymphocytes, which are the main effector cells in

the immune response to the tumor. We also analyzed the

relationship between the PS and the expression of antigen

presentation-related genes and immune checkpoint-related

genes (27), and found that PS was positively correlated with

the expression of most of them, including both checkpoint

stimulator and inhibitor genes (Figure S11).

Because the immunological gene expression is associated

with genomic aberrations in BC (57), we further investigated the
A B
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C

FIGURE 3

Model performance evaluation in the patient subgroups of the test set and GSE20271 dataset. AUROCs of the models for ER+/HER2- patients in
the training (A) and test (B) set. AUROCs of the models for HER2+ patients in the training (C) and test (D) set. AUROCs of the models for ER-/
HER2- patients in the training (E) and test (F) set. AUROCs of the models for all patients (G) and ER+/HER- patients (H) in the GSE20271 dataset.
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FIGURE 4

Clinicopathological and biological implications for the PS. The correlations between the PS and ER status (A), PR status (B), HER2 status (C), ER/
HER2 status (D), Ki67 status (E), age (F), clinical T stage (G), clinical N stage (H), and clinical stage (I). (J) Comparisons of the hallmark gene set
enrichment scores between the patients with high and low PSs.
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relationship between the PS and genomic alternations in the

TCGA BC patients. Firstly, among the BC-related driver genes

(58), higher mutation frequencies of TP53, NF1, RB1, PTEN, and

CHD4 were observed in patients with high PSs, while higher

mutation frequencies of PIK3CA andMAP3K1 were observed in

patients with low PSs (Figure S12). Then, we found the PS was
Frontiers in Immunology 10
significantly positively correlated to the silent and nonsilent

mutation load, fraction and segment of copy number

variation, fraction and segment of loss of heterozygosity

(LOH), fraction of subclonal genome, homologous

recombination deficiency (HRD), and aneuploidy score. The

Indel neoantigens and somatic single-nucleotide variation
A B
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FIGURE 5

Relationship between the PS and immune microenvironment and genomic aberrations. The PS was associated with the immune state (A), tumor
purity (B), and immune cell infiltration (C), but was not with the stromal cell infiltration (D). The PS was positively correlated to the TIL density (E)
and cytolytic activity (F). Association between the PS and the abundance of immune cell subsets (G) and genomic aberration markers (H). ∗P <
0.05,∗∗∗P < 0.001.
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(SNV) neoantigens induced by mutations were also significantly

positively associated with the PS. The Shannon entropy and

richness of BCR and TCR were positively correlated with PS,

while the evenness of BCR and TCR was negatively correlated

with the PS (Figure 5H). These results suggested that patients

with high PSs carried more variations, generated more

neoantigens, and showed greater BCR and TCR diversities.
Discussion

In this study, we reconfirmed the correlation between

immune microenvironment and pCR in BC patients receiving

NAT in an RNA-seq dataset. Then, we built machine learning

models to predict pCR with NAT for BC patients using

immunological gene expression measured by the RNA-seq

platform and validated the predictive power and robustness of

the models in independent external datasets. Furthermore, we

demonstrated that the model was related to the immune

microenvironment and genomic mutations.

Initially, we found that most differentially expressed genes

between the pCR and non-pCR patients were involved in

immune-related pathways. Immune microenvironment

analysis showed increased immune cell infiltrating in the pCR

patients. Among the immune cell subsets, more lymphocytes,

NK cells, and macrophages infiltrated in the pCR patients. These

findings in the RNA-seq dataset were similar to the previous

studies (22, 24).

We employed multiple machine learning algorithms and a

model ensemble strategy to build the Ipredictor model based on

the immunological genes determined by the RNA-seq platform.

Then, we combined the Ipredictor model with the ER, PR, and

HER2 status to build the ICpredictor model. In the independent

external RNA-seq test set, the performance of the models

outperformed clinicopathological characteristics. Subgroup

analyses demonstrated that the models can also predict the

response to NAT regardless of the HR/HER2 status, including

patients with ER+/HER2-, who are generally considered to be

insensitive to NAT.

Recently, several models based on gene expression detected

by the microarray platform to predict pCR with NAT in BC

patients have been proposed (15–20). As mentioned above,

microarray quantifies gene expression in an analogous manner

according to the brightness of the fluorescence signal for

hybridization. Many factors may affect the brightness, such as

differential scanner settings, different hybridization conditions,

and different amounts of RNA hybridization in different arrays

(59). Furthermore, due to the brightness detection sensitivity

and hybridization saturation, some genes with low and high

abundance can not be accurately measured. These disadvantages

lead to more pronounced batch effects within and between

samples. Therefore, a model based on unstable and inaccurate
Frontiers in Immunology 11
gene expression measurement may not be robust and

generalized in practical application. More importantly, the

major limitation is that some studies (17–20) used

normalization or ComBat (60) before model building to

reduce batch effects. However, these gene-wise scaling

methods require to use the parameters of the entire test set,

such as the mean and standard deviation of the test set, which

may lead to data leakage. Moreover, if only one sample rather

than a batch of samples needs to be predicted at a time in

practice, the parameters of the single sample will not be

available. This obviously means that the model pipeline and

prediction cannot be implemented in a real clinical application

scenario. Compare with these studies, we used a relative

quantification to measure gene expression, which was similar

to TPM. Because it is a relative quantification only focusing on

the proportion of gene expression, it can be implemented across

datasets. We also attempted to validate the model in a

microarray dataset. The results demonstrated that both the

Ipredictor and ICpredictor can predict the response to NAT in

the GSE20271 dataset, and were superior to some other

proposed models or markers.

Furthermore, we explored the association between the

Ipredictor model and the clinicopathological characteristics,

biological processes, immune microenvironment, and genomic

abbreviations. Firstly, we found that ER-negative or Ki67-high

patients had higher PSs and were more likely to achieve pCR.

These were consistent with the literature (61). Then, enrichment

analysis revealed that some cancer- and immune-related

pathways and biological processes were more activated in

patients with high PSs. Additionally, the cytochrome P450

metabolism and ABC transporter pathways were more

activated in patients with low PSs. This could partially

account for the low pCR rate in patients with low PSs. The PS

was also positively correlated to the immunological gene

expression and tumor infiltrating immune cells, even including

immunosuppressive genes and regulatory T cells. These

seemingly contradictory results, however, were consistent with

the literature (18, 62) and the possible explanation was a

feedback activation of immunosuppressive pathways. Finally,

we also found the immunological gene-based PS was associated

with SNV, CNV, and chrome abbreviations. This is likely due to

more genomic alternations inducing stronger immune

responses. These results indicated that the Ipredictor PS may

also be a reflection of the immune microenvironment and

genomic mutation status.

Finally, there are also some issues or limitations that should be

noted in this study. Firstly, relatively high SPEs but low SENs for the

models were observed in the test set. This means that the patients

who are predicted to achieve pCR will probably achieve pCR, but

the predicted non-pCR patients may not necessarily fail to achieve

pCR. Thus, identifying candidates for NAT according to the models

may improve the pCR rate and reduce unnecessary NAT, but may
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also miss some potential pCR patients. On the other hand, we also

found that the SENs obviously decreased and the SPEs obviously

increased in the test set compared with those in the training set.

This may suggest that the optimal threshold values of the PSs in the

test set were different from those in the training set, which may be

associated with dataset shift induced by differences in genetic

background, treatment, and clinicopathological characteristics

between the datasets. The optimal threshold values should

therefore be calibrated or adjusted for some purpose (18) in

different cohorts. Secondly, subgroup analysis in the test set

showed that the AUROC was highest in patients with ER

+/HER2-, followed by patients with ER-/HER-, and lowest in

patients with ER-/HER2+. The performance differences in the

subgroups in the training set were consistent with those in the

test set. These differences may suggest that the models are more

accurate in the ER+/HER- patients than in other patients, but the

ER+/HER- patients are not currently the main candidates for NAT.

The different model performances in different subgroups may be

due to the different intrinsic biological mechanisms of response to

NAT in different BC subtypes, and the model cannot completely

account for all subtypes. During model training, to get lower overall

loss in gradient descent, the model may be optimized towards the

subtype in which it was easier and more possible to make correct

predictions, such as the ER+/HER2- subtype. This also suggests that

in the future, when more training samples are collected, training

different submodels in different subgroups and then integrating

them may improve the overall performance and the robustness of

the models in different subgroups. Lastly, and most importantly, the

models should not be currently applied in clinical practice until they

are validated in large prospective studies.

In summary, we developed the Ipredictor and ICpredictor

models, which can accurately predict response to NAT across

platforms in BC patients. The Ipredictor PS was also closely related

to the immune and genomic mutation status. These results will

contribute to individualized therapy for BC patients and the models

are worthy of further validation in large prospective studies.
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et al. Genefu: an R/Bioconductor package for computation of gene expression-
based signatures in breast cancer. Bioinformatics (2016) 32:1097–9. doi: 10.1093/
bioinformatics/btv693

49. Dietterich TG. Ensemble methods in machine learning. In: Multiple
classifier systems. lecture notes in computer science. Berlin, Heidelberg: Springer
(2000) 1–15. doi: 10.1007/3-540-45014-9_1

50. Yao L, Liu Y, Li Z, Ouyang T, Li J, Wang T, et al. HER2 and response to
anthracycline-based neoadjuvant chemotherapy in breast cancer. Ann Oncol
(2011) 22:1326–31. doi: 10.1093/annonc/mdq612

51. von Minckwitz G, Kümmel S, Vogel P, Hanusch C, Eidtmann H, Hilfrich J,
et al. Intensified neoadjuvant chemotherapy in early-responding breast cancer:
phase III randomized GeparTrio study. J Natl Cancer Inst (2008) 100:552–62.
doi: 10.1093/jnci/djn089

52. Fisher ER, Wang J, Bryant J, Fisher B, Mamounas E, Wolmark N.
Pathobiology of preoperative chemotherapy: findings from the national surgical
adjuvant breast and bowel (NSABP) protocol b-18. Cancer (2002) 95:681–95.
doi: 10.1002/cncr.10741
Frontiers in Immunology 14
53. Alvarado-Cabrero I, Alderete-Vázquez G, Quintal-Ramıŕez M, Patiño M,
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