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Bile acids in immunity:
Bidirectional mediators between
the host and the microbiota

Urszula Godlewska, Edyta Bulanda and Tomasz P. Wypych*

Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish
Academy of Sciences, Warsaw, Poland
Host-microbiota interactions are bidirectional. On onehand, ecological pressures

exerted by the host shape the composition and function of the microbiota. On

the other, resident microbes trigger multiple pathways that influence the

immunity of the host. Bile acids participate in both parts of this interplay. As

host-derived compounds, they display bacteriostatic properties and affect the

survival and growth of the members of the microbial community. As microbiota-

modified metabolites, they further influence the microbiota composition and, in

parallel, modulate the immunity of the host. Here, we provide a comprehensive

overviewof themechanisms behind this unique dialogue and discuss howwecan

harness bile acids to treat intestinal inflammation.
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Introduction

Microbial communities residing in the gastrointestinal tract, collectively known as

the gut microbiota, evolved various ways to interact with the immune system of the host

(1). One such mechanism involves the production of endogenous metabolites or

modification of host-derived products. Bile acids (BAs) constitute an important class

of host-derived molecules that gain novel features via microbial transformation. Cholic

(CA) and chenodeoxycholic acids (CDCA) in humans, and CA, CDCA, muricholic acids

(aMCA and bMCA), and ursodeoxycholic acid (UDCA) in rodents, are synthesized from

cholesterol in the liver and further metabolized to glycine- or taurine- conjugated bile

acids (2, 3). Subsequently, conjugated bile acids are delivered to the gallbladder for

storage, and after food intake, they are released into the small intestine to facilitate lipid

digestion. Most BAs (up to 95%) are reabsorbed back to the liver and only a small portion

that remains in the intestine can be further transformed by the gut microbiota into the

secondary bile acids (4). The major microbial transformations of primary bile acids

include i) deconjugation, ii) oxidation and epimerization of the 3-, 7-, and 12-hydroxyl

groups, iii) 7-dehydroxylation, iv) esterification and v) desulfation (3). The main gut
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bacterial genera associated with these conversions include

Bacteroides, Clostridium, Lactobacillus, Bifidobacterium,

Enterococcus, and Listeria in BA deconjugation; Bacteroides,

Blautia, Clostridium, Eubacterium, Eggerthella, Roseburia and

Ruminococcus in the oxidation and epimerization; Clostridium

and Eubacterium in 7-dehydroxylation; Bacteroides ,

Eubacterium and Lactobacillus in esterification; and

Clostridium, Fusobacterium, Peptococcus and Pseudomonas in

desulfation (3, 5–7). All these bacterial transformations shape

the signaling properties of secondary bile acids, and as such,

contribute to regulating mucosal physiology in health and

disease (6).
Utilization of bile acids by
the microbiota and its
downstream effects

Consisting of hydrophobic backbone and hydrophilic hydroxyl

groups that form amphipathic structures, bile acids (BAs) resemble

antimicrobial peptides (AMPs) and thus, have long been considered

to restrict bacterial growth (8–10). The hydrophobicity of the

backbone increases, while the number of hydroxyl groups

decreases the antimicrobial potential of BAs (9). Because the gut

lumen contains micromolar concentrations of chemically diverse

bile acid pool, commensal microbes developed various ways to resist

BA toxicity (11, 12). One such mechanism is enzymatic

detoxification of BAs, which has a series of consequences. First

and foremost, it directly improves the survival of species equipped

with such detoxification machinery. For example, the activity of

bile-salt hydrolases, which catalyze deconjugation of bile salts,

improves bacterial survival during the bile challenge (12). Second,

BA detoxification changes the luminal pool of BAs and thus,

indirectly affects other members of the microbial community. For

example, the ability of Eggerthella lenta to convert deoxycholic acid

(DCA) to a less bacteriostatic isodeoxycholic acid (isoDCA) favors

the growth of Bacteroides ovatus (9). Different susceptibility to toxic

effects of bile acids and their “detoxification” products by the

members of the microbiota translates into a detoxification chain

of reactions, performed by multiple species. For example, to yield

isoallolithocholic acid (isoallo LCA) from CDCA in vitro, a culture

of three different bacterial species (Clostridium scindens, E. lenta,

and Parabacteroides merdae) was required, while monocultures

were insufficient (13). Another mechanism employed by certain

microbes, such as lactobacilli and bifidobacteria, to survive in the

presence of bile acids is their sequestration inside the cytoplasm

(14). Its consequence for the whole microbial community can be the

reduction of BA content, as exemplified by select Lactobacillus and

Bifidobacterium strains, which were able to lower the concentration

of deoxycholic acid in culture media (14, 15). Some bacteria take

advantage of the differential sensitivity of microbes to bile acids to

engage in competitive interactions. For example, C. scindens
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regulates the growth of Clostridium difficile by producing LCA

and DCA, which are not only capable of inhibiting the growth of C.

difficile directly (16), but also synergize with tryptophan-derived

antimicrobials (17). This phenomenon was shown to be relevant in

vivo since C. scindens or a bacterial consortium capable of

producing pronounced amounts of LCA and DCA protected

mice against C. difficile infection (16). This observation is

consistent with the outgrowth of C. difficile after the selection of

antibiotic regimens that efficiently depleted secondary BA-

producing bacteria (18). Importantly, however, BA’s impact on

virulence or colonization does not have to be unidirectional. For

instance, lithocholic acid induced a morphotype switch in

vancomycin-resistant Enterococcus faecium and promoted biofilm

formation and intestinal colonization (19).

The impact of host/microbe-derived BAs on the microbiota

composition might be most dramatic early in life when the

microbiota is still in its immature stage. Post-weaning changes

in concentrations of specific BA species correlated with dynamic

changes in the relative abundance of certain bacterial taxa.

Ursodeoxycholic acid (UDCA), glycine-conjugated cholic acid,

taurine-conjugated a/b-muricholic acid (TMCA), and taurine-

conjugated cholic acid (TCA) had the largest impact and

predominantly determined the relative abundance of

Mannheimia, Streptococcus, Enterorhabdus and Lactobacillus

(20). When orally administered into neonatal mice, UDCA and

bTMCA decreased the abundance of Escherichia and enhanced

the abundance of Lactobacillus. In addition, bTMCA and TCA

increased the richness of the small intestinal microbiota

composition (20). These effects could be partially attributed to

direct (albeit different) effects of these bile acids since UDCA

inhibited the growth of E.coliwhile bTMCA promoted the growth

of representative Lactobacilli isolates in vitro. While the precise

mechanisms driving changes in the microbiota composition/

richness in vivo remain elusive, two major scenarios are likely to

occur in parallel: i) BAs shape the microbiota composition directly

due to their antimicrobial properties (as discussed earlier), and ii)

BAs promote the growth of certain microbes indirectly by

inhibiting immune responses tailored to restrict their growth

(the anti-inflammatory properties of BAs are described in the

next section). The outcomes of both scenarios are subject to

further forces from the progressively changing bile acid pool,

other signals from transiently formed microbiota, and the

maturing immune system. These pathways are not only

bidirectional (BA pool – microbiota; immune responses –

microbiota) but also intertwine with each other, creating a

complex, multidimensional network that is actively engaged in

the development of the mature intestinal ecosystem. Elements that

are key to establishing healthy mucosal homeostasis are

incompletely understood. Their identification might be pivotal

to designing treatments or dietary supplements in a period in life

that sets the individual on the trajectory toward health or disease.

Finally, given bidirectional interactions between host/

microbe-derived bile acids and the microbiome, it is not
frontiersin.org
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surprising that the bile acid pool is altered in dysbiosis. For

example, patients suffering from inflammatory bowel disease

(IBD) were reported to have decreased concentrations of

secondary BAs in feces and serum (21, 22). Given the above, it

is tempting to speculate if BA supplementation could improve

dysbiosis in IBD patients. In mice, BA treatment (with UDCA

and its glycine or taurine- conjugated species) prevented dextran

sulfate sodium-mediated dysbiosis and promoted the growth of

Akkermansia muciniphila [relative abundance of which is

decreased in IBD patients (23, 24)], which provided proof-of-

concept evidence that BAs can shape the microbiota

composition (25). On the final note, the differences in BA pool

in disease may not only be quantitative but also qualitative. For

example, IBD patients had impaired desulfation of BAs, which

resulted in increased levels of 3-OH-sulphated BA metabolites

that lack anti-inflammatory potential (21, 22). Collectively, bile

acids, first produced by the host, and later modified by the

microbiota, constitute a unique class of compounds active along

the host-to-microbe, and microbe-to microbe axes, that

ultimately shapes the microbiota composition of the host

(Figure 1A, Table 1).
The influence of secondary bile
acids on immunity

Technological advances in next-generation sequencing and

the development of bioinformatics tools for data analyses in the

last two decades opened the door to our understanding of how

profoundly the microbiota shapes immunity. This sparked an

interest in delineating microbial species and their products that

would exert immunomodulatory effects, and defining signaling

pathways they trigger. Given the above, when bile acid receptors

were identified, researchers sought to investigate if microbiota-

dependent modifications of primary bile acids might be important

from the immunological standpoint. Indeed, secondary bile acids

were shown to modulate innate immunity and influence the

severity of experimentally-induced diseases. For example,

intraperitoneal administration of tauroursodeoxycholic acid in

mice reduced the expression of antigen presentation machinery in

the gut, prevented apoptosis of intestinal epithelial cells, and

improved the outcome of intestinal acute graft-versus-host

disease (28). Deoxycholic acid (DCA), but not its precursor,

cholic acid (CA), modulated the function of dendritic cells

(DCs) and protected mice against experimental autoimmune

uveitis. Mechanistically, DCs from mice fed a DCA-enriched

diet, but not a CA-enriched diet, were less responsive to LPS

priming in vitro, and DCA pretreatment reduced surface

expression of co-stimulatory molecules and MHC-II, and led to

a less pronounced differentiation of Th1/17 subsets in vitro (29).

The immunomodulatory effects of bile acids are initiated by their

interactions with bile acid receptors, expressed in various immune

cell types, including monocytes, T cells, B cells, DCs, NK cells, and
Frontiers in Immunology 03
granulocytes (details included in Figure 1B). Notably, many

bile acid receptors bind several ligands with different

affinities (Figure 1B). For instance, TGR5 is bound by bile

acids with affinities descending in the following order:

LCA>DCA>CDCA>CA>UDCA, TLCA (6), while FXR by acids

in the following order: CDCA>DCA>LCA>CA>UDCA, isoDCA

(30). Fine-tuning BAR activation plays a critical role in dictating

the immunological outcome. Intriguingly, the highest affinity does

not necessarily guarantee the most pronounced effect. For

example, FXR activation by isoDCA (low affinity) but not

CDCA, DCA, LCA, CA, or UDCA (higher affinities)

programmed DCs to induce differentiation of Treg cells in vitro

(31). This example points to the complexity of BA-BAR

interactions and highlights the risk of not recapitulating their

effects by pharmacological activation with artificial BAR agonists

(discussed further in the next section). Other examples of

receptors that bind several bile acids include S1PR2 (bound by

GCA, TCA, GDCA, TDCA, and TUDCA), VDR (bound by 3-

keto-LCA> LCA, 6- keto-LCA, glyco-LCA, 3-oxoLCA, and DCA),

PXR (3-keto-LCA, LCA, CDCA, DCA, CA), and CAR (CA, 6-

keto-LCA, 12-keto-LCA) (Figure 1B). Detailed comparisons of the

efficacy of each ligand in achieving the desired outcome in disease

settings and defining the optimal affinity of this interaction are the

challenge for further studies.

In addition to acting on innate immune cells, bile acids were

also shown to directly modulate adaptive immunity. Lithocholic

acid (LCA) inhibited activation of Th1 cells in vitro via Vitamin

D Receptor (VDR) signaling (32). 3-oxolithocholic and

isolithocholic acids inhibited Th17 differentiation in vitro and

in vivo by binding RORgt, a master regulator of the Th17

subset, and inhibiting its transcriptional activity (33, 34).

Isoallolithocholic acid (isoalloLCA) promoted the generation

of mitochondrial reactive oxygen species, leading to enhanced

expression of FOXP3 and differentiation of regulatory T cells in

vitro. Interestingly, isoalloLCA was not sufficient to influence the

Treg cell pool in vivo, but increased colonic Treg cell pool in

combination with 3-oxoLCA. This was unexpected since 3-

oxoLCA by itself did not affect the Treg cell pool in vitro or in

vivo. The mechanisms of action behind this synergistic effect

have not been delineated (33). The complexity behind the action

of secondary bile acids and their combinations has been further

demonstrated in a subsequent report where none of the bile

acids (including LCA or 3-oxoLCA) was able to influence Th17

responses in vivo. When screening for the capacity to induce

Treg cell differentiation, the authors concluded that the

combination of 3-oxoLCA and LCA is capable of maintaining

high frequencies of this cell subset in vivo and that it depended

on VDR expression on Treg cells (35). Overall, these reports

drew a general picture that lithocholic acid derivatives hold the

potential to induce regulatory T cells, especially when used in

combination. Differences in regards to specific LCA species

identified in these reports and their mechanisms of action

might stem from differences in experimental setups. In a study
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FIGURE 1

The influence of bile acid (BA) metabolism on the gut microbiome and host immunity. (A) Primary BAs are produced from cholesterol in the
liver, conjugated to glycine or taurine, and secreted into the gut lumen. In the intestine, primary BAs undergo un-conjugation by the microbiota,
followed by further rounds of modifications (oxidation and epimerization, dehydroxylation, esterification, or desulfation), to yield secondary BAs.
Conjugated, unconjugated, and secondary BAs can all shape the microbial composition in the intestine (dashed arrows). Specific examples
include unconjugated and taurine or glycine-conjugated UDCA promoting the growth of A municiphila, LCA derived from the conversion of
CDCA by C scindens and promoting the growth of E faecium while inhibiting the growth of C difficile, DCA, derived from the conversion of CA
by C scindens and inhibiting the growth of C difficile and finally, isoDCA, derived from the conversion of DCA by E lenta, and promoting the
growth of Bacteroides (see also main text). (B) Schematic overview of the G-protein coupled (yellow) and nuclear receptors (blue) specific for
bile acids (greater-than signs denote higher affinities). The panel of BARs expressed in immune cells was extracted from the Human Protein
Atlas, using the HPA (26) and Monaco datasets (27). Immunomodulatory effects of receptor signaling by at least one natural ligand is noted
(question marks denote receptor signaling with the influence on immunity that remains to be identified).
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by Pols et al., a Jurkat T cell line was used (32), Hang et al., used a

differentiation protocol based on cytokine stimulation of sorted

naïve T cells (33) while Song et al., fed mice with diets enriched

in single bile acids or their mixtures, and evaluated the frequency

of colonic Treg cells ex vivo (35). Altogether, these examples

point to the caution when designing the appropriate screening

strategy and highlight the need to validate obtained results in vivo.

Despite these insights into the role of secondary bile acids in

shaping T helper cell fate, its relevance in health and disease

remains elusive. The influence of LCA, 3-oxoLCA, and 3-

oxoLCA/isoalloLCA in disease settings has not been evaluated

(32, 33), similarly as in the case of isoDCA (31). In a study by

Song et al., the relevance of bile acid treatment in a mouse model

of colitis was shown, whereby feeding mice with primary or

secondary bile acids ameliorated the severity of this condition

(35). The capacity of primary bile acids to confer this effect

might reflect their conversion into secondary bile acids in mice;

however, this possibility has not been confirmed with the use of

germ-free mice. When it comes to the relevance of secondary

BAs in human patients, the data is even scarcer. Nevertheless,

one study pointed to the reduced levels of 3-oxoLCA/isoLCA in

inflammatory bowel disease patients as well as to the reduced

relative abundance of a bacterial gene involved in 3-oxoLCA/

isoLCA biosynthesis, 3a-hydroxysteroid dehydrogenase (34).

On the final notes, it is worth acknowledging that although

anti-inflammatory properties of secondary bile acids are

generally perceived as beneficial, their potentially harmful role
Frontiers in Immunology 05
was also reported. Using mouse models of liver cancer, the

authors linked the capacity of the antibiotic treatment to inhibit

liver tumor growth with a reduction in secondary BA levels in

the liver. Treating mice with LCA or w-muricholic acid (w-
MCA) reversed the beneficial effect of the antibiotic treatment.

Mechanistically, LCA or w-MCA blunted the expression of

CXCL16, a chemokine driving recruitment of natural killer T

cells to the tumor site. This effect might be restricted to the liver

since antibiotic treatment did not reduce tumor growth or

metastasis of subcutaneous or lung tumors, respectively (36).

Finally, it is worth noting that, although the anti-inflammatory

mode of action behind secondary bile acids is well established,

scarce reports exist on their pro-inflammatory potential. A

cholic acid diet or a deoxycholic acid treatment reduced the

frequency of tuft cells in the biliary tract. Interestingly, the

abundance of tuft cells negatively correlated with a neutrophil

influx in a model of experimental cholestasis, and tuft cell

deficiency increased biliary neutrophilia under homeostatic

conditions. This interplay was modulated by the microbiome

since microbiota transfer between mice from different providers

reversed vendor-dependent variation in the tuft cell/neutrophil

ratios. These observations, though indirect, outline the

possibility that secondary bile acids increase neutrophilia by

reducing the frequency of biliary tuft cells (37). The up-to-date

list of bile acid species reported to modulate inflammation and

the summary of their mechanisms of action is presented in

Figure 1B and Table 2.
TABLE 1 The role of bile acids in shaping the microbiota composition.

Bile acid Effect on the microbiome (in vivo) Mechanism (in vitro) Reference

Primary
BAs

UDCA decreases the abundance of Escherichia and enhances the abundance of
Lactobacillus when administered to neonatal mice

Directly inhibits the growth of Escherichia (20)

UDCA promotes the growth of Bacteroidaceae, Clostridium cluster XIVa and
Akkermansia during the DSS model of colitis

Unknown (25)

Conjugated
BAs

bTMCA decreases the abundance of Escherichia and enhances the abundance of
Lactobacillus when administered to neonatal mice; bTMCA and TCA increase microbiota
richness when administered to neonatal mice

Directly promotes the growth of L. johnsonii
and L. reuteri

(20)

glycine-conjugated UDCA (GUDCA) promotes the growth of Bacteroidaceae, and A.
muciniphila during the DSS model of colitis; taurine-conjugated UDCA (TUDCA)
promotes the growth of Prevotellaceae and A. muciniphila during the DSS model of
colitis

Unknown (25)

Secondary
BAs

Adoptive transfer of DCA and LCA-producing bacterial consortium or C. scindens
enhances resistance to C.difficile infection

DCA and LCA each inhibit the growth of C.
difficile directly; DCA and LCA enhance the
activity of antimicrobials produced by C.
scindens

(16), (17)

Antibiotic treatment targeting secondary bile acid-producing bacteria enhances the
outgrowth of C. difficile

LCA, DCA and HDCA (hyodeoxycholic acid)
directly inhibit the growth of C. difficile

(18)

– Conversion of DCA by E. lenta to a less
bacteriostatic isoDCA favors the growth of
Bacteroides ovatus

(9)

LCA promotes biofilm formation and intestinal colonization of vancomycin-resistant E.
faecium

LCA induces MgCl2-dependent morphotype
switch to chained growth

(19)
fro
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Therapeutic potential of bile acids

Immunomodulatory properties of secondary bile acids open up

three major avenues that might be considered clinically in a fight

against intestinal inflammation: 1) pharmacological activation of

bile acid receptors, 2) direct application of secondary bile acids, 3)

administration of microbes capable of producing them. The

advantage of pharmacological activation of bile acid receptors is

their specificity, since triggering defined immunological pathways

limits possible side effects. Agonists of two bile acid receptors, TGR5

(GPBAR1) and FXR, have attracted the most attention as drug

candidates, and their efficacy in preclinical models of colitis has

been widely described (38–42). Despite this, no clinical trials

targeted against intestinal inflammation have been launched so

far (as of May 2022, according to clinicaltrials.gov). Conducting

large-scale, randomized clinical trials will be pivotal to indicate the

utility of bile acid receptor agonists to ameliorate

intestinal inflammation.

An alternative approach to pharmacological activation of

bile acid receptors is a direct application of desired secondary

bile acid species or the bacteria equipped with machinery to

produce them. The advantage of this approach is the possibility

to fine-tune BAR activation (since the magnitude of BAR

stimulation varies according to BA species) (43–45). This

might be particularly important considering the role of

optimal (not necessarily the highest) affinity in mediating the

desired effect (as discussed in a previous section). Also, unlike in

the case of pharmacological activation, secondary bile acids can
Frontiers in Immunology 06
trigger multiple BARs. For example, LCA activates FXR (43–45),

VDR (46), TGR5 (47, 48), and PXR (49), while DCA activates

FXR (43) and TGR5 (47, 48). The pleiotropic action of bile acids

might be advantageous in the face of immunological redundancy

that drives inflammation. The proof-of-concept experiments

showing the health benefits of secondary bile acid

administration in mouse models of intestinal inflammation

have been discussed in a previous section (28, 35). Pilot trials

concerning the use of microbes capable of producing them were

only conducted in germ-free (GF) settings. Administration of

wild-type Bacteroides thetaiotaomicron and Bacteroides fragilis

strains capable of producing secondary bile acids, induced

colonic RORgt+ Treg cells when administered into GF mice

(35). Likewise, an isoDCA-producing consortium of bacteria,

induced intestinal lamina propria RORgt+ Treg cell pool (31).

Finally, administration of 3a-hydroxysteroid dehydrogenase-

expressing strains of E. lenta and/or B. fragilis into GF mice

fed with LCA led to increased production of 3-oxoLCA and

isoLCA (34). Although encouraging, these conclusions should be

confirmed in organisms with complex microbiomes since the

administration of live bacteria to already inhabited ecological

niches comes at the risk of unsuccessful colonization of the

administered microbes, or alterations in their function. The

consequence of that might be loss of efficacy in some

individuals or the development of side effects. Given the

variability of microbiota composition in humans, ascertaining

clinical safety and efficacy in yielding desired bile acid species

should be conducted on a large number of participants, whose
TABLE 2 Immunomodulatory properties of secondary bile acids.

Bile acid Receptor
involved

Cellular mechanisms Effect on disease References

Innate immunity

DCA Unknown Reduces frequency of tuft cells. Increases biliary neutrophilia Might exacerbate obstructive cholestasis (37)

DCA TGR5 Reduces secretion of IL-1b, IL-6, IL-12p70, and TNF-a; Protects mice against experimental
autoimmune uveitis

(29)

TUDCA Unknown Reduces surface expression of co-stimulatory molecules (CD40, CD80
and CD86) and MHC-II;
Reduces differentiation of Th1/17
Reduces the expression of antigen presentation machinery in the gut;
Dampens innate inflammatory response to IFN-g;
Attenuates T-cell activation

Ameliorates intestinal aGvHD disease (28)

isoDCA FXR Modulates dendritic cell function to induce Treg cells Unknown (31)

Adaptive immunity

LCA VDR Inhibits Th1 cell activation in vitro Unknown (32)

3-oxoLCA RORgt Inhibits Th17 cell differentiation in vitro and in vivo Unknown (33)

isoLCA
3-oxoLCA
/isoLCA

RORgt Inhibits Th17 cell differentiation in vitro and in vivo 3-oxoLCA/isoLCA levels reduced in IBD
patients

(34)

isoalloLCA or
isoalloLCA/3-
oxoLCA

Unknown Enhances Treg cell differentiation in vitro or in vivo Unknown (33)

3-oxoLCA
/LCA

VDR Enhances Treg cell differentiation in vivo Ameliorates colitis-induced inflammation
in mice

(35)
fr
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microbiota composition is characterized. Such an approach

might provide precise estimates of the success rate of the

designed regimen and link it to microbial signatures of the

responders, which would be critical for designing follow-up

therapeutic strategies.
Conclusions and perspectives

In summary, bile acids represent a single class of mediators

with bidirectional effects in the host-microbiota dialogue.

When host-derived, they shape the composition of the

microbiota. When modified by the microbiota, they further

shape the microbiota composition and in addition, they

influence the immunity of the host. Each reaction constitutes

a tiny piece of the complex network that leaves marks on the

microbial and the mammalian parts of the ecosystem.

Understanding the mechanisms that govern this interplay

constitutes a major workload for basic research, as

fundamental questions remain open. For example, which

interactions within this network are crucial to maintaining

immunological tolerance in the gut? How important is the

timing of their occurrence following birth? When absent or

delayed, can they actively contribute to disease development

and can we reduce the symptoms by altering the bile acid pool?

What strategy is most effective in preclinical settings (repeated

administration of BAs, pharmacological activation of BARs or

downstream signaling pathways, administration of microbes/

microbial consortia equipped with the machinery to yield

desired BA species, etc.)? Each of these questions requires a

tremendous number of experiments from different scientific

fields, including immunology, microbiology, chemistry, and

medicine. Nevertheless, data obtained from these experiments

will provide grounds for formulating applied questions and in

the long run, might pave the way to targeting pathways of bile

acid metabolism for human health benefits.
Frontiers in Immunology 07
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