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Deciphering the endometrial
immune landscape of RIF during
the window of implantation
from cellular senescence by
integrated bioinformatics
analysis and machine learning

Xiaoxuan Zhao1, Yang Zhao2, Yuepeng Jiang3

and Qin Zhang1*

1Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional
Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China, 2College of
Basic Medicine, Hebei College of Traditional Chinese Medicine, Shijiazhuang, China, 3College of
Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
Recurrent implantation failure (RIF) is an extremely thorny issue in in-vitro

fertilization (IVF)-embryo transfer (ET). However, its intricate etiology and

pathological mechanisms are still unclear. Nowadays, there has been

extensive interest in cellular senescence in RIF, and its involvement in

endometrial immune characteristics during the window of implantation

(WOI) has captured scholars’ growing concerns. Therefore, this study aims to

probe into the pathological mechanism of RIF from cellular senescence and

investigate the correlation between cellular senescence and endometrial

immune characteristics during WOI based on bioinformatics combined with

machine learning strategy, so as to elucidate the underlying pathological

mechanisms of RIF and to explore novel treatment strategies for RIF. Firstly,

the gene sets of GSE26787 and GSE111974 from the Gene Expression Omnibus

(GEO) database were included for the weighted gene correlation network

analysis (WGCNA), from which we concluded that the genes of the core

module were closely related to cell fate decision and immune regulation.

Subsequently, we identified 25 cellular senescence-associated differentially

expressed genes (DEGs) in RIF by intersecting DEGs with cellular senescence-

associated genes from the Cell Senescence (CellAge) database. Moreover,

functional enrichment analysis was conducted to further reveal the specific

molecular mechanisms by which these molecules regulate cellular senescence

and immune pathways. Then, eight signature genes were determined by the

machine learning method of support vector machine-recursive feature

elimination (SVM-RFE), random forest (RF), and artificial neural network

(ANN), comprising LATS1, EHF, DUSP16, ADCK5, PATZ1, DEK, MAP2K1, and

ETS2, which were also validated in the testing gene set (GSE106602).

Furthermore, distinct immune microenvironment abnormalities in the RIF

endometrium during WOI were comprehensively explored and validated in
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.952708/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.952708/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.952708/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.952708/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.952708/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.952708/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.952708&domain=pdf&date_stamp=2022-09-05
mailto:Zhaqin01@163.com
https://doi.org/10.3389/fimmu.2022.952708
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.952708
https://www.frontiersin.org/journals/immunology


Abbreviations: AUC, area under the ROC; CDF, cu

function; DEGs, differentially expressed genes; GSEA

analysis; IVF, in-vitro fertilization; RF, random f

implantation failure; ROC, receiver operating charact

single-sample gene-set enrichment analysis; SVM-

machine-recursive feature elimination; WGCNA,

expression network analysis.

Zhao et al. 10.3389/fimmu.2022.952708

Frontiers in Immunology
GSE106602, including infiltrating immunocytes, immune function, and the

expression profiling of human leukocyte antigen (HLA) genes and immune

checkpoint genes. Moreover, the correlation between the eight signature

genes with the endometrial immune landscape of RIF was also evaluated.

After that, two distinct subtypes with significantly distinct immune infiltration

characteristics were identified by consensus clustering analysis based on the

eight signature genes. Finally, a “KEGG pathway–RIF signature genes–immune

landscape” association network was constructed to intuitively uncover their

connection. In conclusion, this study demonstrated that cellular senescence

might play a pushing role in the pathological mechanism of RIF, whichmight be

closely related to its impact on the immune microenvironment during the WOI

phase. The exploration of the molecular mechanism of cellular senescence in

RIF is expected to bring new breakthroughs for disease diagnosis and

treatment strategies.
KEYWORDS

recurrent implantation failure, immune landscape, cellular senescence,
bioinformatics, machine learning
Introduction

Recurrent implantation failure (RIF) is usually defined as

implantation failure in at least three consecutive attempts of in-

vitro fertilization (IVF), in which one to three high-quality

embryos are transferred in each cycle (1, 2). Despite

tremendous advances in reproductive medicine, it remains an

ongoing conundrum. About 15% of patients seeking IVF

treatment are reported to be afflicted by RIF, which is a huge

distress and frustration for both patients and clinicians (3).

Statistics have shown that approximately 40% of euploid

blastocysts fail to implant in transfers, which suggests the

desynchronization between the embryo and the endometrium

in the window of implantation (WOI) as a potential cause of RIF

(4, 5). During the WOI period, the endometrium becomes

poised to transition to a pregnant state, featured as

differentiation of endometrial stromal cells (EnSCs) into

decidual cells (DCs) and change of the influx and function of

immunocytes in the local endometrium (6). Perturbations of

these key cellular and molecular biological events tend to induce

the breakdown of the feto–maternal interface and RIF (7, 8), but
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the underlying mechanisms are poorly understood.

Accumulated evidence has suggested a conspicuous link

between cellular senescence in peri-implantation endometrium

and RIF (9, 10). Cellular senescence is a state of permanent cell

cycle arrest and manifests with a prominent secretion of various

bioactive molecules, including reactive oxygen species, pro-

inflammatory cytokines, chemokines, and growth factors,

called senescence-associated secretory phenotype (SASP)

(11, 12). SASP secreted by senescent cells creates a long-lasting

and highly disordered pro-inflammatory response, which also

attracts multiple immunocytes, thus jointly facilitating an

unfavorable microenvironment for embryo implantation

(13, 14). Single-cell transcriptomics revealed that decidualized

assembloids harbored senescent subpopulations, and

senescence in the stroma calibrated the emergence of anti-

inflammatory decidual cells and pro-inflammatory senescent

decidual cells, which controlled endometrial fate decisions at

implantation and was closely correlated with RIF (15).

Moreover, intricate immune regulation is one of the most

crucial aspects for the successful implantation of the

hemiallogenic embryo (16, 17). Conversely, inappropriate

immunocytes as well as immune function are implicated in

RIF as evidenced by increasing high-quality studies (18).

Furthermore, to date, compelling evidence has also indicated

that senescent cells are capable of regulating the immune

microenvironment and contributing to advances in pathological

mechanisms in various diseases (19–21). However, the

understanding of cellular senescence, immune infiltration

landscape, and the linkages between the two in the context of

RIF disease is still close to blank.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.952708
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.952708
Nowadays, the revolutionary development of microarray

technology and bioinformatics greatly facilitates the

development of biomedicine. A tremendous amount of high-

throughput data is piling up in public databases, which greatly

helps with uncovering the potential etiopathogenesis and

identifying candidate targets for drug design (22). Machine

learning has recently been widely applied to learn the

representation of high-dimensional features derived from gene

expression data on account of its powerful capabilities in

classification (23, 24). The ingenious combination of

bioinformatics analysis and machine learning is a creative and

crucial way to establish novel diagnostic models and understand

pathological mechanisms at the molecular level, which is in line

with the latest research trends. However, the application of this

method in RIF is still blank, and much of the potential valuable

information remains to be uncovered.

In this study, RIF raw microarray data were acquired from

the Gene Expression Omnibus (GEO) database, and cellular

senescence-related genes were obtained from the Cell

Senescence (CellAge) database for systematic analysis. Firstly,

the enrichment analysis of key module genes obtained by the

weighted gene co-expression network analysis (WGCNA) was

carried out. Subsequently, differentially expressed genes (DEGs)

related to cellular senescence were screened. Gene Ontology

(GO) and the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway and gene-set enrichment analysis (GSEA)

were conducted to further explore the biological mechanisms

that the cellular senescence-associated DEGs were involved in.

Moreover, we screened and validated the signature genes by
Frontiers in Immunology 03
machine learning algorithms of support vector machine-

recursive feature elimination (SVM-RFE), random forest (RF),

and artificial neural network (ANN). After that, we analyzed the

difference in immune landscape between the RIF group and the

normal group by assessing infiltrating immunocytes, immune

function, and the expression profiling of HLA (human leukocyte

antigen) genes and immune checkpoint genes. Moreover, we

evaluated the correlation between the signature genes and

immune landscape in RIF. Last but not least, we clustered RIF

samples into two distinct subtypes according to the signature

genes and compared the endometrial immunity between

subtypes. The workflow chart is shown in Figure 1. To the

best of our knowledge, this study is the first to explore the

pathological mechanisms of RIF in terms of cellular senescence

affecting the endometrial immune landscape during the WOI

stage by integrated bioinformatics analysis and machine

learning, which provides new insights into the treatment

strategy for RIF and offers valuable insulation and foundation

for further innovative studies on RIF.
Materials and methods

Data collection

The microarray datasets were systematically extracted from

the GEO database (https://www.ncbi.nlm.nih.gov/geo/) (25)

with the keyword “Recurrent implantation failure.” Datasets

that met the following inclusion criteria were included:
FIGURE 1

The flow diagram of the study.
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1) Homo sapiens; 2) expression profiling by array; 3) the

experiment included patients with RIF and fertile controls; 4)

the sample size was at least 10 people, with at least 5 patients in

each group; and 5) the sample was from the endometrium

during WOI. Finally, three datasets were included (GSE26787,

GSE111974, and GSE106602), of which GSE26787 and

GSE111974 were taken as the training set, and GSE106602 was

taken as the testing set. The details of the three datasets are

shown in Table 1. Furthermore, 279 cellular senescence-

associated genes were downloaded from the CellAge database

(https://genomics.senescence.info/cells/) (26).
Data preprocessing and normalization

The raw data were downloaded from the GEO database, and

then preprocessed and normalized by R statistical software

(version 4.1.2, https://www.r-project.org/) and Bioconductor

analysis tools (http://www.bioconductor.org/). The “affy” R

language package was applied to conduct RMA background

correct ion, complete log2 transformation, quanti le

normalization, and median polish algorithm summarization.

Probes without matching gene symbols were excluded. For

multiple probes mapped to the same gene, the mean value was

taken as the final expression value. The results are shown in box

plots and three-dimensional PCA cluster diagrams before and

after normalization (Supplementary Figures 1A–D).
Construction of the co-expression
network and hub module identification
by WGCNA

The WGCNA is a widely used method to uncover critical

interacted genetic modules and key genes by linking gene

networks to clinical traits. In this study, the WGCNA co-

expression system was established by using the “WGCNA”

package in R software (27) with DEGs from the GSE26787

and GSE111974 datasets, with normal control and RIF as clinical

features. First, genes with variation higher than 25% across
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samples in the combined dataset were selected as the input

dataset for the subsequent WGCNA. Then, the outlier cases were

removed by hierarchical clustering analysis with the

“goodSamplesGenes” function. After that, the appropriate soft

threshold was determined by using the pickSoftThreshold

function and validated by the correlation between k and p(k).

Subsequently, the correlation matrix was converted into an

adjacency matrix, which was further processed into a

topological overlap matrix (TOM). The dynamic tree cutting

approach was performed to identify various modules. The

relationship between these modules and RIF was investigated.

Finally, the module with the greatest Pearson correlation

coefficient was picked for further investigation.
Identification of cellular senescence-
associated DEGs

We used the processed data to filter DEGs by using the

“limma” packages of R software (version 4.1.2) with the

screening criteria of adjusted P-value <0.05 and |log2 fold

change (FC)| >0.5 (28). The Venn online mapping tool was

used to screen for intersections of DEG and cellular senescence-

associated genes, namely, cellular senescence-associated DEGs,

which were visualized with heatmaps and volcano plots by the

“ggplot2” package in R software (29).
Function enrichment analysis of cellular
senescence-associated DEGs

The cellular senescence-associated DEGs were imported into

the WebGestalt website (http://www.webgestalt.org/) (30) for

GO and KEGG pathway enrichment analysis. The species was

selected as “Homo sapiens,” and the reference set was selected as

genome protein-coding. Items with a P-value <0.05 were

displayed in a bubble plot by the “ggplot2” package in R

software. Moreover, GSEA (version 4.1.0) on cellular

senescence-associated DEGs was conducted by using the

“c2.cp.kegg.v7.0.symbols.gmt” and “c5.go.v7.4.symbols” gene
TABLE 1 Basic information of the included dataset.

GSE no. No. of
samples

Platform Description Country Type

GSE26787 5 vs. 5 Affymetrix Human Genome
U133 Plus 2. 0 Array

Endometrial biopsy was performed in the non-conceptional cycle in the middle luteal
phase of RIF and healthy fertile women (controls).

France Training
set

GSE111974 24 vs. 24 Agilent-039494 SurePrint G3
Human GE v2 8 × 60K
Microarray 039381

24 patients with RIF treated at the IVF clinic and 24 fertile control patients recruited
from the gynecology clinic of Istanbul University School of Medicine during 2014–2015
were involved in this prospective cohort study.

Turkey Training
set

GSE106602 16 vs. 19 Illumina HiSeq 2500 We compared the mid-secretory transcriptome profiles from healthy women with the
profiles of women with repeated IVF failure to find transcriptome changes related to
problems with endometrial receptivity.

Estonia Testing
set
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set derived from the Molecular Signatures Database (MSigDB;

version 7.1) as reference (31). The threshold for significant terms

was adjusted q value <0.05.
Screening cellular senescence-
associated signature genes of RIF by
machine learning

The SVM-RFE algorithm and RF were utilized to screen the

cellular senescence-associated signature genes in RIF. SVM-RFE

is a sequence backward selection algorithm based on the

maximum margin principle of SVM, which has superior

classification performance for high-dimensional datasets (32).

It was first proposed in gene selection (33) and was applied to

gene selection in cancer classification. After that, the SVM-RFE

algorithm was further improved to improve its performance and

efficiency, and it has been widely used in gene expression data

analysis, protein function prediction, image detection, and other

fields (34). In this study, the SVM-RFE algorithm was

implemented by using the package of “e1071,” “kernlab,” and

“caret” in R software for feature dimensionality reduction. The

RF algorithm is an ensemble method that combines many

decision trees and makes a single decision on behalf of the

ensemble by combing the results of multiple classifiers together

(35). Each decision tree in the forest is built by using the

bootstrap technique to select various samples from the original

dataset and then training it with a feature set chosen by the

random bagging mechanism (36). Decisions made by a large

number of distinct individual trees are then voted on, and the

class with the most votes as a result of the voting is assigned as

the class prediction (37). Here, we used the RF algorithm to

predict RIF with the input of cellular senescence-associated

signature genes by the “randomForest” package in R software.

In addition, we constructed an ANN model for the feature genes

obtained from the above method according to the gene score by

using the packages of “neuralnet” and “neuralnettools” in R

software. The artificial neural network can simulate the structure

and function of the brain neural network and deduce a set of

classification rules from a set of disordered and irregular data, so

as to realize the correct classification and construct a high-

accuracy diagnosis model (38). Furthermore, the receiver

operating characteristic (ROC) curve was utilized to evaluate

the accuracy of the ANN model in the training and testing sets.

Finally, feature genes screened by the above machine

learning methods were regarded as signature genes of RIF

from the aspect of cellular senescence, namely, RIF signature

genes. We observed the expression of these eight genes in the

training set (GSE26787 and GSE111974) and the testing set

(GSE106602). Furthermore, the ROC curve was constructed by

the “pROC” package in R software to evaluate the prediction

accuracy of these feature genes.
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The tissue localization and function of
RIF signature genes

The information of tissue localization of RIF signature genes

was obtained through the BioGPS (building your own mash-up

of gene annotations and expression profiles) website (http://

biogps.org) (39) and the Human Protein Atlas (https://www.

proteinatlas.org/) (40). Moreover, to further perceive the

functions of these genes, we searched the databases of BioGPS,

GeneCards (https://www.genecards.org/) (41), Alliance of

Genome Resources (https://www.alliancegenome.org/) (42),

and UniProt (https://www.uniprot.org/) (43).
Immune infiltration landscape analysis of
RIF and its correlation with cellular
senescence-associated signature genes

Single-sample gene-set enrichment analysis (ssGSEA) is an

extension of the GSEA method, which allows to analyze the

pathways enriched by genes in each sample, thereby analyzing the

activation degree of specific pathways (44, 45). Here, ssGSEA was

performed by using the “GSVA” package in R software to explore

the immune cell-related pathways in RIF patients and healthy

controls. Moreover, the expression of HLA molecules and

immune checkpoints was quantified and compared between

groups. Furthermore, correlation analysis between cellular

senescence-associated signature genes and immunocytes, immune

functions, HLA, and immune checkpoints in RIF was evaluated by

Spearman correlation analysis with the “corrplot” package in R

software. P <0.05 was considered statistically significant.
Consensus clustering analysis

Consensus clustering analysis was carried out by using the

“ConsensusClusterPlus” package of R software on the basis of

the expression profiling of cellular senescence-associated

signature genes (46). The above step was implemented for

1,000 iterations for guaranteeing the robustness of

classification. The Euclidean distance between specimens was

determined. Consensus cluster analysis was conducted with a

maximum number of clusters of 9, 50 repeats, a sample

proportion of 0.8, and a ratio of features to samples of 1. The

pam cluster algorithm was selected, and cluster analysis was

conducted by using Euclidean as a distance function. After the

completion of cluster analysis, PCA analysis was conducted by

using the “limma” package, and classification dot plots were

drawn to verify the cluster results. In addition, the expression of

RIF-specific cell senescence-related genes, immunocytes,

immune functions, HLA, and immune checkpoints in the

different subtypes were analyzed.
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Construction of the “KEGG pathway–RIF
signature genes–immune landscape”
association network

In order to intuitively understand the molecular and

biological processes involved and communicated by RIF

signature genes, we constructed the “KEGG pathway–RIF

signature genes–immune landscape” association network. First,

the cross-talk relationship between the KEGG pathways

enriched by RIF signature genes was obtained through the

XTalkDB website (http://www.xtalkdb.org/contactus) (47). In

addition, we sorted out the correspondence between the RIF

signature genes and the significantly correlated immunocytes,

immune function, HLA moleculars, and immune checkpoints.

Next, we used Cytoscape 3.7.1 software to visualize the “KEGG

pathway–RIF s ignature genes– immune landscape”

association network.
Results

Establishment of a co-expression
network and hub module identification

Module detection was performed by hierarchical clustering

and dynamic tree cut functions (Supplementary Figures 2A–C).

The soft thresholding power was set at 4 according to the scale

independence and mean connectivity values. A total of 17

modules were divided by WGCNA and were identified by

different colors. Among these modules, the green module

showed the most significant correlation with RIF (r = −0.67,

P = 0.003) (Supplementary Figure 2D). Therefore, we focused on

the biological functions of the genes in the green module

through GO and KEGG analysis. The results of GO

annotation suggested that these genes were mostly enriched in

processes involved in cellular response to interleukin-4,

regulation of T-cell chemotaxis, positive regulation of

lymphocyte chemotaxis, etc. As for the KEGG pathway, the

majority of genes were enriched in the Wnt signaling pathway,

p53 signaling pathway, and longevity regulating pathway, which

were closely related to the regulation of cell fate decision. Based

on the above results, it intimately implied that the pathological

mechanism of RIF was bound up with immune abnormalities

and the dysregulation of cell fate (Supplementary Figures 2E, F).
Identification and integrative analysis
of DEGs

After preprocessing and normalization of the included

datasets, differential expression analysis was performed. A total

of 1,919 DEGs were obtained with the screening conditions of P-

value <0.05 and |log2 FC| >0.5. Then, 25 overlapped genes were
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with 279 cellular senescence-associated genes derived from the

CellAge database (Figure 2A). Moreover, these 25 genes were

taken as a new gene set for further study, namely, cellular

senescence-associated DEGs. Next, we observed the difference

in the mRNA expression profiling of these 25 genes between the

RIF and control groups. Among the 25 cellular senescence-

associated DEGs, a total of 12 genes were upregulated and 13

genes were downregulated (Figures 2B–D). Subsequently, we

explored the correlations between cellular senescence-associated

DEGs through the Spearman correlation test. The results

corroborated that CKB was significantly positively correlated

with GNG11 (r = 0.81, P < 0.05), and SLC16A7 was significantly

negatively correlated with CKB (r = −0.77, P < 0.05) (Figure 2E).
Functional enrichment analysis

To comprehend the biological processes these cellular

senescence-associated DEGs were involved in, we performed

the GO and KEGG enrichment analysis and GSEA method. As

shown in the GO enrichment analysis, those genes were mainly

enriched in the biological process of cell growth, regulation of

growth, negative regulation of canonical Wnt signaling pathway,

etc. As for the cellular component, these genes were mainly

enriched in insulin-like growth factor binding protein complex,

growth factor complex, and cell–substrate junction.

Furthermore, as for the molecular function, these genes were

mainly enriched in insulin-like growth factor binding, protein

serine/threonine/tyrosine kinase activity, MAP kinase activity,

etc. (Supplementary Figure 3A).

The results of the KEGG enrichment analysis signified that

the 25 cellular senescence-associated DEGs were significantly

activated in aging-related pathways, such as mTOR signaling

pathway, cellular senescence, etc., and immune inflammation-

related pathways, such as Toll-like receptor signaling pathway,

TNF signaling pathway, etc. The intricate mapping relationship

between genes and pathways was also displayed in the Sankey

diagram in which MAP2K1 corresponded to the most KEGG

pathways, indicating a crucial role in communicating the

complicated cross-talk between different pathways

(Supplementary Figure 3B). Furthermore, we applied the

GSEA method to appraise the differences in activation of GO

enrichment and KEGG pathway between the RIF and fertile

control samples. Our results revealed that GO terms of immune

response, leukocyte migration, and T-cell activation were

significantly activated in fertile control samples, while

cytoplasmic pattern recognition receptor signaling pathway

was activated in RIF samples (Supplementary Figures 3C, D).

Meanwhile, the KEGG pathways of chemokine signaling

pathway, cytokine–cytokine receptor interaction, and natural

killer cell-mediated cytotoxicity pathway exhibited increased

activation in fertile control samples, while abc transporters and
frontiersin.org
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steroid biosynthesis pathways were activated in RIF samples

(Supplementary Figures 3E, F).
Screening cellular senescence-
associated signature genes of RIF by
machine learning

To clarify the diagnostic value of cellular senescence-

associated DEGs, we performed machine learning of SVM-RFE

algorithms and RF algorithms and obtained two and eight feature

genes, respectively (Supplementary Figures 4A–C). After

combining the results of the two algorithms, a total of eight

cellular senescence-associated signature genes of RIF were

obtained, namely, LATS1, EHF, DUSP16, ADCK5, PATZ1,

DEK, MAP2K1, and ETS2. Moreover, these eight genes were

used for constructing the neural network, and the results showed

that the eight genes could distinguish the control samples from

the RIF samples well, with an accuracy rate of 100%. Furthermore,

ROC was constructed, and the results showed that the AUC of the

training set and the testing set was 1.000 and 0.678, respectively,

which demonstrated the high accuracy of the ANN model

(Figures 3A, B). Thus, the eight genes were named as RIF

signature genes. Among these genes, LATS1, EHF, ADCK5, and

PATZ1 were highly expressed in RIF samples (P < 0.001), and
Frontiers in Immunology 07
DUSP16, DEK, MAP2K1, and ETS2 declined significantly in RIF

samples (P < 0.001) (Figure 3C). To further evaluate the diagnosis

value of the eight feature genes screened by the above machine

learning methods, we constructed the ROC curves of these eight

RIF signature genes and calculated the AUC. The results

elucidated that the AUC ranged from 0.793 to 0.994

(Figures 3D–K), indicating a good diagnostic performance of

these genes. In addition, we performed external validation with

the testing dataset of GSE106602. The mRNA expression profiling

of the eight RIF signature genes was evaluated, and the result

indicated that the mRNA levels of ADCK5, DUSP16, EHF, ETS2,

MAP2K1, and PATZ1 were significantly different between the RIF

and fertile control groups (ADCK5, EHF: P < 0.05;DUSP16, ETS2,

MAP2K1, PATZ1: P < 0.001) (Figures 4A–H). Then, we

constructed the ROC curves and calculated the AUC of these

eight genes. The AUC varied from 0.543 to 0.954 (Figures 4I–P),

which also confirmed the excellent diagnostic performance of

these genes.
The tissue localization and function of
RIF signature genes

To further perceive the tissue localization and function of

these genes, we searched the databases of BioGPS, Human
A B

D E

C

FIGURE 2

Identification of differentially expressed genes related to cellular senescence. (A) Venn diagram of differentially expressed genes and genes
related to cellular senescence. (B, C) Volcano plot and heatmap visualized the differentially expressed genes (DEGs) related to cellular
senescence. In the volcano plot, each dot represents a gene. The red plot points represent upregulated genes, and the blue plot points
represent downregulated genes, and in the heatmap, each row represents a DEG related to cellular senescence, and each column represents a
sample. (D) The difference in the mRNA expression profiling of cellular senescence-associated DEGs between the recurrent implantation failure
(RIF) and control groups. (E) The correlations between cellular senescence-associated DEGs in the RIF group. * represents P <0.05 compared
with the control group, ** represents P <0.01 compared with the control group, and *** represents P <0.001 compared with the control group.
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Protein Atlas, GeneCards, Alliance of Genome Resources, and

UniProt to acquire comprehensive information, as shown in

Table 2. From this table, we could discover that multiple genes

were expressed in the uterine tissue and immunocytes. This was

the premise that they could participate in cellular senescence,

regulate immunizat ion act iv i t ies , and thus , affect

endometrial receptivity.
Immune infiltration landscape of RIF and
its correlation with RIF signature genes

To fully grasp the immune landscape of RIF, we analyzed

differences in immune cells, immune function, and expression

profiling of the HLA gene set and immune checkpoints between

patients with RIF and fertile controls. Regarding the types of

immunocytes, the levels of CD8+ T cells, immature dendritic

cells (iDCs), macrophages, neutrophils, plasmacytoid dendritic

cells (pDCs), Th1 cells, Th2 cells, and Treg in the RIF group were

significantly lower than those in the control group (P < 0.05).

Meanwhile, the T helper cells were significantly increased in the
Frontiers in Immunology 08
RIF group (P = 0.047) (Figure 5A). Furthermore, the changes of

macrophages, pDCs, neutrophils, Th1 cells, and Treg cells in RIF

in the testing set were consistent with the training set

(Supplementary Figure 5A). The above data indicated the

heterogeneity in immunocytes between control and RIF

samples. In addition, Spearman correlation analysis implied

that Th1 cells were significantly positively correlated with Th2

cells in RIF samples (r = 0.66, P < 0.05), and B cells were

significantly negatively correlated with Th2 cells (r = −0.32, P <

0.05) (Figure 5B). Moreover, we further investigated the

interactions of RIF signature genes with infi ltrated

immunocyte in RIF samples. We obtained the most correlated

pairs of the RIF signature gene–immunocyte, including ADCK5

and neutrophils (r = −0.40, P < 0.05), DEK and B cells (r = −0.49,

P < 0.01), DUSP16 and B cells (r = −0.45, P < 0.05), EHF and

Th2_cells (r = −0.40, P < 0.05), ETS2 and follicular helper T cells

(Tfh) (r = 0.59), Treg (r = 0.62, P < 0.001), LATS1 and Treg (r =

−0.51, P < 0.01), MAP2K1 and Tfh (r = 0.54, P < 0.01), and

PATZ1 and Tfh (r = −0.49, P < 0.01) (Figures 5C–J).

When it came to the comparison of immune functions

between groups, the results substantiated that the functions of
A B

D E F G

IH J K

C

FIGURE 3

Diagnostic value of cellular senescence-associated DEGs in RIF. (A) The neural network model: I1–I8 are the input layers (the score and weight
of eight RIF signature genes), H1–H5 are the hidden layers, and O1–O2 are the output layers (sample attributes). (B) The receiver operating
characteristic (ROC) curves for evaluating the diagnostic efficacy of the neural network model in the GSE26787 and GSE111974 (training set) and
GSE106602 (testing set). (C) The mRNA expression profiling analysis of the eight RIF signature genes. (D–K) The ROC curves of the RIF signature
genes. *** represents P <0.001 compared with the control group.
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APC co-stimulation, CCR, checkpoint, cytolytic activity,

inflammation-promoting, MHC class I, parainflammation, T-

cell co-inhibition, T-cell co-stimulation, and type I IFN response

in the RIF group were significantly lower than those in the

control group (P < 0.05) (Figure 6A). Moreover, the changes of

APC co-stimulation, CCR, checkpoint, parainflammation, and

T-cell co-stimulation in RIF in the testing set were consistent

with the training set (Supplementary Figure 5A). The above data

corroborated the heterogeneity in immune function between the

control and RIF samples. In addition, Spearman correlation

analysis revealed that the function of checkpoint was positively

correlated with CCR (r = 0.87, P < 0.05) and inflammation-

promoting (r = 0.87, P < 0.05) in RIF samples (Figure 6B).

Furthermore, we obtained the immune functions that were most

associated with the RIF signature genes by Spearman correlation
Frontiers in Immunology 09
analysis. The most strongly associated pairs included ADCK5

and T_cell_co-stimulation (r = 0.53, P < 0.01), EHF and

parainflammation (r = −0.55, P < 0.01), ETS2 and CCR (r =

0.60, P < 0.001), APC co-stimulation (r = 0.63, P < 0.001), LATS1

and parainflammation (r = −0.40, P < 0.05),MAP2K1 and type II

IFN response (r = 0.50, P < 0.01), and PATZ1 and APC co-

stimulation (r = −0.59, P < 0.001) (Figures 6C–J).

When it came to the HLA gene set expression profile, the

expression levels of HLA-A, HLA-G, HLA-J (P < 0.01), HLA-

DPB1 (P < 0.05),HLA-DPA1,HLA-DRA, andHLA-F (P < 0.001)

in the RIF group were all significantly decreased (Figure 7A).

Moreover, the expression profile changes of HLA-A and HLA-J

in RIF in the testing set were consistent with the training set

(Supplementary Figure 5B). The results of the Spearman

correlation analysis illuminated that ETS2 was significantly
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FIGURE 4

External validation to further test the diagnostic performance of the RIF signature genes. (A–H) Expression differences of the RIF signature genes
among different groups in the testing set. (I–P) The ROC curves of the RIF signature genes in the testing set.
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positively correlated with HLA-A (r = 0.63, P < 0.05), and

EHF was significantly negatively correlated with HLA-DPB1

(r = −0.64, P < 0.05) in the RIF group (Figure 7B).

As for the immune checkpoints, the mRNA expression

profiles of ICOS (P < 0.01), CD70 (P < 0.01), LAIR1 (P <

0.001), TNFRSF8 (P < 0.001), TNFSF15 (P < 0.001), CD40

(P < 0.001), TNFRSF4 (P < 0.05), TNFSF14 (P < 0.01),

HAVCR2 (P < 0.01), BTLA (P < 0.01), CD28 (P < 0.05), CD48

(P < 0.001), CD40LG (P < 0.001), TNFRSF18 (P < 0.01), and

NRP1 (P < 0.01) in the RIF group were significantly lower than

those in the control group (P < 0.05), and the mRNA expression

of CD276 (P < 0.01), VTCN1 (P < 0.01), and BTNL2 (P < 0.05)

was significantly increased in the RIF group when compared

with the control group (P < 0.05) (Figure 7C). Furthermore, the

expression profile changes of ICOS, LAIR1, TNFSF15, CD40,

TNFSF14, and CD40LG in RIF in the testing set were consistent

with the training set (Supplementary Figure 5C). The results of

the Spearman correlation analysis displayed that DEK was
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significantly positively correlated with NRP1, ETS2, and

CD200 (r = 0.70, P < 0.05) in the RIF group, and EHF was

significantly negatively correlated with TNFRSF8 and CD244

(r = −0.64, P < 0.05) in the RIF group (Figure 7D).
Immune infiltration landscape of
distinct subtypes

Through consensus clustering analysis, we clustered RIF

samples into two subtypes based on the mRNA expression

profiling of the eight RIF signature genes, namely, subtype A (n =

6) and subtype B (n = 23) (Supplementary Figures 6A–E). Except

for LATS1, ADCK5, and DEK, the expression differences of the

remaining five RIF signature genes among the groups were

statistically significant (P < 0.05) (Supplementary Figures 6F, G).

In order to figure out the differences of immune infiltration

landscape between the two subtypes, the ssGSEA method was
TABLE 2 Immune localization of RIF signature genes.

Gene Description
(referring to

the
GeneCards
database)

Expression in
uterine tissue
(referring to
the Human
Protein Atlas
database)

Expression in
immunocytes

(referring to the
Human Protein

Atlas and
BioGPS data-

bases)

Subcellular
summary

(referring to
the Human
Protein

Atlas data-
base)

Function (referring to the BioGPS, GeneCards, Alliance of
Genome Resources, and UniProt database)

LATS1 Large tumor
suppressor
kinase 1

Yes NK cell – LATS1 is a negative regulator of YAP1 in the Hippo signaling pathway,
inhibiting its phosphorylation and translocation into the nucleus, thereby
regulating cell proliferation, cell death, and cell migration (PMID: 22898666).
It is also involved in controlling the expression of p53 (PMID: 28644436).

EHF ETS
homologous
factor

Yes Macrophage, DC,
CD4+ T cell, CD8+ T
cell

Nucleoplasm,
Golgi apparatus

EHF acts as a transcriptional repressor, modulates the nuclear response to
mitogen-activated protein kinase signaling cascades, and may be involved in
epithelial differentiation and carcinogenesis (PMID: 27612480).

DUSP16 Dual specificity
phosphatase 16

Yes CD4+ T cell, Treg
cell, neutrophil

Nucleoplasm DUSP16 is a dual specificity protein phosphatase involved in the inactivation
of MAP kinases. It can dephosphorylate MAPK10 bound to ARRB2 and
regulate the c-Jun amino-terminal kinase (JNK) and extracellular signal-
regulated kinase (ERK) pathways (PMID: 11489891).

ADCK5 aarF domain
containing
kinase 5

Yes Monocyte, DC,
CD4+ T cell

Plasma
membrane,
cytosol

ADCK5 is predicted to enable protein serine/threonine kinase activity, is
involved in protein phosphorylation, and is an integral component of the
membrane (provided by the Alliance of Genome Resources, April 2022).

PATZ1 POZ/BTB and
AT hook
containing zinc
finger 1

Yes Monocyte, DC,
CD4+ T cell, CD8+ T
cell, neutrophil, B
cell

Nucleoplasm Transcriptional regulator that plays a role in many biological processes such
as embryogenesis, senescence, T-cell development, or neurogenesis (PMID:
10713105, PMID: 25755280, PMID: 31875552). It interacts with the TP53
protein to control genes that are important in the proliferation and in the
DNA damage response. Mechanistically, the interaction inhibits the DNA
binding and transcriptional activity of TP53/p53 (PMID: 25755280).

DEK DEK proto-
oncogene

Yes Gamma delta T cell,
Treg cell

Nucleoplasm,
cytosol

DEK is involved in chromatin organization (PMID: 17524367).

MAP2K1 Mitogen-
activated
protein kinase
kinase 1

Yes Monocyte, DC Plasma
membrane,
cytosol

As an essential component of MAP kinase signal transduction pathway, this
kinase is involved in many cellular processes such as proliferation,
differentiation, transcription regulation, and development (PMID: 8388392,
PMID: 9465908).

ETS2 ETS proto-
oncogene 2,
transcription
factor

Yes Monocyte Nucleoplasm,
plasma
membrane,
cytosol

ETS2 can bind specifically the DNA GGAA/T core motif in gene promoters
and stimulate transcription (PMID: 11909962).
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utilized to quantify the infiltrating level of immunocytes and

immune function, and the expression profiling of the HLA and

immune checkpoint gene sets was also evaluated. The results

showed that various infiltrating immunocytes in cluster B were

significantly reduced when compared with cluster A, such as

anchorage-dependent cells (aDCs), CD8+ T cells, neutrophils,

pDCs, T helper cells, etc. (P < 0.05) (Figure 8A). The immune

functions in cluster B, such as APC co-inhibition, APC co-

stimulation, CCR, checkpoint, etc., were significantly decreased

(P < 0.05) (Figure 8B). In addition, the mRNA expression profiles

of HLA-A, HLA-DPA1, HLA-DPB1, etc. in cluster B were

significantly decreased, and HLA-DOB was significantly increased

when compared with cluster A (P < 0.05) (Figure 8C). Furthermore,

various immune checkpoints in cluster B were also significantly

decreased, such as TNFRSF9, CD70, LAIR, etc. (Figure 8D). All the

above results indicated that different expression patterns of RIF

signature genes exerted a distinct impact on the immune infiltration

landscape in the endometrium during WOI.
Discussion

Embryo implantation remains the rate-limiting step for IVF,

and endometrial receptivity during the WOI has received
Frontiers in Immunology 11
extensive attention, which has been considered as a crucial

impetus for deciphering the pathological mechanism of RIF

(48, 49). Currently, in addition to the recognized immune

factors, accumulated evidence has also highlighted the

significant influence of cellular senescence on endometrial

receptivity (50, 51). For instance, Deryabin et al. uncovered

that premature senescence of EnSC could alter the “meta-

signature” of human endometrial receptivity and affect embryo

invasion based on an in-vitro implantation model (52).

Moreover, studies by Chen et al. corroborated that premature

aging of the endometrium existed in young women with RIF and

was closely related to implantation failures (53). Furthermore,

cellular senescence has been demonstrated to be closely related

to the immune microenvironment (54). Senescence subjects the

immune system to constant immune stressors and inflammatory

assaults, which in turn promotes immune senescence and is

intimately tied to diverse pathological changes (55). Now, the

association of cellular senescence and immune regulation has

attracted growing attention in various diseases. Relevant findings

suggest that SASP factors contribute to disease progression by

regulating immunity and doing harm to the tissue homeostasis

(56, 57). However, the effect of cellular senescence on the

immune system of RIF has not been elucidated. Studies have

confirmed that multiple SASP factors promote the activation of
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FIGURE 5

Immune cell infiltration landscape of RIF and its correlation with the RIF signature genes. (A) The distribution of immunocytes between the RIF
and control samples. (B) The correlation heatmap showed the correlation between different immunocytes in RIF samples. (C–J) The lollipop
chart showed the correlation between RIF signature genes and immunocytes in RIF samples.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.952708
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.952708
A B

D E F

G IH J

C

FIGURE 6

Immune function landscape of RIF and its correlation with RIF signature genes. (A) The distribution of immune functions between RIF and
control samples. (B) Correlation heatmap showed the correlation between different immune functions in RIF samples. (C–J) The lollipop chart
showed the correlation between RIF signature genes and immune functions in RIF samples.
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FIGURE 7

Human leukocyte antigen (HLA) and immune checkpoint of RIF and its correlation with RIF signature genes. (A, C) The distribution of HLA and
immune checkpoint between RIF and control samples. (B, D) The correlation heatmap showed the correlation between RIF signature genes,
HLA genes, and immune checkpoints in RIF samples. * represents P < 0.05 compared with the control group,**represents P < 0.01 compared
with the control group, ***represents P < 0.001 compared with the control group.
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molecular signaling cascades that are associated with embryo

rejection (58–60). These discoveries provide us with a sufficient

basis to demonstrate the potential linkage between cellular

senescence and immune regulation in RIF.

Nowadays, the current diagnosis of the disease is

retrospectively established based on repeated failed attempts in

IVF-ET, which pose great challenges to clinical strategy

formulation for precise prevention and treatment of RIF. In

this study, we interpreted the pathological mechanism of RIF

from a new perspective and explored a new strategy for the

diagnosis of RIF based on bioinformatics analysis combining

machine learning. Overall, we probed the involvement of cellular

senescence in the pathological mechanism of RIF, revealed the

immune infiltration landscape in the endometrium during WOI,

and analyzed the correlation between cellular senescence and

immune dysregulation. After a series of explorations, we

obtained the following significant findings: 1) through the

WGCNA method, the genes in the most relevant modules of

RIF mainly affected immune functions (T-cell chemotaxis,

positive regulation of lymphocyte chemotaxis) and cell fate

decision (Wnt signaling pathway, p53 signaling pathway,

longevity regulating pathway). 2) Through differential

expression analysis, we obtained 25 cellular senescence-

associated DEGs of RIF and verified their specific molecular

mechanisms in regulating cellular senescence and immunity

through functional enrichment analysis. 3) A total of eight RIF
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signature genes (LATS1, EHF, DUSP16, ADCK5, PATZ1, DEK,

MAP2K1, and ETS2) were screened by machine learning of

SVM-RFE, RF, and ANN. In addition, we accessed the BioGPS,

Human Protein Atlas, GeneCards, Alliance of Genome

Resources, and UniProt databases to analyze the localization

and function of these eight RIF signature genes and discovered

that they were all expressed in uterine tissue and immunocytes.

Through findings 1–3, we preliminarily concluded that the

pathological mechanism of RIF was related to cellular

senescence and abnormal immune regulation. Moreover,

senescence-associated DEGs exhibited the potential as RIF

biomarkers, which also suggested the close relationship

between cellular senescence and RIF. 4) We then analyzed the

endometrial immune landscape during WOI in patients with

RIF and fertile controls, including infiltrating immunocytes,

immune function, HLA gene sets, and immune checkpoints, as

well as evaluated their correlation with RIF signature genes. 5) In

addition, we also performed consensus clustering analysis

according to the RIF signature genes, and the differences in

the endometrial immune landscape between subtypes also

suggested the correlation between cellular senescence and

immune regulation. Through findings 4–5, we could further

conclude that cellular senescence was closely associated with the

abnormal endometrial immunoregulation during WOI in RIF.

By integrating the above results, the following key

indications deserved to be explored in depth. First, we found
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FIGURE 8

Immune-related infiltration landscape in RIF by unsupervised clustering based on the eight RIF signature genes. (A) The abundance differences
of different immunocytes between the two subtypes. (B) The activity differences of different immune functions between the two subtypes. (C)
The abundance differences of different HLA between the two subtypes. (D) The abundance differences of different immune checkpoints
between the two subtypes. * represents P <0.05 compared with cluster A, ** represents P <0.01 compared with cluster A, and *** represents P
<0.001 compared with cluster A.
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thatMAP2K1 was one of the significantly downregulated cellular

senescence genes in RIF both in the training set and the testing

set and was involved in the most signal transduction, such as

MAPK signaling pathway, Hippo signaling pathway, etc.

Although MAP2K1 has not attracted enough attention in RIF

yet, the detection of MAP2K1 has been regarded as a vital

biomarker for evaluating cellular senescence in various

diseases (61, 62). Therefore, this study suggested that we could

focus on MAP2K1, which might bring new discoveries for the

diagnosis and treatment of RIF from the aspect of cellular

senescence in the future. In addition, among the various

pathways regulated by MAP2K1, we take the MAPK signaling

pathway as an example. Studies have confirmed that MAP2K1

encodes a dual specificity protein kinase which lies upstream of

MAP kinases and stimulated the enzymatic activity of MAP

kinases upon a wide variety of extra- and intracellular signals.

Moreover, the MAP kinase/ERK cascade has been verified to be

inactive in senescent cells, which is capable of significantly

reducing many proinflammatory components of the SASP (63,

64). Fernandes et al. also demonstrated that MAP kinase/ERK

rewired in senescent cells rendering them phenotypically

different (65). Furthermore, studies implied that MAPK

influenced cell survival in the endometrium (66). From the

aforementioned analysis, we hypothesized that the decreased

mRNA profiling of MAP2K1 in RIF tended to restrain the

activation of the MAPK signaling pathway, thus procuring

cellular senescence and impairing endometrial receptivity. In
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addition, to intuitively comprehend the involvement of the eight

signature genes in the biologic process, the mapping relationship

between genes and signaling pathways was visualized in Figure 9.

The six signaling pathways communicated by RIF signature

genes interacted with each other and formed a complex

biological network, which provided abundant clues for follow-

up research.

When it comes to immunity and pregnancy, it is universally

acknowledged that immune tolerance to the semi-allogeneic

fetus is significantly rudimentary for a successful pregnancy.

Abnormalities of endometrial immunity are involved in the

pathogenesis of RIF (67, 68). At present, research on the

immune microenvironment in the endometrium of RIF during

WOI is in full swing. However, due to the complex composition

of immunocytes and the complicated cross-talk of immune

functions, traditional research methods fail to systematically

reflect the immune landscape in the endometrium. This time,

we utilized ssGSEA to analyze 15 types of infiltrated

immunocytes and 13 types of immune functions in RIF and

control groups and also compared the expression of HLA

molecules and immune checkpoints between groups, both in

the training and validation sets, respectively. The above analysis

revealed that the immune landscape of RIF was significantly

different from fertile controls. Take the Treg lymphocyte as an

example. It is a pivotal class of immunosuppressive cells,

expresses forkhead box P3 (Foxp3), and secretes the anti-

inflammatory cytokines, such as TGF-b1 and IL-10, which can
FIGURE 9

Construction of the “KEGG pathway–RIF signature genes–immune landscape” association network. The network consists of 86 nodes and 160
edges. Brown nodes represent the KEGG pathway, blue nodes represent RIF signature genes, red nodes represent immune cell type, orange
nodes represent immune function, purple nodes represent HLA-related genes, and yellow nodes represent immune checkpoint-related genes.
The black lines represent the relationships between nodes. The red lines represent facilitation effects between pathways, and the green lines
represent inhibition between pathways.
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suppress the excessive immune response induced by the fetus,

playing a pushing role in maintaining an immune tolerance

microenvironment during pregnancy (69, 70). Moreover, higher

levels of endometrial Treg cells have been confirmed to be a

positive prognostic factor for improving pregnancy outcome in

IVF (71). Our results manifested that Treg cells were reduced in

patients with RIF when compared with the control group, which

was consistent with multiple studies (72–74). However, the

reason for the reduction of Treg cells in RIF was still perplexing.

We speculated that the disorder of immunocytes and

immune function was related to cellular senescence.

Continuing with the example of reduced Treg cells in RIF, our

study illuminated that Treg cells were significantly negatively

correlated with LATS1 and positively correlated with ETS2.

LATS1 is the core kinases of Hippo effector Yes-associated

protein 1 (YAP1), which can lead to the phosphorylation and

inhibition of YAP1 (75), thus regulating cell proliferation,

differentiation, and boosting cellular senescence (76–78). As

for ETS2, it is a member of the ETS family of DNA-binding

transcription factors. Studies have suggested that ETS2 can bind

to the proximal promoter of human telomerase reverse

transcriptase (hTERT) and positively regulate hTERT, thus

inhibiting cellular senescence (79). Through the above analysis,

we conjectured that the increase of LATS1 and the decrease of

ETS2 in RIF may reduce the number of local endometrial Treg

cells by promoting cellular senescence. Given that the above gene

expression is not tissue specific, we cannot determine in which

cells senescence occurs. According to published studies, we

assumed that there were three possibilities: 1) the increase of

senescent decidual cells leads to an excess of IL-6 and TGF-b, the
most common SASP factors, which can induce the

differentiation of CD4+ T cells to Th17 and reduce the level of

Treg cells (80, 81). 2) The clearance mechanism of senescent

cells by immunocytes is abnormal. Senescent cells are subject to

immune surveillance by multiple components of the immune

system (82), especially immunocytes with the function of

phagocytosis. Moreover, impaired immune surveillance can

lead to senescent cell accumulation (83, 84). Studies have

affirmed that immunocytes exert a pivotal role in endometrial

fate decisions at implantation (85). One of the principal

functions of macrophages is phagocytic clearance of senescent

cells (86, 87). However, we observed a decreased level of

endometrial macrophages in RIF patients both in training and

testing sets, which may account for the accumulation of

senescent cells. Moreover, senescent cells attract and activate

immune cells and serve as highly immunogenic targets for

immune clearance, the microenvironment of which may

prompt the Treg/Th17 balance to tilt toward the Th17 cell. 3)

The senescence of CD4+ T lymphocytes themselves leads to the

reduction of Treg cells. As a cellular counterpart, CD4+ T

lymphocytes can also undergo cellular senescence, which could

also contribute to an immune response biased toward Th17

lymphocytes from Treg lymphocytes (88). Now, senescent T
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cells are corroborated to be accumulated in aging, chronic viral

infections, and autoimmune disorders, which are also

considered as potential targets for disease treatment (89–91).

However, the current research on immunosenescence in RIF

disease is still blank. To systematically and intuitively grasp the

correlation between immune landscape and cellular senescence

in RIF, we visualized the association of immune cells, immune

function, HLA molecules, and immune checkpoints with the

eight cellular senescence-related signature genes of RIF in

Figure 9. Taken together, our findings undoubtedly threw

innovative light on the mechanism of an abnormal immune

microenvironment in RIF, which also contributed to uncovering

potential intervention targets for drug design.
Conclusion

In conclusion, our study is the first to explore the

involvement of cellular senescence in the pathological

mechanism of RIF at the molecular level based on

bioinformatics combined with machine learning strategy. This

study signified that cellular senescence was a potential

pathological mechanism of RIF, and cellular senescence-

associated genes were expected to serve as novel diagnostic

biomarkers for RIF. Moreover, cellular senescence was involved

in the regulation of the endometrial immune microenvironment

in RIF during WOI, which provided a groundbreaking direction

for the exploration of the pathogenesis of abnormal immunity in

RIF. At present, our understanding of cellular senescence is only

at the tip of the iceberg, and knowledge about its correlation with

the pathological mechanism of RIF is still quite finite. Combining

cellular senescence with the regulation of the immune

microenvironment landscape to reveal the pathogenic

mechanism of RIF is revolutionary for the research of RIF,

which makes up for the blank in the field of immune

mechanism in RIF to a great extent. This study will also

encourage more researchers to carry out senescence-related

research in the field of RIF. However, this study also has some

limitations, which we must admit. Firstly, the results of this study

are based on bioinformatics analysis. Although verified by

external testing datasets, its accuracy needs to be further

substantiated by experiments. Secondly, immune infiltration

analysis in this study uses the most widely used ssGSEA

method to quantify the number of immunocytes, but single-cell

sequencing is still necessary to obtain the most accurate

information. Last but not least, this study only found the

correlation between cellular senescence and abnormal immune

microenvironment in the endometrium of RIF during WOI, but

the cause and effect between the two calls for further exploration.

In conclusion, all our findings confirm the involvement of cellular

senescence in RIF and its close correlation with the immune

characteristics of RIF, which provide new insights into the

pathogenesis, diagnosis, and treatment of RIF.
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SUPPLEMENTARY FIGURE 1

Data preprocessing and normalization. The box plots of the GSE26787

and GSE111974 datasets before (A) and after (B) normalization. Three-
Frontiers in Immunology 16
dimensional PCA cluster plot of the GSE26787 and GSE111974 datasets
before (C) and after (D) normalization.Green nodes represent GSE111974

and blue nodes represent GSE26787.
SUPPLEMENTARY FIGURE 2

Construction of WGCNAmodules. (A) Sample dendrogram of control and
RIF group. (B) Scale independence and mean connectivity under diverse

soft-thresholding powers. (C) Co-expression modules for each gene
under the hierarchical clustering tree are assigned diverse colors. The

dynamic tree cutcorresponds to the original modules, and merged
dynamic corresponds to the merged modules finally identified. (D)
Heatmap of the relationships between co-expression modules and

clinical traits. The number indicates the correlation coefficients between
co-expression modules and clinical traits, and the number in parentheses

indicates the corresponding p-values. (E)GO enrichment analysis of
genes in the green module. (F)KEGG enrichment analysis of genes in

the green module.
SUPPLEMENTARY FIGURE 3

Function enrichment of cellular senescence associated DEGs. (A, B)
Sankey-bubble diagram showing the GO and KEGG enrichment analysis
of cellular senescence associated DEGs. (C) GSEA results for the

activation of GO enrichment in control samples. (D) GSEA results for
the activation of GO enrichment in RIF samples. (E) GSEA results for the

activation of KEGG enrichment in control samples. (F)GSEA results for the
activation of KEGG enrichment in RIF samples.
SUPPLEMENTARY FIGURE 4

Machine learning of SVM-RFE and RF algorithms for clarifying the
diagnostic value of cellular senescence associated DEGs. (A)Random
forest of cellular senescence associated DEGs. X-axis represents the
number of trees,Y-axis represents the error of cross validation, green

curve represents the error of control group, red curve represents the error
of RIF group, and black curve represents the error of all samples. (B)
MeanDecreaseGini coefficient diagram: X-axis is MeanDecreaseGini

value, which is used to judge the classification of the model; Y-axis is
gene name. In this study, genes corresponding to MeanDecreaseGini≥1

were selected. (C)SVM-REFscreening feature genes: X-axis
represents the change of gene number, Y-axis represents the error of

cross validation.
SUPPLEMENTARY FIGURE 5

Immune related infiltration landscape in testing set. (A)The distribution of

immunocytes and immune functions between RIF and control samples in
testing set. (B)The abundance differences of different HLA between RIF

and control samples in testing set. (C)The abundance differences of
different immune checkpoint between RIF and control samples in

testing set. * represents P<0.05 compared with the control group,
**represents P<0.01 compared with the control group, ***represents

P<0.001 compared with the control group.
SUPPLEMENTARY FIGURE 6

Identifying 2 distinct subtypes in RIF by unsupervised clustering based on

8 RIF signature genes. (A) The consensus clustering cumulative
distribution function (CDF) for k=2-9. (B) The relative change in

area under the CDF curve for k=2-9. (C) Item tracking plot showing
the consensus cluster of items (in column) at each k (in row).

(D) Consensus matrix plots depicting consensus values on a white to

blue color scale ordered by consensus clustering when k= 2. (E) t-SNE
plots confirming the classification accuracy of two distinct subtypes

across RIF samples. (F–G) Box diagram and heatmap showed the
expression level of 8 RIF signature genes in the two subtypes. *

represents P<0.05 compared with the cluster A,**represents P<0.01
compared with the cluster A, ***represents P<0.001 compared with the

cluster A.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.952708/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.952708/full#supplementary-material
https://doi.org/10.3389/fimmu.2022.952708
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.952708
References
1. Parvanov D, Ganeva R, Vidolova N, Stamenov G. Decreased number of p16-
positive senescent cells in human endometrium as a marker of miscarriage. J Assist
Reprod Genet (2021) 38:2087–95. doi: 10.1007/s10815-021-02182-5

2. Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, et al.
Recurrent implantation failure: definition and management. Reprod BioMed
Online (2014) 28:14–38. doi: 10.1016/j.rbmo.2013.08.011

3. Pantos K, Grigoriadis S, Maziotis E, Pistola K, Xystra P, Pantou A, et al. The
role of interleukins in recurrent implantation failure: A comprehensive review of
the literature. Int J Mol Sci (2022) 23:2198. doi: 10.3390/ijms23042198

4. Cimadomo D, Capalbo A, Dovere L, Tacconi L, Soscia D, Giancani A, et al.
Leave the past behind: Women's reproductive history shows no association with
blastocysts' euploidy and limited association with live birth rates after euploid
embryo transfers. Hum Reprod (2021) 36:929–40. doi: 10.1093/humrep/deab014

5. Teh WT, McBain J, Rogers P. What is the contribution of embryo-
endometrial asynchrony to implantation failure? J Assist Reprod Genet (2016)
33:1419–30. doi: 10.1007/s10815-016-0773-6

6. Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in
reproductive health and failure. Endocr Rev (2014) 35:851–905. doi: 10.1210/
er.2014-1045

7. Ohara Y, Matsubayashi H, Suzuki Y, Takaya Y, Yamaguchi K, Doshida M,
et al. Clinical relevance of a newly developed endometrial receptivity test for
patients with recurrent implantation failure in Japan. Reprod Med Biol (2022) 21:
e12444. doi: 10.1002/rmb2.12444

8. Al-Lamee H, Ellison A, Drury J, Hill CJ, Drakeley AJ, Hapangama DK, et al.
Altered endometrial oestrogen-responsiveness and recurrent reproductive failure.
Reprod Fertil (2022) 3:30–8. doi: 10.1530/RAF-21-0093

9. Zhai J, Ma L, Chang Z, Yu T. Increased expression of prokineticin 2 and its
receptor in endometrium of recurrent implantation failure patients decreased the
expression of MMP9 important for decidualization. Reprod Biol Endocrinol (2022)
20:76. doi: 10.1186/s12958-022-00947-w

10. Hapangama DK, Turner MA, Drury JA, Martin-Ruiz C, Von Zglinicki T,
Farquharson RG, et al. Endometrial telomerase shows specific expression patterns
in different types of reproductive failure. Reprod BioMed Online (2008) 17:416–24.
doi: 10.1016/S1472-6483(10)60227-1

11. Roy AL, Sierra F, Howcroft K, Singer DS, Sharpless N, Hodes RJ, et al. A
blueprint for characterizing senescence. Cell (2020) 183:1143–6. doi: 10.1016/
j.cell.2020.10.032

12. van Deursen JM. The role of senescent cells in ageing. Nature (2014)
509:439–46. doi: 10.1038/nature13193

13. Peter DR, Aberkane A, Polanski L, Maruyama Y, Baumgarten M, Lucas ES,
et al. Deregulation of the endometrial stromal cell secretome precedes embryo
implantation failure. Mol Hum Reprod (2017) 23:478–87. doi: 10.1093/molehr/
gax023

14. Deryabin P, Griukova A, Nikolsky N, Borodkina A. The link between
endometrial stromal cell senescence and decidualization in female fertility: The art
of balance. Cell Mol Life Sci (2020) 77:1357–70. doi: 10.1007/s00018-019-03374-0

15. Rawlings TM, Makwana K, Taylor DM, Molè MA, Fishwick KJ, Tryfonos
M, et al. Modelling the impact of decidual senescence on embryo implantation in
human endometrial assembloids. Elife (2021) 10:e69603. doi: 10.7554/eLife.69603

16. Bert S, Ward EJ, Nadkarni S. Neutrophils in pregnancy: New insights into
innate and adaptive immune regulation. Immunology (2021) 164:665–76. doi:
10.1111/imm.13392

17. Köstlin-Gille N, Dietz S, Schwarz J, Spring B, Pauluschke-Fröhlich J, Poets
CF, et al. HIF-1a-Deficiency in myeloid cells leads to a disturbed accumulation of
myeloid derived suppressor cells (MDSC) during pregnancy and to an increased
abortion rate in mice. Front Immunol (2019) 10:161. doi: 10.3389/
fimmu.2019.00161

18. Woon EV, Greer O, Shah N, Nikolaou D, Johnson M, Male V. Number and
function of uterine natural killer cells in recurrent miscarriage and implantation
failure: a systematic review and meta-analysis. Hum Reprod Update (2022) 28:548–
82. doi: 10.1093/humrep/deab130.425

19. Wang H, Fan Y, Chen W, Lv Z, Wu S, Xuan Y, et al. Loss of CMTM6
promotes DNA damage-induced cellular senescence and antitumor immunity.
Oncoimmunology (2022) 11:2011673. doi: 10.1080/2162402X.2021.2011673

20. Manakanatas C, Ghadge SK, Agic A, Sarigol F, Fichtinger P, Fischer I, et al.
Endothelial and systemic upregulation of miR-34a-5p fine-tunes senescence in
progeria. Aging (Albany NY) (2022) 14:195–224. doi: 10.18632/aging.203820

21. Marquez-Exposito L, Tejedor-Santamaria L, Santos-Sanchez L, Valentijn
FA, Cantero-Navarro E, Rayego-Mateos S, et al. Acute kidney injury is aggravated
in aged mice by the exacerbation of proinflammatory processes. Front Pharmacol
(2021) 12:662020. doi: 10.3389/fphar.2021.662020
Frontiers in Immunology 17
22. Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, et al.
Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and
influenza. Cell (2020) 181:865–76. doi: 10.1016/j.cell.2020.04.020

23. Sun P, Wu Y, Yin C, Jiang H, Xu Y, Sun H. Molecular subtyping of cancer
based on distinguishing Co-expression modules and machine learning. Front Genet
(2022) 13:866005. doi: 10.3389/fgene.2022.866005
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