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PD-L1 maintains neutrophil
extracellular traps release
by inhibiting neutrophil
autophagy in endotoxin-
induced lung injury

Cheng-long Zhu †, Jian Xie †, Zhen-zhen Zhao †, Peng Li ,
Qiang Liu, Yu Guo, Yan Meng, Xiao-jian Wan, Jin-jun Bian*,
Xiao-ming Deng* and Jia-feng Wang*

Faculty of Anesthesiology, Changhai Hospital, The Naval Medical University, Shanghai, China
Programmed death ligand 1 (PD-L1) is not only an important molecule in

mediating tumor immune escape, but also regulates inflammation

development. Here we showed that PD-L1 was upregulated on neutrophils

in lipopolysaccharide (LPS)-induced acute respiratory distress syndrome

(ARDS). Neutrophil specific knockout of PD-L1 reduced lung injury in ARDS

model induced by intratracheal LPS injection. The level of NET release was

reduced and autophagy is elevated by PD-L1 knockout in ARDS neutrophils

both in vivo and in vitro. Inhibition of autophagy could reverse the inhibitory

effect of PD-L1 knockout on NET release. PD-L1 interacted with p85 subunit of

PI3K at the endoplasmic reticulum (ER) in neutrophils from ARDS patients,

activating the PI3K/Akt/mTOR pathway. An extrinsic neutralizing antibody

against PD-L1 showed a protective effect against ARDS. Together, PD-L1

maintains the release of NETs by regulating autophagy through the PI3K/Akt/

mTOR pathway in ARDS. Anti-PD-L1 therapy may be a promising measure in

treating ARDS.

KEYWORDS

ARDS, PD-L1, autophagy, neutrophils, neutrophil extracellular traps, anti-PD-
L1 therapy
Highlights

•Upregulated PD-L1 on neutrophils contributes to NET release and acute lung injury

via regulating autophagy through PI3K/Akt/mTOR pathway

•Anti-PD-L1 antibody administration may be a promising therapeutic strategy

for ARDS
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Introduction

Acute respiratory distress syndrome (ARDS) represents

respiratory dysfunction in critically ill patients. It is defined as

an acute onset of non-cardiogenic pulmonary edema and

hypoxemia caused by alveolar inflammation or infection that

requires mechanical ventilation (1–3). The Berlin definition of

ARDS classified ARDS into three categories, based on the degree

of hypoxemia: mild (200 mmHg < PaO2/FiO2 ≤ 300 mmHg),

moderate (100 mmHg < PaO2/FiO2 ≤ 200 mmHg), and severe

(PaO2/FiO2 ≤ 100 mmHg) (2, 4). Estimates of the incidence of

ARDS in high- and middle-income countries vary from 10.1 to

86.2 per 100,000 person-years in the hospital inpatients (2, 5),

however, the incidence is even higher in the patients admitted to

the ICU. Mortality in ARDS is high (30%-40% in most studies)

(1). The challenge of treating ARDS to reduce mortality and

achieving better outcomes is enormous.

Dysregulated inflammation, inappropriate accumulation and

activity of leukocytes and platelets, uncontrolled activation of

coagulation pathways, altered permeability of alveolar endothelial

and epithelial barriers remain central pathophysiologic mechanisms

in ARDS (2, 6). Neutrophils are considered to be complex cells with

important functions as effectors of the innate immune response and

they are able to regulate various processes such as acute injury and

repair, autoimmune and chronic inflammatory processes. In

addition, neutrophils can stimulate adaptive immunity, as they

have been shown to activate splenic B lymphocytes (7, 8). During

periods of inflammation, the rate of neutrophil production

increases by 10-fold to 1012 cells per day, which are recruited to

the site of infection, killed by phagocytosis, and then cleared by

macrophages (8, 9). During ARDS, a large number of neutrophils

accumulate in the lungs. The neutrophil activation, infiltration and

delayed clearance are thought to play a critical role in the

pathogenesis of ARDS, while the presence of excessive neutrophil

extracellular traps (NETs) can lead to more severe lung injury (10–

13). NETs are large, extracellular, reticular structures composed of

cellular-free DNA, histones, and globular proteins such as

myeloperoxidase (MPO) (14, 15), which have an important role

in the clearance of systemic microbial infections. Unfortunately, the

contribution of NETs in tissue damage has also been well

documented in infectious diseases (15). NETs can directly kill

epithelial and endothelial cells through free circulating histones

and cytotoxic MPO (16, 17), which has important implications for

the pathogenesis of ARDS.

Autophagy, an evolutionarily conserved cellular mechanism,

degrades proteins and organelles in the lysosome and is a

principal self-protection mechanism. Upon activation, multiple

stimuli interfere with strictly regulated processes under a variety

of pathological conditions, including hypoxia, nutrient or energy

deficiencies, and even cell differentiation signals (18–20). Since

autophagy is the key to cellular resistance to external stress,

enhanced autophagy can protect against sepsis-induced

dysfunction of kidney (21), lung (22, 23), liver (24) and other
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organs. Interestingly, recent evidence confirmed that LC3

overexpression attenuated acute lung injury in septic mice

(25). In addition, the protective effect of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) against sepsis-associated

lung injury is mediated by enhanced ATG12-dependent

autophagy (26, 27). Recent studies have implicated autophagy

as a key contributor to the membrane changes observed during

NETosis (28). However, the autophagy status in neutrophils of

ARDS patients, and its association with NETosis, are

largely unknown.

Programmed death ligand 1 (PD-L1), which is upregulated

upon activation in bone marrow cells, lymphocytes, normal

epithelial cells and cancer cells, is an important target for

immune checkpoint blockade therapy (29–33). PD-L1

blockade can exert a protective effect on sepsis at least partly

by inhibiting lymphocyte apoptosis and reversing monocyte

dysfunction (34). We and others have previously shown that

PD-L1 is upregulated in neutrophils and may be a potential

biomarker for sepsis-induced immunosuppression (35).

Furthermore, increased expression of PD-L1 on human

neutrophils delays apoptosis, maintains phosphorylation of

Akt and drives sepsis-induced lung injury (36). The PI3K/Akt

pathway has an important role in maintaining neutrophil

survival by PD-L1. It has been implicated in the regulation of

lung injury, and inhibition of this pathway may reduce lung

injury (35, 37). However, the protective effect of PD-L1

deficiency in neutrophils against sepsis-induced lung injury

may be also attributed to reversal of sepsis-induced

immunosuppression and enhanced clearance of bacteria.

Therefore, the present study was performed to investigate the

direct role of PD-L1 in neutrophil autophagy, NET release and

LPS-induced lung injury. The potential role of PD-L1 as a

therapeutic target against acute lung injury was also

investigated using a PD-L1-neutralizing antibody.
Materials and methods

Mice

Neutrophil specific PD-L1 conditional knockout (CKO)

mice were generated by crossing PD-L1flox/flox, engineered

using CRISPR/Cas9 (BIORAY LABORATORIES Inc.,

Shanghai, China), with elane (Ela)cre/cre mice purchased from

the EMMA mouse repository (INFRAFRONTIER, München,

Germany) (36, 38, 39). Male C57BL/6J mice that were 6-8 weeks

of age and free of specific pathogens were obtained from the

Research Animal Center of Navy Medical University (Shanghai,

China). The mice were housed in barrier cages under controlled

environmental conditions (12/12-h light/dark cycle; 55% ± 5%

humidity; 23°C). All animal studies were approved by the

Committee on Ethics of Biomedicine Research in Naval

Medical University, Shanghai, China.
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Patients

Patients fulfilling the clinical criteria for ARDS were

recruited from the Central Intensive Care Unit of Changhai

Hospital, Shanghai, China. Healthy donors served as controls.

Peripheral blood samples were collected from ARDS patients

within the first 24 h of admission. The study protocol was

approved by the Committee on Ethics of Biomedicine

Research in Naval Medical University, Shanghai, China.
In vivo experiments

The ARDS model was established as described previously

(40). Briefly, the mice were anesthetized with sevoflurane

(Hengrui, Lianyungang, Jiangsu, China). After exposing the

trachea, a trimmed sterile 31-gauge needle was inserted into

the tracheal lumen. LPS (Sigma, St Louis, MO, USA) diluted in

endotoxin-free saline was intratracheally (IT) injected at a dose

of 10 mg/kg in 100 ml saline. To treat ARDS mice, anti-PD-L1

antibody (eBiosciences, San Diego, CA, USA) was

intraperitoneally administered at a dose of 50 mg/mouse

immediately after the injection of LPS. Hematoxylin-eosin

staining was conducted to quantify lung injury and the result

was semi-quantified by two independent pathologists according

to the criteria reported previously (41, 42). The cells in the BALF

(BALF was obtained by intratracheal injection with 1 ml cold

PBS) were collected and stained with anti-Ly6G-PE and anti-

CD11b-APC (eBiosciences, San Diego, CA, USA) to detect

neutrophils by flow cytometry. BALF levels of TNF-a, IL-1b
and IL-6 were detected by enzyme linked immunosorbent assay

(ELISA, R&D, Minneapolis, MN, USA). The wet-to-dry weight

(W/D) ratio was calculated to assess the edema. The protein

concentration in the BALF was assessed with a BCA detection kit

(Thermo Scientific, Rockford, IL, USA).
Neutrophil purification, stimulation
and transfection

The mice neutrophils were isolated from bone marrow by

positive selection magnetic cell separation (MACS) using the

Miltenyi Biotec mouse AntiLy-6G MicroBead Kit according to

the manufacturer’s instructions (Miltenyi, Bergisch Gladbach,

Germany) (43). The purity of the isolated cells was at least 95%

according to the expression of Gr-1 and CD11b. Human

neutrophils were purified by density gradient centrifugation

with 3% Dextran and Ficoll-Hypaque (GE Healthcare, Little

Chalfont, UK) as previously described (44, 45). The cells were

resuspended in DMEM supplemented with 10% FBS, 1%

glutamine, and 1% penicillin/streptomycin solution at a

concentration of 1 x 106 cells/mL. Cells were incubated in

polypropylene tubes to prevent adherence. The purity of the
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CD15. Neutrophils were stimulated with LPS (1ug/ml) (Sigma,

St Louis, MO, USA) and IFN-g (10ng/ml)(Peprotech, Rocky

Hill, USA) for 21hours. PD-L1 siRNA transfection was

performed using the Santa Cruz siRNA transfection reagent

for 21 hours according to the manufacturer’s instructions

(Dallas, TX, USA).
MPO-DNA (NETs) assay

To quantify NETs in mouse BALF and in cell culture

supernatant, a capture ELISA based on MPO associated with

DNA was applied (46). For the capture antibody, 5 mg/ml anti-

MPO Ab (Invitrogen, Carlsbad, CA, USA) was coated onto 96-

well plates (dilution 1: 500 in 50 ml) overnight at 4°C. After

washing 3 times (300 ml each), 20 ml of samples was added to the

wells with 80 ml incubation buffer containing a peroxidase-

labeled anti-DNA antibody (Cell Death ELISA PLUS, Roche,

Indianapolis, IN, USA; dilution 1: 25). The plate was incubated

for 2 hours, shaken at 300 rpm at room temperature. After 3

washes (300 ml each), 100 ml peroxidase substrate (ABTS) was

added. Absorbance at 405 nm wavelength was measured after 20

minutes of incubation at room temperature in the dark. Results

are reported as percent of WT mice BALF or healthy cell culture

supernatant ± SD, arbitrarily set at 100%.
Flow cytometry

Mice were euthanized 24 h after LPS ARDS or sham-

operated surgery to get BALF. Cells were stained with

fluorochrome-conjugated anti-Gr-1, anti-PD-L1 antibodies

(eBioscience San Jose, CA, USA). Flow cytometric analysis was

performed on a MACS Quant (Miltenyi Biotech, Bergisch

Gladbach, Germany) using Flowjo software version 7.6 (Tree

Star, Ashland, OR, USA).
Western blot and immunoprecipitation

Western blotting was performed to detect PD-L1, LC3B,

Beclin-1, p110 and p85, Akt, mTOR phosphorylation. The

antibodies included anti-PD-L1 (Santa Cruz, Dallas, TX,

USA), anti-LC3B (CST, Princeton, NJ, USA), anti-Beclin-1

(CST, Princeton, NJ, USA), anti-p85 (Abcam, Cambridge, MA,

USA), anti-phosphorylated p85 (Y607) (Abcam, Cambridge,

MA, USA), anti-Akt (CST, Princeton, NJ, USA), anti-

phosphorylated Akt (S473) (CST, Princeton, NJ, USA), anti-

mTOR (CST, Princeton, NJ, USA), anti-phosphorylated mTOR

(CST, Princeton, NJ, USA) and anti-b-actin (CST).

Immunoprecipitation assay was performed using the anti-p110

antibodies (CST, Princeton, NJ, USA) and Protein7 G beads (GE
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Healthcare, Mississauga, ON, Canada). LC3B II/I intensity was

calculated using Image J software.
Immunofluorescence

Following anaesthetized, animals were perfused

transcardially by phosphate-buffer saline (PBS) and 4℅
paraformaldehyde (PFA) successively. Lungs were removed

and fixed in PFA at 4°C for more than 24 h. Thereafter, lungs

were immersed in 30% sucrose for dehydration and then cut into

30-mm-thick slices on a cryostat. Tissue sections were incubated

with 0.5℅ Triton X-100 for 20 min for permeation, and

subsequently immersed in 3℅ bovine serum albumin for 1 h

at room temperature for blocking. The sections were then

incubated with primary antibodies (1:200) overnight at 4°C.

After washed with PBS three times, the sections were incubated

with secondary antibodies (1:1000) for 1 h at room temperature.

Following activation of neutrophils, the cells were collected,

washed with PBS for three t imes , fixed with 4%

paraformaldehyde for 20 min, permeabilized with 0.1% Triton

X-100 for 30 min at room temperature, and then blocked with

1% bovine serum albumin (BSA) in distilled water for 30 min.

The cells were incubated overnight with a mouse anti- MPO

antibody (Abcam cat. Ab25989) at a 1:500 dilution, an anti-

Histone 3 antibody (Abcam; cat. Ab5103) at a 1:500 dilution.

After being washed with PBS three times, the cells were stained

with secondary antibodies, including Alexa Fluor 488-

conjugated anti-rabbit and Alexa Fluor 594-conjugated anti-

mouse antibodies. We used DAPI as a nuclear counterstain (Life

Technologies). After being rinsed and mounted with glycerol,

the sections were recorded using fluorescence microscopy.
Electron microscopy

Autophagosomes were observed in neutrophils in mice BALF

by transmission electron microscopy. NETs were observed in

human neutrophils by scanning electron microscopy. Cells were

fixed with 2.5% glutaraldehyde, postfixed with 1%

osmiumtetroxide, contrasted with uranylacetate and tannic acid,

dehydrated, and embedded in Polybed (Polysciences).
Fluorescence microscopy

Neutrophils LC3B puncta were assessed with fluorescence

Confocal to evaluate autophagy. Confocal fluorescence images

were captured using a Leica TCS SPE confocal fluorescence

microscope (Leica Microsystems). Non-confocal images were

acquired with an Axio Observer inverted fluorescence

microscope (Carl Zeiss). LC3B puncta was calculated using

Image J software.
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Statistical analysis

All statistical analyses were perform using Graphpad Prism 8.0

(San Diego, CA, USA). Comparisons of normally distributed

continuous data were performed with student’s t test or one-way

analysis of variance. The lung injury score was compared using the

Kruskal-Wallis test with Dunn’s adjustment for multiple

comparisons. A p <0.05 was considered as statistically significant.
Results

Upregulated PD-L1 promotes
neutrophil recruitment in lung
and aggravates lung injury

We previously reported that PD-L1 expression was

increased in neutrophils during sepsis, and PD-L1 could

inhibit the apoptosis of neutrophils through the PI3K/Akt

pathway (36), leading to increased neutrophils aggregation in

the lungs to aggravate lung injury during sepsis. But the in vivo

role of neutrophil PD-L1 against ARDS might be confused by its

role in immunosuppression. To investigate whether PD-L1 plays

a direct role in acute lung injury, we introduced the neutrophil-

specific PD-L1 knockout (PD-L1flox/flox) mice and PD-L1WT/WT

mice to establish an ARDS model by intratracheal LPS injection

(47). After LPS stimulation, the expression of PD-L1 in lung

neutrophils increased, but compared with PD-L1WT/WT mice,

the increase of PD-L1 in lung neutrophils of PD-L1flox/flox mice

was not significant (Figures 1A, B). LPS-induced lung injury was

present in both PD-L1flox/flox and PD-L1WT/WT mice,

characterized as alveolar wall thickening, interstitial and

alveolar infiltration of inflammatory cells, and hemorrhage in

the lungs. However, LPS injection caused more severe lung

injury in PD-L1WT/WT mice compared with the PD-L1flox/flox

mice (Figures 1C, D). Inflammatory cytokines are usually

elevated in the lungs in LPS-induced ARDS. Compared with

the PD-L1WT/WT mice, LPS significantly attenuated the secretion

of TNF-a, IL-1b and IL-6 in BALF of PD-L1flox/flox mice

(Figure 1E). In ARDS, there is increased infiltration of

macromolecules and fluids into the interstitium due to a

compromised endothelial cell barrier (3). We measured the

wet-to-dry weight ratio of the lungs and total protein

concentration of BALF which is a signal of pulmonary edema

in ARDS. Neutrophil-specific PD-L1 knockout effectively

attenuated the effect of LPS in increasing wet-to-dry ratio of

lung and increase total protein concentration of BALF

(Figure 1F). Secretion of pro-inflammatory cytokines by

resident alveolar macrophages in ARDS leads to recruitment

of neutrophils and monocytes or macrophages, activation of

alveolar epithelial cells and effector T cells, and promoting

inflammation and tissue injury (2). It was observed that LPS

increased the number of total cells and neutrophils in BALF
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from PD-L1WT/WT mice. Similarly, this trend was attenuated in

the PD-L1flox/flox mice (Figure 1G). Our data suggested that up-

regulated PD-L1 has a facilitating effect on the pathogenesis of

ARDS and that the lack of PD-L1 may reduce neutrophil

recruitment and inflammatory responses in the lung.
PD-L1 modulates the release of NETs
both in vivo and in vitro

The prerequisite for NETs formation is the activation of

neutrophils and the release of their DNA. Excessive NETs in

inflammation can be injurious to tissues, and targeted

modulation of NET release is a new direction in the treatment

of acute lung injury (48–50). The in vivo data showed that

increased release of NETs in the lungs of LPS-challenged mice

and excessive release of NETs was reversed in the lung when PD-

L1 was knocked out specifically in neutrophils (Figures 2A, B).

In addition, we stimulated bone marrow neutrophils of mice
Frontiers in Immunology 05
with LPS/IFN-g and found that the knockout of PD-L1 resulted

in a reduction in neutrophil production of NETs in vitro

(Supplementary Figure 1), indicating that down-regulated PD-

L1 can prevent overproduction of NETs. We also collected

peripheral blood neutrophils from ARDS patients and silenced

PD-L1 expression using siRNA to detect PD-L1 expression and

NET release (Figures 3A–D). The results showed that neutrophil

NET release was increased in ARDS patients compared to

healthy volunteers, while NET release was reduced in PD-L1-

knockdown neutrophils.
PD-L1 modulates the release of NETs by
regulating autophagy

In chronic kidney disease, excessive NETs are closely

associated with endothelial cell dysfunction. Levels of NETs

were significantly increased after autophagy was inhibited,

suggesting a protective role of autophagy in excessive NET
A B

D E

F G

C

FIGURE 1

Up-regulated PD-L1 has a facilitating effect on the pathogenesis of ARDS and that a lack of PD-L1 has a protective effect. (A–G) PD-L1WT/WT
mice and PD-L1flox/flox mice were injected intratracheally with LPS (10mg/kg) for 24h. (A, B) Percent of PD-L1 expression on neutrophils in
BALF. (C) Representative histological section of the lungs was stained by HE staining (scale bar:100um). (D) The lung injury scores were
determined. (E) TNF-a, IL-1b, IL-6 levels in BALF. (F) BCA assay was used to determine the total protein concentration in BALF and lung tissues
were weighed to calculate the W/D ratio. (G) The total cells and neutrophils detected by flow cytometry in BALF. The values presented are
mean ± SEM (n=6; *P<0.05, one-way analysis of variance).
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formation (51). In the present work, we observed that LPS/IFN-g
stimulation significantly augmented the level of autophagy

in neutrophils, but PD-L1-knockdown neutrophils have

a higher level of autophagy (Figures 4A, B). And we were

able to confirm more accumulation of localized LC3B puncta

in PD-L1-knockdown neutrophils by confocal microscopy

(Figures 4C, D), indicating that autophagy levels are

further enhanced after knockdown of PD-L1 in neutrophils.

To verify whether neutrophil PD-L1 regulated autophagy in

ARDS, we confirmed that the neutrophil autophagosomes

in BALF of ARDS PD-L1flox/flox mice were more than those of

PD-L1WT/WT mice by electron microscopy, which implied

that PD-L1-knockdown neutrophils had a higher level of

autophagy (Figure 4E). These results may suggest that PD-L1

inhibits autophagy potential in neutrophils and PD-L1

knockdown can lift this inhibition to produce more autophagy

under ARDS.

Next step, autophagy was inhibited by wortmannin

administration (52). Interestingly, when autophagy was

inhibited by wortmannin, the release of NETs was re-

introduced in lungs of PD-L1flox/flox mice treated with LPS

(Supplementary Figure 2). Similar trend was also observed in
Frontiers in Immunology 06
neutrophils in vitro. The inhibition of NET release by PD-L1

knockout was reversed in mice neutrophils by wortmannin

stimulated with LPS and IFN-g (Supplementary Figure 3).
PD-L1 regulates autophagy through
PI3K/Akt/mTOR pathway

Mammalian target of rapamycin (mTOR), a serine/

threonine kinase, plays a critical role in regulating autophagy,

and its activation can inhibit autophagy (53, 54). It has been

demonstrated that PD-L1 inhibition in tumors decreases PI3K/

Akt/mTOR pathway activity and enhances autophagy (55, 56),

but the pathways through which PD-L1 regulates autophagy in

ARDS are not yet clear. Our previous work has demonstrated

that PD-L1 can bind to PI3K regulatory subunit p85 in

neutrophils (36), so we speculated that PD-L1 regulates

autophagy via PI3K/Akt/mTOR signaling pathway, thus

preventing the release of excessive NETs to improve ARDS.

To confirm this prediction, we investigated PI3K/Akt/mTOR

pathway in vitro with purified bone marrow neutrophils of mice.

Under LPS/IFN-g stimulation, PD-L1 expression was elevated
A

B

FIGURE 2

Genetic deletion of PD-L1 in neutrophils can reduce NET release in ARDS model. (A, B) PD-L1WT/WT mice and PD-L1flox/flox mice were injected
intratracheally with LPS (10mg/kg) for 24h. (A) Representative immunofluorescence images of Cit-H3 (green) and MPO (red) staining with blue DAPI
nuclear staining in lungs. Neutrophils express MPO (red) and NET forming neutrophils also express Cit-H3 (green). Cyan fluorescence represents the
colocalization of Cit-H3 with DNA. The white arrowheads point to neutrophils not making NETs and the red arrows to neutrophils making NETs. The
scale bar indicates 20 mm. Higher magnification images are shown lower row of figures – scale bars indicate 10 mm. (B) MPO-DNA complex measured
in NETs structures in BALF. The values presented are mean ± SEM (n=3; *P<0.05, one-way analysis of variance).
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(Figure 4A), PI3K/Akt/mTOR pathway activity was augmented

and autophagy was enhanced in neutrophils from control mice,

but in PD-L1-knockout neutrophils from mice, PI3K/Akt/

mTOR pathway activity was relatively lower and autophagy

was stronger (Figures 5A, B).

Based on our previous work (36), we explored the site of

intracellular binding of PD-L1 and PI3K regulatory subunit p85

in neutrophil. PD-L1 is a transmembrane protein and OTUB1

inhibits its degradation via ERAD (endoplasmic reticulum-

associated degradation) pathway before it is fully matured, and

only the intracellular domain of ER-associated PD-L1 exposes to

the cytosol (57). PI3K is composed of the p85 regulatory subunit

and the p110 catalytic subunit. The p85 subunit has both

inhibitory and stabilizing effects on p110. Therefore, we

explored whether PD-L1 and p85 combined at the

endoplasmic reticulum in neutrophil to activate the PI3K/Akt/

mTOR pathway. When activated, p85 phosphorylation

decreased its inhibitory effect on p110, leading to an enhanced

activity of p110. Unbound p85 has an inhibitory effect on p85/

p110 heterodimer (58–61). The immunofluorescence assay

demonstrated that PD-L1, p85 and the ER marker calnexin

colocalized in neutrophils of ARDS patients (Figure 5C). In
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addition, we investigated the interaction between p110 and p85

or Akt by immunoprecipitation in neutrophils of ARDS patients.

The results showed that both p110 and p85 or Akt binding were

elevated in neutrophils stimulated by LPS/IFN-g. When PD-L1

was knocked down by siRNA, the interaction between p110 and

p85 or Akt was inhibited (Figure 5D). These findings suggested

that elevated PD-L1 expression in neutrophils from ARDS

patients activated PI3K and enhanced activation of Akt

and mTOR.

Insulin-like growth factor 1 (IGF-1) can activate PI3K

pathway (62). Therefore, IGF-1 was introduced to reverse the

effect of PD-L1 knockout on PI3K/Akt/mTOR pathway.

Neutrophils from PD-L1-knockout mice were stimulated by

LPS/IFN-g and treated with IGF-1. Administration of IGF-1

increased the phosphorylation of p85, Akt and mTOR

(Figures 6A, B), and inhibited the level of autophagy in

PD-L1flox/flox neutrophils (Figures 6C–F). And activation of

PI3K/Akt/mTOR pathway also reversed the inhibition of NET

release by PD-L1 knockout (Figure 6G). These data may imply

that PD-L1 inhibits neutrophil autophagy by maintaining the

activation of PI3K/Akt/mTOR pathway to curb autophagy

potential under ARDS.
A
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D
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FIGURE 3

Down-regulated PD-L1 of neutrophils reduces NET release in human. (A) Representative scanning electron micrographs of neutrophil NET of
normal and ARDS patients (scale bar: 5um). (B) Genetic silencing of PD-L1 using siRNA in ARDS neutrophils for 21 hours significantly decreased
PD-L1 expression. (C) MPO-DNA complex measured in NETs structures in neutrophils culture supernatant. (D) Representative
immunofluorescence images of Cit-H3 (green) and MPO (red) staining with blue DAPI nuclear staining in neutrophils. Neutrophils express MPO
(red) and NET forming neutrophils also express Cit-H3 (green). Cyan fluorescence represents the colocalization of Cit-H3 with DNA. The white
arrowheads point to neutrophils not making NETs and the red arrows to neutrophils making NETs. The scale bar indicates 50 mm. Higher
magnification images are shown lower row of figures – scale bars indicate 10 mm. The values presented are mean ± SEM (n=6; *P<0.05, one-
way analysis of variance).
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Anti-PD-L1 antibody ameliorates ARDS
and enhances autophagy in mice

As described above, knockdown of neutrophil PD-L1 was

protective against ARDS in mice through enhanced autophagy.

Therefore, we investigated whether anti-PD-L1 antibody had a

direct protective effect against ARDS. Anti-PD-L1 antibody was

administered intraperitoneally into the murine model of ARDS

and showed that lung injury, inflammatory factors, BALF protein

concentration, BALF total cell count and neutrophil count were

significantly lower in the anti-PD-L1 antibody group compared

with those in the isotype antibody group (Figures 7A–E),

indicating that treatment with anti-PD-L1 antibody attenuated

lung injury and inhibited inflammatory factors, protein exudation

and neutrophil infiltration of lung tissue. Moreover, lung NETs

fluorescence and MPO-DNA ELISA assay of BALF showed that

the administration of anti-PD-L1 antibody reduced the

production of NETs in the lungs of ARDS mice (Figures 8A, B),

thus effectively alleviating the damage to the lungs. In addition, we

also examined beclin-1, LC3B (autophagy marker) protein with

ARDS patient neutrophils, and the results indicated that
Frontiers in Immunology 08
autophagy was elevated after the application of anti-PD-L1

antibody (Figures 8C ,D and Supplementary Figure 4),

suggesting that anti-PD-L1 antibody might exert a protective

effect by increasing the level of autophagy in ARDS.

Conventionally, anti-PD-L1 antibody acted on the cell surface

to prevent the interaction between PD-L1 and its receptor, PD-1.

We questioned how anti-PD-L1 antibody inhibited the

intracellular effect of PD-L1 and the subsequent signaling

molecules. Thus, we visualized the localization of anti-PD-L1

antibody in the neutrophils. We first stimulated neutrophils

with a neutralizing anti-PD-L1 antibody, and then stained this

neutralizing antibody. Interestingly, the immunofluorescence

assay showed that anti-PD-L1 antibody was colocalized with the

ER marker, calnexin (Figure 8E).
Discussion

Our present data implicates that PD-L1-PI3K/Akt/mTOR-

autophagy-NETs pathway plays an important role in neutrophil-

mediated lung injury during ARDS (Figure 8F). PD-L1
A
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FIGURE 4

Genetic deletion of PD-L1 can increase autophagy levels. (A–D) Neutrophils from PD-L1WT/WT mice or PD-L1flox/flox mice are stimulated with
IFN-g (10ng/ml) and LPS (1mg/ml) for 21 hours. (A) PD-L1, Beclin-1 and LC3B II/I immunoblotting in neutrophils. (B) Integrated optical density
ratio of LC3B II/LC3B (I) (C) Autophagy induction assessed with LC3B staining (confocal microscopy; green: LC3B; blue: DNA) in neutrophils
(scale bar: 10um). (D) LC3B puncta/cell are depicted. (E) PD-L1WT/WT mice and PD-L1flox/flox mice were injected intratracheally with LPS
(10mg/kg) for 24h. Representative transmission electron micrographs of neutrophil autophagosomes in BALF (scale bar: 2um, 1um). The values
presented are mean ± SEM (n=6; *P<0.05, one-way analysis of variance).
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expression is elevated in neutrophils from ARDS patients and

mice to activate the PI3K/Akt/mTOR pathway. When PD-L1

expression is downregulated in activated neutrophils, the

activation of PI3K/Akt/mTOR pathway is compromised,

followed by a weakened inhibitory effect of mTOR on

autophagy, which attenuates the release of excessive NETs.

More importantly, our data demonstrates that PD-L1 interact

with PI3K at the ER level, but not at the cell membrane as

conventionally acknowledged. Furthermore, the neutralizing

antibody against PD-L1 shows a direct protective effect against

LPS-induced lung injury in mice.

PD-L1 is not only an important molecule in mediating

tumor immune escape, but also has an important role in

inflammation development. Thanabalasuriar et al. (63)

reported the role of PD-L1+ neutrophils in mice with airway

inflammation and found a protective effect of anti-PD-L1

antibody against inflammation. Our previous work presented

that upregulation of neutrophil PD-L1 in inflammatory states

can delay the apoptotic process through the PI3K/Akt pathway

and consequently induce lung injury (35). In that study, it was
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observed that enhanced Akt phosphorylation in neutrophils

from patients with sepsis, which was reversed by PD-L1

siRNA. It was also discovered that PD-L1 interacts with p85

subunit by immunoprecipitation (35). Herein, we demonstrated

that when neutrophils were stimulated by LPS/IFN-g, PD-L1
expression was elevated and binded to p85 subunit at the ER.

Traditionally, PD-L1 is thought to be expressed on the

neutrophil membranes and interacts to PD-1 on the T cells

membranes, suppressing normal T cell immunity and

promoting immunosuppression (35, 64, 65). In this study, we

found that PD-L1 and p85 could interact with each other at the

ER by colocalization under fluorescence image, thereby

activating the PI3K/Akt/mTOR pathway in the host cells

which expressed PD-L1. Phosphorylated p85 binds tightly to

catalytic subunit p110 to phosphorylate downstream Akt/

mTOR. PI3K/Akt/mTOR pathway can regulate autophagy,

and mTOR inhibitors can enhance autophagy. Neutrophil

PI3K/Akt/mTOR pathway activity is inhibited after knockout

of neutrophil PD-L1. Pehote et al. (66) showed that enhanced

autophagy might reduce immune disorder and organ
A B
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FIGURE 5

PD-L1 binds to p85 on the ER to regulate autophagy via PI3K/Akt/mTOR pathway. (A) Neutrophils from PD-L1WT/WT mice or PD-L1flox/flox
mice are stimulated with IFN-g (10ng/ml) and LPS (1mg/ml) for 21 hours. Protein levels of p85, p-p85, Akt, p-Akt, mTOR, p-mTOR and LC3B II/I
in neutrophils were evaluated by western blot analysis. (B) Integrated optical density ratio of p-p85/p85, p-Akt/Akt, P-mTOR/mTOR, and LC3B
II/LC3B (I) The values presented are mean ± SEM (n=3; *P<0.05, one-way analysis of variance). (C) PD-L1 and p85 overlap on the ER in
neutrophils from ARDS patients, which was confirmed by confocal microscopy (blue: DNA; red: p85; yellow: PD-L1; green: calnexin (ER
marker)) (scale bar: 1um). (D) Neutrophils were transfected with PD-L1 siRNA. Immunoprecipitating p110 demonstrates that p110 complexes
with more p85 and Akt in ARDS patients. The values presented are mean ± SEM (n=3; *P<0.05, one-way analysis of variance).
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deterioration in ARDS. When PD-L1 was knocked out

specifically in neutrophils, autophagy was enhanced by lifting

suppressed autophagy potential due to increased PD-L1 and

NET release was reduced. Inhibition of autophagy by inhibitor

would reverse the elevated NET release in activated neutrophils

where PD-L1 expression was upregulated. This means that PD-

L1 can inhibit autophagy potential (higher autophagy level by

PD-L1 knockout) and maintain NET release by activating PI3K/

Akt/mTOR pathway.

Autophagy and NET formation are not fully understood.

Several groups have reported a requirement for autophagy in the

formation of NETs (67, 68), and inhibition of autophagy

prevents intracellular chromatin decondensation, which is

essential for NETosis and NET formation (28). Others have

reported that NETs can occur in absence of essential autophagy

gene (69). Meanwhile, we discussed that NETs are released in

excess during ARDS and that the increased autophagy
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stimulated by knockdown of PD-L1 can inhibit NET release.

The role of NETs in infection control was first described in 2004

by Brinkmann et al. (70). However, over the past decade, many

groups have reported on the role of NETs as a double-edged

sword. In concert with their bactericidal activity, NETs also

display toxic effects on host tissues in different diseases, such as

diabetes, rheumatoid arthritis and sepsis (17, 71–73). In

addition, at least 2 different mechanisms of NET formation

have been described, including a suicide lytic NETosis and a live

cell or vital NETosis (74). Since autophagy has waste disposal

functions, its activation and inhibition may become a new

therapeutic strategy for diseases (75). There is growing

evidence that autophagy promotes cellular senescence and cell

surface antigen presentation, protects against genomic instability

and prevents necrosis, in addition to eliminated intracellular

aggregates and damaged organelles, giving it a key role in the

prevention of cancer, neurodegeneration, cardiomyopathy,
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FIGURE 6

IGF-1 is able to counteract the protective effect of PD-L1 knockdown by activating the PI3K/Akt/mTOR pathway. (A–G) Neutrophils from PD-
L1WT/WT mice or PD-L1flox/flox mice stimulated with IFN-g (10ng/ml) and LPS (1mg/ml) are treated with IGF-1 (10ng/ml) or DMSO for 21h. (A)
IGF-1 can activate the PI3K/Akt/mTOR pathway confirmed by Protein levels of p85, p-p85, Akt, p-Akt, mTOR, p-mTOR in neutrophils. (B)
Integrated optical density ratio of p-p85/p85, p-Akt/Akt, P-mTOR/mTOR. (C) Autophagy induction assessed with LC3B staining (confocal
microscopy; green: LC3B; blue: DNA) in neutrophils (scale bar: 10um). (D) LC3B puncta/cell are depicted. (E) PD-L1, Beclin-1 and LC3B II/I
immunoblotting in neutrophils. (F) Integrated optical density ratio of LC3B II/LC3B I. (G) MPO-DNA complex measured in NETs structures in
neutrophils culture supernatant. The values presented are mean ± SEM (n=6; *P<0.05, one-way analysis of variance).
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diabetes, liver disease, and other diseases (75, 76). Excess NETs

in ARDS are harmful, and elevated autophagy may reduce NETs

to improve ARDS. However, progress in assessing the role of

autophagy in human disease and its treatment relies heavily on

the development of methods to monitor human autophagic

activity (77).

Anti-PD-L1 antibodies are widely used in clinical practice

for tumor treatment. Atezolizumab (a monoclonal antibody

against PD-L1), which restores anticancer immunity, improved

overall survival in patients with previously treated lung cancer or

breast cancer and also showed clinical benefit when combined

with chemotherapy as first-line treatment of lung cancer or

breast cancer (78, 79). PD-L1 blockade can exert a protective

effect on sepsis and the employment of anti-PD-L1 antibodies

may be a promising therapeutic strategy for sepsis-induced

immunosuppression (34, 35, 80). Clinical studies demonstrate

that anti-PD-L1 peptide reverses T-cell dysfunction and

improves survival in sepsis patients (81, 82). Notably, anti-PD-

L1 antibodies, as immune checkpoint inhibitors, can reverse

immunosuppression and may increase immune lung damage. It

is then worth exploring whether the use of anti-PD-L1
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antibodies increases the occurrence of septic lung injury (83–

85). However, Thanabalasuriar et al. reported that blocking PD-

L1 reduces airway inflammation and systemic treatment of

injured animals with an anti-PD-L1 antibody prevented

neutrophil accumulation in the lung and reduced susceptibility

to infection (63). We verified the protective effect of anti-PD-L1

antibody against lung injury, the reduction of NET release and

enhanced autophagy in vivo using a mice ARDS model. In

addition, we confirmed that anti-PD-L1 antibody could

produce the similar effects in reducing release of NETs and

enhancing autophagy in human neutrophils from ARDS

patients, which indicates the therapeutic effect of anti-PD-L1

antibody against ARDS and brings a new direction to the

treatment of ARDS.
Conclusion

In conclusion, PD-L1 has been identified as a therapeutic

target against NET release and acute lung injury via regulating

autophagy through PI3K/Akt/mTOR pathway in neutrophils.
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FIGURE 7

Anti-PD-L1 antibody has an ameliorating effect on the pathogenesis of ARDS. (A–E) C57BL/6 mice injected intratracheally with LPS (10mg/kg)
were treated with anti-PD-L1 antibody (50ug/mouse) or Isotype antibody for 24h. (A) Representative histological section of the lungs was
stained by HE staining, magnification (bar=100um). (B) The lung injury scores were determined. (C) IL-1b, IL-6, TNF-a in BALF. (D) BCA assay
was used to determine the total protein concentration in BALF and lung tissues were weighed to calculate the W/D ratio. (E) The total cells and
neutrophils detected by flow cytometry in BALF. The values presented are mean ± SEM (n=6; *P<0.05, one-way analysis of variance).
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PD-L1 inhibition in neutrophils exerts a protective effect on

ARDS by preventing excessive NETs. Therefore, anti-PD-L1

antibody administration may be a promising therapeutic

strategy for sepsis-induced ARDS.
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FIGURE 8

Anti-PD-L1 antibody can reduce NET release and increase autophagy levels in neutrophils via the PD-L1-PI3K/Akt/mTOR-autophagy-NETs pathway.
(A, B) C57BL/6 mice injected intratracheally with LPS (10mg/kg) were treated with anti-PD-L1 antibody (50ug/mouse) or Isotype antibody for 24h.
(A) Representative immunofluorescence images of Cit H3 (green) and MPO (red) staining with blue DAPI nuclear staining in lungs. Neutrophils express
MPO (red) and NETs forming neutrophils also express Cit-H3 (green). Cyan fluorescence represents the colocalization of Cit-H3 with DNA. The white
arrowheads point to neutrophils not making NETs and the red arrows to neutrophils making NETs. The scale bar indicates 20 mm. Higher magnification
images are shown lower row of figures – scale bars indicate 10 mm. (B) MPO-DNA complex measured in NETs structures in BALF. (C) Neutrophils from
ARDS patients were treated with anti-PD-L1 antibody (10ug/106 cells) for 21h, Beclin-1 and LC3B II/I immunoblotting in neutrophils. (D) Integrated
optical density ratio of LC3B II/LC3B (I) (E) Neutrophils from ARDS patients were treated with anti-PD-L1 antibody (10ug/106 cells) for 24h, which were
located on the ER (confocal microscopy; blue: DNA; red: PD-L1 antibody; green: calnexin (ER marker)) (scale bar: 10um). (F) When neutrophils receive
LPS/IFN-g stimulation, PD-L1 expression is elevated and binds to PI3K regulatory subunit p85 at the ER. Phosphorylated p85 binds tightly to catalytic
subunit p110 to phosphorylate downstream Akt/mTOR. mTOR upregulation inhibits autophagy, which leads to the release of excessive NETs from the
neutrophils. PD-L1 antibody enters the neutrophils at the ER to inhibit PD-L1 catalysis downstream of PI3K. The values presented are mean ± SEM (n=6;
*P<0.05, one-way analysis of variance).
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