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Background: Esophageal cancer (ESCA) is a common malignancy with high

morbidity and mortality. n6-methyladenosine (m6A) regulators have been

widely recognized as one of the major causes of cancer development and

progression. However, for ESCA, the role of regulators is unclear. The aim of

this study was to investigate the role of m6A RNA methylation regulators in the

immune regulation and prognosis of ESCA.

Methods: RNA-seq data were downloaded using the Cancer Genome Atlas

(TCGA) database, and the expression differences of m6A RNA methylation

regulators in ESCA were analyzed. Further m6A methylation regulator markers

were constructed, and prognostic and predictive values were assessed using

survival analysis and nomograms. Patients were divided into low-risk and high-

risk groups. The signature was evaluated in terms of survival, single nucleotide

polymorphism (SNP), copy number variation (CNV), tumor mutation burden

(TMB), and functional enrichment analysis (TMB). The m6A expression of key

genes in clinical specimens was validated using quantitative reverse

transcription polymerase chain reaction (qRT-PCR).

Results: In ESCA tissues, most of the 23 regulators were significantly

differentially expressed. LASSO regression analysis included 7 m6A-related

factors (FMR1, RBMX, IGFBP1, IGFBP2, ALKBH5, RBM15B, METTL14). In

addition, this study also identified that the risk model is associated with

biological functions, including base metabolism, DNA repair, and mismatch

repair. In this study, a nomogram was created to predict the prognosis of ESCA

patients. Bioinformatics analysis of human ESCA and normal tissues was

performed using qRT-PCR. Finally. Seven genetic features were found to be
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associated with m6A in ESCA patients. The results of this study suggest that

three different clusters of m6A modifications are involved in the immune

microenvironment of ESCA, providing important clues for clinical diagnosis

and treatment.
KEYWORDS

esophageal cancer, m6A RNAmethylation regulators, prognosis, signature, the cancer
genome atlas, nomogram
Introduction

Esophageal cancer is a common malignancy, and in 2020,

ESCA had the 7th highest incidence (604,000 new cases) and 6th

highest incidence (544,000 deaths) of all cancers (1). ESCA has a

high mortality rate due to the lack of effective diagnostic and

treatment strategies.

N6-methyladenosine (m6A) is the most common epigenetic

RNA modification that plays an important role in the regulation

of malignancies (2). Despite the potential of m6A for the

diagnosis and treatment of ESCA (3, 4), its potential targets

and mechanisms remain unclear.

m6A refers to themethylation reaction at the sixth position of

adenosine. m6A methylation abnormalities play an important

role inmany diseases, especially in tumors (5).Methyltransferases

(METTL3, METTL14, METTL16, WTAP, KIAA1429, ZC3H13,

RBM15), demethylases (FTO, ALKBH5), binding proteins

(HNRNPC, HNRNPA2B1, YTHDF1, YTHDF2, YTHDC2,

YTHDC2, YTHDC1). m6A methylation regulators have

important effects on ESCA progression, proliferation,

migration, and invasion. hNRNPA2B1 affects the prognosis of

ESCA by regulating the miR-17-92 cluster as an oncogenic factor

(6). In addition, HNRNPA2B1 promotes ESCA progression

through upregulation of fatty acid synthase ACLY, ACC1 (7).

ALKBH5 exerts tumor suppressive effects by inhibiting miR-194-

2 biogenesis through demethylation of pri-miR-194-2, thereby

inhibiting RAl1 (8). Another study showed that FTO is involved

in oncogenesis of ESCA through upregulation of MMP13 (9). In

addition, METTL3 may also promote ESCA proliferation and

invasion by regulating multiple pathways, such as AKT (10),

Notch (11), COL12A1/MAPK (12) and other signaling pathways.

In addition, Xu et al. (13) demonstrated that eight regulators

(KIAA1429, HNRNPC, RBM15, METTL3, WTAP, YTHDF1,

YTHDC1, YTHDF2) were significantly upregulated in ESCA

tissues. The above results suggest that the prognostic features of

two genes, ALKBH5 and HNRNPC, have a predictive effect on

prognosis. In another study (7), HNRNPA2B1, ALKBH5 was the

prognostic signature consisting of HNRNPA2B1 and ALKBH5

(7). In addition, a recent study found that m6A methylation
02
regulators may be important mediators of PD-L1 expression and

immune cell infiltration, which may strongly influence the tumor

microenvironment of esophageal squamous cell carcinoma

(ESCC) (14). Furthermore, Saiyan et al. (15) suggested that Flap

endonuclease 1 Facilitated hepatocellular carcinoma progression

by enhancing USP7/MDM2-mediated P53 inactivation. However,

previous bioinformatics studies were relatively simple: no multi-

omics integration analysis or assessment of tumor mutation

burden (TMB) was used, or focusing on exploration of the

single gene, or without experimental validation. The aim of this

study was to investigate the molecular targets and therapeutic

mechanisms of ESCA.
Methods

Data acquisition and processing

RNA transcriptome data (FPKM) format was obtained from

the TCGA public database (https://portal.gdc.cancer.gov/),

along with copy number variation (CNV), somatic mutations,

corresponding clinical data, TNM classification, survival

information, and prognostic data for ESCA patients. To ensure

data consistency, FPKM was transformed into transcripts per

kilobase (TPM) values. Patients with no clinical information

were excluded from this study. Finally, 161 ESCA samples and

11 adjacent tissues were included in the analysis. For CNV

analysis, the "Circos" R package was used, and CNV genes were

mapped on 23 chromosome pairs. Somatic mutation data were

obtained from the TCGA database, and somatic mutation data

were visualized using the "maftools" software (16). In addition, a

TMB examination was performed for each patient.
Construction and prediction of
predictive features

First, the differences in m6A-related regulators expression

between ESCA samples and normal tissues, and the relationship
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between regulator expression and prognosis of ESCA patients

were analyzed. To determine the prognostic value of m6A-

associated regulators, TCGA-ESCARNA-seq candidate risk

regulators were selected in combination with LASSO

regression analysis to reduce the dimensionality and select

representative indicators. Subsequently, the selected genes were

subjected to dimensionality reduction analysis to determine

whether the selected genes had independent prognostic value.

Finally, the minimum criterion was used to determine the

corresponding specification coefficients. The regression

coefficients were estimated based on the LASSO regression

model, and the results were calculated as follows.

riskScore =o
i
Coefficient hub geneið Þ

�mRNA Expression hub geneið Þ

ESCA patients were divided into low-risk and high-risk

subgroups according to median risk score.
Genomic and functional analysis

Gene ontology (GO) functional analysis is a common method

for large-scale functional enrichment studies, including biological

process (BP), molecular function (MF), and cellular component

(CC). GO analysis was performed using the clusterProfiler (17) R

package, based on differential gene expression analysis between

high-risk and low-risk groups. False discovery rate q<0.05 was

considered statistically significant.

Gene set enrichment analysis (GSEA) is a computational

method to analyze whether statistical differences exist in a

particular gene set. In this study, the GSEA method was used

to analyze TCGA-ESCA RNA-seq data to explore the differences

in BP between different sets." The h.all.v7.2.symbols.gm t set was

downloaded from the MSigDB (18) database and used for GSEA.

p<0.05, statistically significant.
Quantitative validation of pivotal genes
using reverse transcription polymerase
chain reaction

The expression of IGFBP2, ALKBH5, FMR1, RBMX in 15

pairs of ESCA and adjacent esophageal tissues was detected by

quantitative reverse transcription polymerase chain reaction

(qRT-PCR). IGFBP2, ALKBH5, FMR1, RBMX, were acquired

from BioSune (Shanghai, China). qRT-PCR analysis was

performed using the Hieff® qPCR ® qRT-PCR system

(Applied Biosciences, USA, USA) was used for qRT-PCR

analysis. Reactions were performed at 95°C for 10 min,95°C,

40 cycles for 15 s, and 60°C for 1 min. The relative levels of gene
Frontiers in Immunology 03
expression were calculated by the 2-D Ct method using GAPDH

as a reference gene. The study was conducted according to the

Declaration of Helsinki of the World Medical Association. The

School of Clinical Oncology of Fujian Medical University

approved the use of human tissues.
Consistent clustering study of m6A-
related genes

To assess genetic identity, molecules significantly

associated in the m6A risk model were analyzed using the

Spearman method. p values were adjusted with the Benjamin-

Hochberg test. When the absolute correlation coefficient was

greater than 0.3 and P<0.01, it was significantly associated

with genetic correlation. Tumor samples were clustered into

distinct GeneClusters using the Kaplan-Meier method, which

partitions around significantly correlated molecular expression

and Euclidean measurement distances. Specifically, clustering

analysis was performed using the ConsensusClusterPlus (19) R

package, with 1000 cycles of calculation to ensure stability

and reliability of the classification. To study the signature

genomes, the Boruta algorithm was used to perform a

dimensionality reduction analysis of significantly related

genomes. Then, two classes, signature gene A and signature

B, were clustered according to signature gene expression

changes and visualized using the ComplexHeatmap package

in the R software.
Copy number variation analysis

For CNV analysis, masked copy number segment datasets

for different risk groups were downloaded from TCGA-ESCA.

The data were examined using GISTIC 2.0 (20). GenePattern 5

was used for the above analysis.
Construct and validate the
prediction nomogram

To improve the value of the signature in clinical practice,

clinical factors (T, N, M, TNM) and m6A risk score were used as

prognostic nomograms to evaluate the probability of OS

occurrence in ESCA patients at 1, 2, and 3 years. To quantify

the discriminatory performance of the nomogram, the

concordance index (C-index) of T, N, M, m6A risk score,

TNM, TNM+m6A risk score were compared. Calibration

curves, time-dependent receiver operating characteristic (ROC)

curves, and decision curve analysis (DCA) were used to examine

the TNM and TNM+m6A risk scores.
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Results

Genetic variation of m6A-related genes

To analyze the overall expression of m6A-related genes in

ESCA patients, this paper first analyzed mutations and gene

expression levels, including single nucleotide polymorphisms

(SNPs), CNV, and gene expression. Among the 172 samples, 23

samples showed SNPs of m6A-related regulators, mainly

missense mutations (Figure 1A). Subsequently, we summarized

the incidence of CNV for the 23 m6A-associated regulators in

the ESCA samples. Figure 1B shows the altered CNV

chromosomal location. CNV alterations were widespread in

m6A-related genes, with reduced copy number in most

patients (Figure 1C). In addition, the mRNA expression levels

of m6A-related genes were analyzed between ESCA samples in

this study, and the results showed that all genes were

differentially expressed except METTL14, ZC3H13, RBM15,

YTHDC2, and IGFBP1 (Figure 1D). Spearman correlation

analysis was applied to correlate the 23 m6A RNA

methylation regulators. From Figure 1E, the transcriptome

associations were explored, and we suggested that there are
Frontiers in Immunology 04
close correlations among writers, erasers and readers. The

correlation between RBMX and HNRNPC, HNRNPA2B1 was

the highest (P<0.01), while the correlation between YTHDF3,

VIRMA was the highest (P<0.01) (P<0.01).
Construction and validation of a
prognostic risk model based on seven
m6A methylation regulators

Next, we analyzed the role of m6A-related regulators in

ESCA patients. The m6A regulatory network shown in

Figure 2A reveals the interactions with m6A-related genes,
B

C

D

A

E

FIGURE 1

Genetic variants of m6A-related genes. (A) SNP of m6A related
genes in 23 samples. (B) Location of CNV alterations on
chromosomes. (C) Frequency of CNV in m6A related genes. Blue
represents amplification, orange represents deletion. (D) Genetic
variants of m6A-related genes. (E) Diagram showing the
relationship between different m6A-related genes through
Pearson correlation analysis. Red and blue represent a positive
and negative correlation, respectively. *p < 0.05, **p < 0.01,
***p < 0.001; ns, not significant.
B

C

D
E

F

A

FIGURE 2

PPI network and prognostic signatures construction and
prediction. (A) Interaction among m6A-related regulators. Circle
size indicates the effect of each gene on survival, the larger the
size, the greater the effect; on the right half of the circle, red
represents risk prognostic factors and blue represents favorable
factors; on the left side of the circle, red represents recognition
proteins (readers), blue represents methyltransferases (writers),
and brown demethyltransferases (erasers); lines that connect
genes exhibit genetic interactions, red and blue represent
positive and negative associations, respectively. (B) Partial
likelihood deviance of different numbers of variables. One-
thousand-fold cross-validation was applied for tuning penalty
parameter selection. (C) LASSO analysis identified seven m6A-
related genes in the 23 m6A-related regulators cohort. Each
curve corresponds to one gene (cyan, FMR1; green, RBMX; pink,
IGFBP1; brown IGFBP2; blue, ALKBH5; orange, RBM15B; purple,
METTL14). (D) Risk score, distribution of patient survival status
between the low- and high−risk groups, and expression heat
maps of seven m6A-related regulators. (E) Kaplan–Meier curves
indicated that there is a strong relationship between high and
low m6Ascore and the overall survival rate. (F) ROC curve was
applied to assess the predictive efficiency of the prognostic risk
signature.
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nodes, and their role in ESCA prognosis. It was found that not

only the m6A regulators share the same functional class, but also

the expression of functional class m6A regulators was

significantly correlated.

In addition, to quantitatively evaluate the effect of m6A-

related regulators on the prognosis of each ESCA patient, we

constructed a risk model of m6A-related regulator expression.

First, based on the results of LASSO regression analysis, the

minimum-minimum criterion and optimal-minimum criterion

M6A-related genes, including FMR1, RBMX, IGFBP1, IGFBP2,

ALKBH5, RBM15B, METTL14, were used (Figure 2B–C).

Meanwhile, the penalty coefficients of the characteristic

regulators were calculated using LASSO analysis, and the risk

index was established by multiplying the gene expression by the

corresponding coefficients. The risk score of each sample was

then calculated based on the median of m6A scores and divided

into two groups of low risk and high risk. The risk score

distribution, survival status and characteristic gene expression

patterns are shown in Figure 2D. Kaplan-Meier survival analysis

showed that OS was significantly lower in the high-risk group

ESCA patients than in the low-risk group (log-rank

p<0.001, Figure 2E).

The sensitivity and predictive specificity of the risk scores

were investigated using ROC curve analysis. The AUC values

were 0.657, 0.753, 0.758, and 0.758, respectively (Figure 2F). The

AUC values showed that the risk scores significantly predicted

the prognosis of patients with ESCA.
GO enrichment and genome
enrichment analysis

In this study, GO analysis was used to explore the

biological functions of the low-risk and high-risk groups.

The results showed the processes of organ identity

maintenance, negative regulation of synaptic vesicle

extravasation, tubular boys, meiotic telomere and nuclear

envelope attachment, meiotic telomere aggregation, telomere

localization, neuronal action potential regulation, purine

nucleotide metabolism in the high-risk group animals.

decoder complex, tetrahydrobiopterin biosynthesis process,

reduced food intake, brush border assembly, galactolipid

biosynthesis, glycosylceramide biosynthesis, transmembrane

transport of pyrimidine compounds, and purine nucleobase

transport (Figure 3A). Next, we performed the GSEA analysis

shown in Figure 3B. The high-risk group was associated with

antigen processing mechanisms, EMT-1, and mismatch

repair. The low-risk group was correlated with CD8-T,

immune checkpoint, EMT2, pan-F TBRS, angiogenesis,

Fanconi anemia, DNA damage repair, WNT target, and

DNA damage response.
Frontiers in Immunology 05
Validation of IGFBP2 ALKBH5, FMR1, and
RBMX by qRT-PCR

IGFBP2, ALKBH5, FMR1, and RBMX were selected as the

study subjects and validated by qRT-PCR method (Table 1).

RESULTS: The expression level of IGFBP2 in normal tissues was

significantly higher than that in ESCA tissues (Figure 4).
Constructing genetic traits based on the
m6A risk model

To better understand the biology of phenotypes associated

with the m6A risk model, genes significantly associated with

m6A risk scores were analyzed using the Spearman method

(Cor|>0.3 & p.adjusted<0.01). A total of 741 associated genes

were identified. Subsequently, based on the expression of these

genes, the unsupervised clustering method was used to classify

ESCA patients into three subtypes, named GeneClusters A, B,

and C. The dimensionality of the associated gene clusters was

reduced using the Boruta algorithm to obtain the signature gene

clusters. Based on the trend of signature gene expression, the

signature genes were classified into two groups, A and B. The

relationship between GeneCluster groups, m6A signature group,

m6A risk score and clinical prognosis was further analyzed

(Figure 5A). Meanwhile, the results of survival analysis showed

significant differences in the prognosis of patients with the three
B

A

FIGURE 3

GO enrichments and gene set variation analysis. (A, B)
Bioinformatics analysis of low- and high-risk groups. *p < 0.05,
**p < 0.01, ns, not significant.
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gene subtypes, with the GeneCluster C group having the worst

prognosis (log-rank p=0.003, Figure 5B).
Effect of genetic variant risk score

To better understand the effect of high and low m6A scoring

methods on the level of genetic variants, this study analyzed
Frontiers in Immunology 06
single nucleotide mutations in driver genes during common

tumorigenesis, with differences in SNP levels between groups

(Figure 6A). The overall level analysis showed that TMB

(P=0.051, Figure 6B) was slightly correlated between the low-

risk and high-risk groups, and TMB was significantly lower in

GeneCluster A than in groups B and C (Figure 6C). In addition,

the study of CNV variation frequency showed that the variation

of gene CNV in the high-risk group was mainly focused on gene

amplification (Figure 6D), while the low-risk group deleted gene

copy number relatively (Figure 6D).
Construction of a clinical prediction
model based on the m6A risk score

Next, to quantify OS prediction, we combined risk scores

with independent clinical characteristics (T, N, M, and TNM)

to construct a nomogram (Figure 7A). To verify the different
B C DA

FIGURE 4

Validation of the expression levels of target IGFBP2. The IGFBP2
expression in ESCA (n = 15), and adjacent normal tissues (n = 15)
was evaluated by qRT-PCR including FMR1 (A), AKBH5 (B), RBMX
(C), IGFBP2 (D); the results were analyzed using paired sample t
test. Results are expressed as mean ± standard deviation (SD).
*p< 0.05, *p< 0.05, ns, not significant.
BA

FIGURE 5

Genetic signature of risk grouping. (A) Relationship between
GeneCluster groups, m6A signature groups, m6A risk scores, and
clinical prognosis. (B) Kaplan–Meier curves indicate that there is
a strong relationship between GeneClusters A, B, and C and the
overall survival rate.
B

C

D

A

FIGURE 6

Molecular profiling of high and low m6A score groups. (A)
Distribution of driving genes during common tumorigenesis
between high and low m6A score samples; (B, C) Tumor
mutation burden distribution in the different m6A score samples
and GeneCluster groups; (D) Distribution of copy number
amplifications and deletions in high and low m6A score samples.
Table 1 Primers of IGFBP2, ALKBH5, FMR1, RBMX, and GAPDH.

Primer Forward (5′ to 3′) Reverse (5′ to 3′)

IGFBP2
ALKBH5
FMR1
RBMX

TGCAGACAATGGCGATGACC
GACAAGGAAGAGAACCGGCG
GCCAAAGAGGCGGCACATAA
CCCAGCAGACGCTAAGGATG

GGTGCTGCTCAGTGACCTTC
GCATCTTCACCTTTCGGGCA
CGCAGACTCCGAAAGTGCAT
CTACGAGAGGGCAGCGGTTC

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
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predictive effects of m6A risk scores on the combined T, N, and

M stages, this study compared the T, N, M,m6A risk scores

using the scales of the TNM risk scale; and a TNM+m6A risk

score model was developed (Figure 7B). The results showed

that the TNM+m6A prediction model had a better predictive

effect. To verify the prognosis of TNM and the predictive value

of the TNM+m6A risk score model, time-dependent ROC

curves were established (Figures 7C–E). the AUC of the

TNM model for 1, 2, and 3-year OS were 0.691,0.733, and

0.715, respectively; the AUC of the TNM+m6A risk score

model for OS 1,2, and 3-year OS were 0.783, These results

suggest that the TNM+ risk score model has a higher predictive

value than the TNM model. Also, calibration curves were

generated to test the correctness of the models. With the

calibration curves, we found that the survival curves

predicted by both models at 1, 2, and 3 years were very close
Frontiers in Immunology 07
to the observed survival curves, indicating that the nomograms

were highly predictive (Figures 7F–H). In addition, DCA

showed that the TNM+m6A risk score model had a broader

clinical benefit than the TNM prognostic model, but the benefit

of 3-year OS was similar (Figures 7I–K).
Discussion

ESCA is a lethal malignancy. Despite advances in surgery,

radiation therapy, chemotherapy and immunotherapy, the 5-

year survival rate of ESCA remains low due to late detection and

lack of precise treatment (21). Therefore, it is important to gain

insight into the mechanisms of oncogenicity of ESCA. ESCA is

closely associated with lifestyle environmental factors that can

alter genomic inheritance and epigenetics (22). m6A

modification is a novel regulatory mechanism of eukaryotic

gene expression that controls gene expression through

reversible epigenetic modifications (23).

In the present study, CNV alterations in the m6A regulator

were prevalent in ESCA patients and mostly concentrated in

copy number deletions. However, SNP was low in the m6A-

regulator. We further demonstrated general differences and

positive correlations in the expression of the 23 m6A-gene

regulators in ESCA. Next, prognostic scores (high vs. low risk)

were established based on the expression levels of FMR1,

RBMX, IGFBP1, IGFBP2, ALKBH5, RBM15B, and METTL14

genes. These patterns could well predict the survival of ESCA

patients. Initial analysis of biological functions in the high-risk

versus low-risk groups was performed by GO functional

annotation and genomic variation analysis. Based on this, the

TCGA-ESCA cohort was clustered according to the high-risk

score moderator. There were significant survival status

differences among the three GeneClusters. In addition, there

were some differences between the high-risk and low-risk

groups according to prognostic characteristics, with CNV

alterations mainly focused on gene amplification and the

opposite in the low-risk group. Finally, a nomogram was

constructed combining risk scores and independent clinical

characteristics (T, N, M and TNM). The results showed that

the TNM+m6A model was the best predictor. The calibration

curves showed a significant agreement between prediction and

actual survival probability.

First, 17 m6A regulators (METTL3, METTL16, WTAP,

VIRMA, RBM15, YTHDC1, YTHDF2, YTHDF3, HNRNPC,

FMR1, LRPPRC, HNRNPA2B1, IGFBP2, IGFBP3, RBMX,

FTO, ALKBH5 gene expression differences. The expression of

IGFBP2 in normal tissues was significantly higher than that in

ESCA tissues as confirmed by qRT-PCR; IGFBP2 is involved in

various oncogenic processes, such as epithelial-to-mesenchymal
B

C D E

F G H

I J K

A

FIGURE 7

Nomogram analysis. (A) Nomogram composed of stage, T, N, M,
and risk score for the prediction of 1-, 2-, and 3-years OS
probability. (B) C-index analyses of T stage, N stage, M stage, risk
score, TNM, TNM +risk score. (C–E) ROC curve for the
nomogram based on TNM prognosis model and TNM +risk
score model 1-, 3-, and 5-y survival. (F–H) Calibration plot of the
TNM prognosis model and TNM +risk score model for 1-year (F),
2-year (G), and 3-year (H) OS. (I–K) DCA curve of TNM
prognosis model and TNM +risk score for 1, 2, and 3 years.
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transition, cell migration, invasion, angiogenesis, stemness,

transcriptional activation, epigenetic programming, etc. A

recent study showed that rs1470579 CC genotype IGFBP2 is

protective against adenocarcinoma of the esophagogastric

junction (24). Based on previous findings, we suggest that

IGFBP2 may be a key regulator affecting the prognosis of

patients with ESCA. reduced IGFBP2 gene expression may be

associated with poor prognosis. Genomic mutation analysis

showed that SNPs and CNVs of gene regulatory genes were

associated with ESCA.

LASSO regression analysis showed that the prognostic

features of ESCA patients-FMR1, RBMX, IGFBP1, IGFBP2,

ALKBH5, RBM15B, METTL14-predicted the OS of ESCA

patients. ALKBH5 promotes ESCC proliferation and its

mechanism of action is cell cycle regulation (25). IGFBP1 has

a regulatory role in cell proliferation and invasion under the

regulation of miRNAs. miRNAs regulate oncogenes with

regulatory cell proliferation and invasive effects. For example,

miR-454-3P can act on IGFBP1 through ERK and AKT

signaling, thereby inhibiting its proliferation, invasion, and

apoptosis (26). However, the mechanism of action of FMR1,

IGFBP1, RBM15B, and METTL14 is still unclear. We will

explore their relationship with the development of ESCA in a

future study. The predictive potential of these seven factors

combined is much greater than that of individual factors.

Although the ROC curve did not show strong predictive

power in 4-5 years, the number of patients in year 4-5 was too

small, which may lead to an unstable ROC curve.

In addition, this study also analyzed the GO enrichment and

GSVA of ESCA patients based on risk scores using TCGA

information. The high-risk group may be involved in telomere

localization, base metabolism, base translocation, and mismatch

repair. This may be the reason for the poor prognosis of ESCA

due to risk modifiers.

On this basis, the TCGA-ESCA cohort was clustered

according to the high-risk score moderator. The results of the

survival analysis showed significant differences in prognosis

among the three gene cluster groups, with the GeneCluster C

group having the worst prognosis. Most samples had high risk

scores in GeneCluster C. These results suggest that the regulators

involved in the m6A risk model are significantly correlated with

ESCA characteristics.

We then combined risk scores and independent clinical

characteristics (T, N, M, TNM) to construct a nomogram that

allowed the prediction to be quantified. The results showed that

the TNM combined with the risk score model was able to predict

the prognosis of ESCA patients. This improves the value of this

prognostic feature for clinical application.
Frontiers in Immunology 08
The study has several limitations. First, the lack of complete

clinical data from TCGA may affect the results; therefore, the

statistical power may not be high. Further improvement of

sample size, sequencing data and clinical information is

essential. Second, the mechanism of IGFBP2's effect on the

prognosis of ESCA has not been explored in depth. Therefore,

this study will focus on the mechanism of IGFBP2's action as a

tumor suppressor. Finally, this study was based on

bioinformatics and qRT-PCR techniques to analyze the results

of ESCA patient tissues.
Conclusions

The above results suggest that abnormal expression of 17

m6A- RNA methylation regulators is associated with survival

outcome in ESCA patients. The risk score was then combined

with TNM to quantify OS prediction. This study highlights the

important role of RNA modifications in the formation of ESCA

and also provides potential biomarkers for the selection of

therapeutic approaches.
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