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The quest for a syphilis vaccine to provide protection from infection or disease

began not long after the isolation of the first Treponema pallidum subspecies

pallidum (T. pallidum) strain in 1912. Yet, a practical and effective vaccine

formulation continues to elude scientists. Over the last few years, however,

efforts toward developing a syphilis vaccine have increased thanks to an

improved understanding of the repertoire of T. pallidum outer membrane

proteins (OMPs), which are the most likely syphilis vaccine candidates. More

has been also learned about the molecular mechanisms behind pathogen

persistence and immune evasion. Published vaccine formulations based on a

subset of the pathogen’s OMPs have conferred only partial protection upon

challenge of immunized laboratory animals, primarily rabbits. Nonetheless,

those experiments have improved our approach to the choice of immunization

regimens, adjuvants, and vaccine target selection, although significant

knowledge gaps remain. Herein, we provide a brief overview on current

technologies and approaches employed in syphilis vaccinology, and possible

future directions to develop a vaccine that could be pivotal to future syphilis

control and elimination initiatives.
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Introduction

Syphilis, caused by the spirochete Treponema pallidum subspecies pallidum (T.

pallidum), remains a significant global and public health problem. The disease is still

endemic in low- and middle-income countries and resurgent in high-income ones. In the

United States, the number of syphilis cases in 2020 was the highest since 2000 (1).

Furthermore, congenital syphilis transmission is the most common infection associated

with fetal loss or stillbirth in low-income settings, with an estimated 1.4 million pregnant

women infected every year globally, resulting in an estimated 305,000 prenatal or

perinatal deaths, and 215,000 infants born prematurely and/or with clinical signs

of syphilis (2, 3). Past public health initiatives to eliminate syphilis and congenital
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syphilis promoted by the Centers for Disease Control and

Prevention (CDC) and the World Health Organization (WHO),

have significantly reduced syphilis incidence, but have not

achieved their intended elimination goals. Thus, new tools are

needed to aid the currently available diagnostic tests and

therapeutic options.

The only successful study of syphilis vaccination was

reported by Dr. James Miller in 1973 (4). In his study, Miller

used an extensive immunization regimen, injecting rabbits

intravenously 60 times over 37 weeks with g-irradiated T.

pallidum cells. Immunization was followed by intradermal

homologous challenge with the same T. pallidum strain.

Immunized rabbits displayed complete protection that

persisted for at least one year, as shown by the lack of

development of chancres at the challenge sites and the absence

of clinical/serological evidence of syphilis.
T. pallidum proteomic array to study
humoral immunity to syphilis

Evidence that repeated exposure to T. pallidum is conductive

to partially protective immunity was also provided by human

inoculation experiments conducted by Magnuson et al. in the

1950’s (5), which showed that a previous syphilitic infection of

sufficiently long duration would produce significant protection

against subsequent challenge. Others have found that in patients

with repeated episodes of syphilis, reinfections led to less severe

skin manifestations than in patients at their first syphilis

episode (6). The evidence that previous syphilis attenuates the

clinical manifestations associated with reinfection has been

recently reiterated by Marra et al. (7) The study of how the

immunological response to T. pallidum antigens differs in

patients diagnosed with active syphilis but with and without a

history of the disease could provide a basis for vaccine

development. By increasing the understanding and describing

the differences in immune responses between those two groups,

researchers hope to identify unique aspects of the adaptive

humoral response to inform vaccine development. If this

protective immunity could be replicated through vaccination,

the result could be a vaccine that leads to attenuation of early

symptoms and, hence, decreased infectivity and transmission of

T. pallidum (8). Therefore, a vaccine that can only induce partial

protection, but can prevent early symptoms, and possibly

pathogen dissemination could result in reduced syphilis spread

and be of substantial public health benefit for populations at

increased risk of syphilis.

Among the newest tools to study syphilis immunology is a

T. pallidum proteomic array developed by Antigen Discovery

Inc. (ADI) in collaboration with the Giacani laboratory (9). That

array is conceptually not dissimilar from that described by

Brinkman et al. in the early 2000’s based on the Nichols strain
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genome. However, the ADI array covers 99% of the proteome of

two strains of T. pallidum (Nichols and SS14) and is amenable to

high throughput analyses with mere microliters of serum. The

array is currently being evaluated with longitudinal serum

samples from long-term infected rabbits, and longitudinal

serum samples from rabbits that were infected, treated with

benzathine penicillin G (BPG) weeks after infection, and then re-

infected after residual antibiotic was cleared. Furthermore, the

array is being used to evaluate reactivity to ~150 clinical serum

samples provided by our group and collected in Peru.

Comparison of the differential reactivity to T. pallidum

antigens (with emphasis on putative vaccine candidates) in

serum from patients with and without a history of syphilis at

diagnosis will help pinpoint protective antigens to be tested in

pre-clinical vaccination/challenge experiments. Additionally, the

ADI system for cell-free synthesis of T. pallidum antigens could

be adapted to the investigation of T. pallidum antigens inducing

a robust cellular response during infection. Those antigens could

be added to a vaccine formulation to promote T cell activation

and IFN-g production to activate macrophages.

The usefulness of an instrument like the ADI proteomic

array becomes far more remarkable when a vast array of well-

characterized clinical samples is available. The institution of

centralized biospecimen repositories with serum and lesion swab

specimens would greatly benefit research efforts to understand

syphilis immunology and genetic diversity in this pathogen.
Genetic diversity and vaccine
development

The publication of the Nichols strain genome sequence in

1998 by Fraser et al. (10), opened the gateway to reverse syphilis

vaccinology. The conserved region of the variable antigen TprK

(encoded by the tp0897 gene) was one of the first vaccine

candidates identified with that approach and it is still included

in several modern experimental vaccine formulations (11, 12).

Some preliminary work has been conducted to improve

expression of surface-exposed integral outer membrane

proteins like TprK and Tp0435 genes on engineered non-

infectious Borrelia burgdorferi strains (13). Partial protection

was observed in rabbit models that underwent immunization

with B. burgdorferi that expressed TprK, while those that

were immunized with Tp0435 did not have the same

protection. Analysis of the humoral response to TprK antigen

suggested there was reactivity to conformational epitopes to

the antigen.

Dr. Caroline Cameron pioneered the application of genome-

wide-bioinformatics analyses to predict T. pallidum open

reading frames (ORFs) encoding putative outer membrane

proteins (OMPs) to identify adhesins that would interact with

receptors among the host extracellular membrane components
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(14). The result of that study was the identification of the Tp0751

adhesin. Lithgow et al. showed that Tp0751-immunized

animals had a significantly reduced T. pallidum organ burden

upon infectious challenge compared with unimmunized

animals (15). Although not unanimously accepted by the

research community (16), Tp0751 remains a current vaccine

candidate worthy of further exploration. Additional in silico

OMP-mining work further contributed to defining the

putative repertoire of T. pallidum surface-exposed integral

membrane proteins (17), which today consists of 27 proteins

—the current best candidates for syphilis vaccine development,

which are made up of components of the BAM complex,

Lpt complex, 9-stranded beta-barrels, FadL-like protein,

components of the efflux systems, and T. pallidum repeat

proteins (18).

As complete and partial genomes from historical and

modern isolates accumulated over the last two decades, it

became increasingly clear that substantial genomic diversity

was concentrated within the genes of T. pallidum encoding for

surface-exposed proteins (19–21). This evidence has profound

implications for developing a broadly protective vaccine and

emphasizes the necessity to obtain high-quality, near-complete

genomes that can be used to assess OMP variability. The

sequence of several T. pallidum OMP-encoding genes has been

notoriously challenging to elucidate through whole genome

sequencing due to the presence of repetitive sequences. Several

ongoing initiatives are addressing the necessity to obtain more T.

pallidum genomes to refine vaccine development. Upon

completing those efforts, the vaccine research community will

benefit from a vast array of genomes, primarily obtained directly

from patient samples and from many diverse geographical areas

spanning all continents, including areas where syphilis

is endemic.

Modern approaches that combine T. pallidum DNA

enrichment with pathogen-specific probes (19, 22), specific

genome amplification before high-throughput sequencing and

technologies capable of sequencing Kb-long DNAmolecules will

ensure the availability of complete high-quality genomes for

comparative genomics analyses (23–28). Deposition of reads and

assembled genomes in public data repositories will enable more

researchers to participate in vaccine development. A syphilis

vaccine will likely need to be tailored to the genetic pedigree of

strains circulating locally. On the upside, T. pallidum modern

strains continue to share over 99% of genomic identity if we

exclude the hypervariable gene tprK, which undergoes intra-

strain gene conversion to foster T. pallidum persistence (29–31).

Evidence supports two major clades of this pathogen circulating

worldwide, the SS14-like and Nichols-like clade (28). The recent

strain sequencing work by Lieberman et al. with T. pallidum

isolates from Peru, Ireland, USA, Papua New Guinea,

Madagascar, Italy, Japan, and China were included in the 196

near-complete genomes sequenced from eight countries and six

continents (19).
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Omics and other approaches to
the rescue

As the genomics gap is being closed at unprecedented speed

for T. pallidum, the application of other “-omics,” mainly

transcriptomics and proteomics, will provide complementary

information to help identify vaccine candidates (32, 33). Only

limited work to date has focused on analyzing the T. pallidum

transcriptome and proteome (32–38). Yet those studies are

pivotal to understand the timing and level of expression of

potential immunogens. In addition to being poorly expressed,

selected OMP-encoding genes have been reported to undergo

stochastic modulation of gene expression through phase

variation, which might contribute to changing the pathogen

surface antigenic profile (39, 40). To date, a microarray study

describing transcriptome of Nichols strain was conducted and

found that the RNA transcript of T. pallidum profiles between in

vitro culture and rabbit infection were similar (33). A better

understanding of gene regulation and gene expression could lead

to exclusion of specific vaccine candidates whose transcription

might be turned off with no detriment to the pathogen.

To date, transcriptional profiles of T. pallidum have been

obtained from rabbit or in vitro-propagated strains (33). Although

those studies are valuable in improving our understanding of gene

expression in T. pallidum, an equally important endeavor would

be to assess gene expression in spirochetes from patient samples.

Transcriptomics of clinical samples can be challenging: the small

amount of clinical material obtained from clinical samples often

precludes sequencing of the entire genome. Producing high

quality whole genome sequencing data needs advanced

molecular techniques for selected whole genome amplifications

and bait enrichment of libraries to enable gathering meaningful

data from clinical samples. At the same time, determination

of levels of paralogous genes will be also very challenging

as many tpr genes share identical sequences and some

undergo recombinations.

An analysis of the T. pallidum transcriptome using bacterial

cells present in lesions from individuals diagnosed with early

syphilis, without strain propagation in rabbits, could also help

better understand the immunology of natural infection. That

work would inform whether specific gene expression patterns

correlate to the development of the immune response and

disease manifestations during early syphilis and, more

generally, which vaccine candidates are expressed during

different stages of the infection.

Successful genetic engineering of T. pallidumwas reported in

2021 (41). Genetic manipulation of T. pallidum has the potential

to pinpoint vaccine candidates. Efforts have been made to ablate

the tprK ORF with no avail, which led to the hypothesis that

TprK is an essential T. pallidum gene. That hypothesis is also

supported by the evidence that extensive tprK sequencing never

yielded a variant carrying an early termination due to a

premature stop codon or a frameshift mutation, despite the
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extensive recombination events that involve this hypervariable

gene. A vaccine design based on an OMP necessary for pathogen

viability could be preferred to a design based on a non-essential

gene. Current experiments to assess the “essential” OMP

repertoire are ongoing in the Giacani laboratory through

genetic engineering. New molecular tools for T. pallidum, such

as transposon-mediated insertional mutagenesis, GFP-

expressing T. pallidum cells, and a T. pallidum strain

expressing constitutively spell out Cas9, are also being

evaluated to accelerate the discovery of genes that, albeit not

essential, might be necessary for T. pallidum virulence.
Protein structure and vaccine
development strategies

Immunization with recombinant treponemal proteins would

greatly benefit from increased knowledge of the native structure

of the candidate immunogens. However, no conclusive

experimental data exist on the structure of T. pallidum OMPs.

For about half of these molecules, the level of homology with

other bacterial proteins has been sufficient to obtain high-

confidence models using a battery of mainstream

computational and bioinformatic tools (18, 42). On the

contrary, there is an ongoing debate concerning the structure

of Tpr antigens because the structure that is inferred from

functional assays differs from that hypothesized based on

structural data from protein fragments. Refining the structural

models for all T. pallidum OMPs is therefore pivotal for vaccine

development. High-confidence models will allow the excision of

surface-exposed epitopes to be mounted on a carrier that is

easier to produce than a recombinant OMP, contains fewer

amino acid sequences that are not instrumental to developing a

protective response, but maintain the structural characteristics

of the native epitopes to allow the development of antibodies to

conformational epitopes. Carriers such as viral-like particles,

small beta-barrel antigens, liposomes, and outer membrane

vesicles are all options worth trying.
Adjuvants

Which adjuvant to use in a syphilis vaccine is also an issue

that requires additional experimentation. Currently as vaccine

research focuses on rabbit models, experimentation is conducted

using ribi, titermax, or SAS, none of which are approved for

human use. Experimentation has made clear that an adjuvant

necessary to induce a Th1 response that will lead to INF-g
activated macrophages is crucial to an effective vaccine (43–46).

Any vaccine formulation that includes adjuvants not suitable for

humans will eventually have to be retested with adjuvants

approved for human use. The reliance on a rabbit model for
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vaccine discovery leads to inevitable but necessary gaps in the

potential for vaccine formulations to advance to human trials.
Vaccine efficacy and target
populations

To provide a favorable risk to benefit ratio, vaccines need to

be safe for users and effective in preventing disease. For other

vaccinations, a threshold of 50% efficacy rate had been

determined to be adequate by large governing bodies (47).

Given the need for syphilis vaccines in a global setting, heat-

stable vaccines would greatly benefit distribution.

Furthermore, syphilis epidemiology is different in high-

income versus low- and middle-income countries. In high-

income countries, syphilis predominantly affects men who

have sex with men (MSM), while in low- and middle-income

countries, where the disease is endemic, syphilis impacts the

general population. In implementing a syphilis vaccine,

especially one that is only partly effective, it would be sensible

to have different distribution strategies between high-income

and low- and middle-income countries. In high-income

countries, immunization should target those at increased risk

for syphilis such as MSM and sex workers. In low- and middle-

income countries, vaccination of the general population with a

focus on protecting those of reproductive age to decrease risk of

congenital syphilis would be recommended. With recent

increases in congenital syphilis in the United States,

vaccination of women of reproductive age may also

be worthwhile.
Cost analysis/Mathematical
modeling

A mathematical model was created for a hypothetical

syphilis vaccine assuming an efficacy of 80%. That study

focused on vaccination in Africa, using different estimates of

the prevalence of HIV infection in the general population (1.5%,

10%, and 15%). Syphilis vaccination reduced syphilis incidence

for all the studied scenarios. However, focusing solely on young

women or only on high-risk populations, was not as impactful

on syphilis prevalence over time as mass vaccination (48).

Additional work is needed to understand better how vaccines

with differing efficacy and/or the reduction of clinical symptoms

of syphilis can reduce transmission.
Concluding remarks

Despite the low costs associated with syphilis testing

and treatment, syphilis control has remained elusive.
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The years of life lost due to congenital syphilis are substantial

(49). A vaccine able to reduce syphilis incidence, especially

congenital syphilis, could significantly improve public

health and lower the estimated 3.6 million disability-adjusted

life years that are currently lost annually due to this

serious infection.
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