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Dietary phytate primes
epithelial antibacterial immunity
in the intestine

Seika Hashimoto-Hill , Luisa Colapietro, Vivienne Woo,
Simona Antonacci, Jordan Whitt , Laura Engleman
and Theresa Alenghat*

Division of Immunobiology, and Center for Inflammation and Tolerance, Cincinnati Children’s
Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH,
United States
Although diet has long been associated with susceptibility to infection, the

dietary components that regulate host defense remain poorly understood.

Here, we demonstrate that consuming rice bran decreases susceptibility to

intestinal infection with Citrobacter rodentium, a murine pathogen that is

similar to enteropathogenic E. coli infection in humans. Rice bran naturally

contains high levels of the substance phytate. Interestingly, phytate

supplementation also protected against intestinal infection, and enzymatic

metabolism of phytate by commensal bacteria was necessary for phytate-

induced host defense. Mechanistically, phytate consumption induced

mammalian intestinal epithelial expression of STAT3-regulated antimicrobial

pathways and increased phosphorylated STAT3, suggesting that dietary phytate

promotes innate defense through epithelial STAT3 activation. Further, phytate

regulation of epithelial STAT3 was mediated by the microbiota-sensitive

enzyme histone deacetylase 3 (HDAC3). Collectively, these data demonstrate

that metabolism of dietary phytate by microbiota decreases intestinal infection

and suggests that consuming bran and other phytate-enriched foods may

represent an effective dietary strategy for priming host immunity.

KEYWORDS
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Introduction

Intestinal infections pose a serious threat to public health worldwide, with reported

cases exceeding two billion and over onemillion deaths each year (1). These infections are a

leading cause of death among children, and surviving children can suffer from long-term

health consequences such as delayed growth and vaccine failure (2, 3). Given that the

intestinal mucosa is a primary site of exposure for multiple pathogens, deciphering the
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pathways that guide intestinal defense is critical for developing

new approaches for treating and preventing infection.

Nutrition affects various aspects of physiology, including the

immune system, as demonstrated by a strong correlation

between malnutrition and infection morbidity (4, 5). Dietary

components such as carbohydrates, lipids, amino acids,

vitamins, and minerals have each been implicated in the

regulation of host defense against pathogens (6, 7). For

example, consumption of a high-fat diet increases disease in

rodents following infection with C. difficile, C. rodentium, or

Listeria monocytogenes (8–10). Trillions of commensal microbes

reside in the mammalian intestine and are collectively referred to

as the microbiota. Increasing evidence indicates that the

metabolism of dietary nutrients by resident commensal

microbes alters host physiology (11). Microbial metabolism

results in the production of metabolites and small-molecule

intermediates that regulate the symbiotic relationship between

the microbiota and host (12). For example, microbiota-derived

metabolites such as short-chain fatty acids (SCFAs) (13–15),

indoles (16, 17), secondary bile acids (18, 19), and siderophores

(20) have been described to protect during mouse models of

infection. However, despite evidence linking nutrition and

immunity, mechanistic insights needed to guide how diet can

be modified to optimize host immunity are limited (11).

Intestinal epithelial cells (IECs) reside at the direct interface

between the host and commensal microbes and, therefore, carry

the potential to critically respond to signals from the diet,

microbiota, and luminal metabolites (21–23). IECs provide the

first line of defense against invading pathogens with constitutive

expression of defense molecules, including antimicrobial

peptides (AMPs), reactive oxygen species, and mucins (24, 25).

Germ-free and microbiota depletion studies have shown that

commensal microbial signals are required for basal expression of

many AMPs (26, 27). IEC expression of the AMP regenerating

islet-derived protein 3g (Reg3g) requires signaling through Toll-

like receptors (TLRs) and other microbiota-sensitive pathways

(28). In addition, nutritional regulation of AMP expression has

also been suggested, and the timing of food intake can

significantly alter IEC expression of AMPs (29, 30). However,

the dietary factors that cooperate with the microbiota to prime

IEC-mediated defense are not well known.

Phytate is in various foods, including bran, legumes, seeds,

and nuts, and is enriched in diets such as vegetarian and

Mediterranean (31–33). Mineral-chelating properties of

phytate have been historically discussed in relation to rickets,

which is caused by reduced calcium and phosphorus availability

(34). Although phytate is no longer considered a primary

pathogenic factor in rickets, absorption interference of iron,

zinc, and other minerals with high doses of phytate could occur

in the context of mineral deficiency, leading phytate to

commonly be termed an anti-nutrient (35). However, diets

containing phytate in combination with sufficient minerals do
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not present with disorders related to trace mineral

absorption (33).

Rice bran is an abundant by-product generated during rice

milling that has been gaining popularity as a food supplement

over the past ten years (36, 37). Here, we discovered that ingestion

of rice bran reduced infection burden and related pathology in a

murine Citrobacter rodentium infection, the mouse model for

enteropathogenic and enterohemorrhagic E. coli infection

prevalent in the human population. Rice bran contains high

amounts of phytate. Interestingly, phytate supplementation

similarly protected against intestinal infection. This diet-induced

protection was dependent on microbial digestion of phytate and

the production of phytate metabolites. Mechanistically phytate

induced STAT3 activation and the downstream defense pathway

in the IECs. Phytate-induced STAT3 activation was mediated by

the metabolite-sensitive enzyme HDAC3 in an IEC-intrinsic

manner. Collectively, these findings reveal new diet-microbiota

interactions that promote innate intestinal immunity and

mammalian defense against infection.
Results

Consuming rice bran decreases
susceptibility to C. rodentium infection

Rice bran has been proposed to provide broad health benefits

ranging from weight loss, cancer prevention, and protection from

infection (37–40), provoking the hypothesis that rice bran may

alter susceptibility to pathogens like E. coli. To test this, littermate

mice were exclusively fed a custom diet containing 20% rice bran

or a matched control diet for four weeks, and then infected with

Citrobacter rodentium (Figure 1A). C. rodentium is a murine

intestinal pathogen with similar pathogenesis to enteropathogenic

and enterohemorrhagic E. coli, two leading causes of food-borne

illnesses in humans (41–44). Interestingly, mice ingesting rice

bran exhibited significantly reduced C. rodentium in the intestinal

lumen (Figure 1B) and colonic tissue (Figure 1C) post-infection

compared to control diet-fed mice (Figures 1B, C). Differences in

pathogen burden were observed by day 3 post-infection,

suggesting that bran diet decreased initial C. rodentium

colonization and replication in the large intestinal mucosa.

Consistent with decreased infection, C. rodentium-induced

changes in stool consistency were less severe in the rice bran-fed

mice compared to control diet-fed mice (Figure 1D). Pathological

features of C. rodentium, such as colonic epithelial hyperplasia and

leukocyte infiltration, were observed in control diet-fed mice

(Figure 1E). However, these histologic features of C. rodentium

infection were diminished in bran-fed mice (Figure 1E). Taken

together, these findings suggest that a component of rice branmay

decrease susceptibility to bacterial infection.
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The natural component phytate in rice
bran protects mice against C. rodentium

Rice bran is naturally enriched with phytate (31). Therefore,

to test whether phytate itself alters C. rodentium infection,

control mice and mice receiving 2% phytate were compared

during infection (Figure 2A). Interestingly, similar to the

outcome with rice bran ingestion, phytate consumption

significantly decreased pathogen burden post-infection

(Figure 2B). Consistent with decreased pathogen levels, clinical

symptoms of infection were also less severe in phytate-treated

mice relative to controls (Figure 2C). To examine pathology

induced by C. rodentium infection, colonic tissue was examined

following peak infection. As expected, C. rodentium induced

colonic epithelial hyperplasia and leukocyte infiltration in

control mice (Figure 2D). However, infection-associated

pathology was reduced in mice fed phytate, recapitulating
Frontiers in Immunology 03
findings that occur with the rice bran diet (Figure 1).

Collectively these data demonstrate that consuming

phytate is sufficient to promote protection against intestinal

bacterial infection.
Metabolism of phytate by commensal
bacteria mediates protection
against infection

Monogastric mammals such as humans and mice do not

produce the phytase enzyme that breaks down phytate in the

intestinal lumen (45, 46). Instead, phytate digestion is dependent

on phytase that is produced by bacteria residing in the intestine.

Germ free (GF) animals exhibit lower concentrations of phytate

metabolites in the gut lumen as microbial phytase catalyzes the

removal of phosphorus from phytate to produce phosphorous

and lower forms of inositol phosphates (47–49) (Figure 3A).

Phytate supplementation to microbiota-replete, conventionally-

raised (CNV) mice increased inositol trisphosphate (IP3)

concentrations in intestinal contents (Figure 3B), confirming

that commensal microbes in the mouse intestine break down

phytate. To test whether microbiota are required for the phytate-

mediated defense against C. rodentium infection, GF mice were

treated with phytate prior to infection. (Figure 3C). Unlike CNV

mice, GF mice exhibited comparable C. rodentium infection

between vehicle and phytate-treated groups (Figure 3D). Given

that phytate-induced protection was lost when mice

lacked commensal microbes, the microbiota are required for

regulation of host defense by phytate.

These findings provoked the hypothesis that microbial-

produced phytase is required for phytate-induced protection.

To test this, we employed a commensal strain of E. coli that

either expresses the wildtype phytase AppA gene (E. coliWT) or

lacks the AppA gene (E. coliDphy). To confirm phytase activity

levels in these strains, E. coliWT and E. coliDphy were cultured

overnight in phytate-supplemented media, and the

concentrations of IP3 in the supernatant were compared. E.

coliWT and E. coliDphy growth was similar (Figure 3E). However,

significantly higher levels of IP3 were present in E. coliWT

cultures compared to E. coliDphy cultures, confirming impaired

phytase activity in E. coliDphy bacteria (Figure 3F). To next

compare the role of bacterial phytase expression in vivo, GF

mice were monoassociated with either E. coliWT or E. coliDphy

and fed phytate-containing chow (Figure 3G). Colonization was

similar for both strains (Figure 3H), and phytate or phytase did

not directly alter C. rodentium growth (Figure 3I). Remarkably,

though, mice monoassociated with E. coliDphy exhibited

increased susceptibility to C. rodentium infection, relative

to mice monoassociated with E. coliWT (Figure 3J),

Therefore, phytase expressed by commensal bacteria enables

dietary phytate to promote innate host defense against

intestinal infection.
A
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FIGURE 1

Consuming rice bran decreases susceptibility to C. rodentium
infection. (A) Experimental approach. (B) Colony-forming units
(CFUs) of C. rodentium in stool of infected control- or 20% rice
bran diet-fed mice, normalized to sample weight, days 3 post-
infection. (C) CFUs of C. rodentium in the colon tissues, day 10
post-infection. (D) Clinical scores representing severity of
diarrhea, day 10 post-infection. (E) Histological staining of the
colon tissues of infected mice, day 10 post-infection. Scale bars:
10 mm. Data are representative of 2-3 independent experiments.
n = 4 per group. Results are mean ± SEM. *p < 0.05.
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Phytate consumption primes elevated
epithelial antimicrobial defense

IECs provide initial defense against pathogenic infection in

the intestine, in part through basal expression of antimicrobial

molecules (50). Bran- and phytate-induced protection against C.

rodentium occurred as early as day 3 post-infection, suggesting

that phytate may regulate basal epithelial defense mechanisms.

To test this hypothesis, global transcriptional profiles were

compared in colonic IECs harvested from CNV mice treated

with vehicle or phytate. These analyses identified numerous

genes that were significantly upregulated or downregulated in

IECs following phytate ingestion (Figure 4A). Interestingly,

phytate significantly upregulated gene expression in host

defense pathways. (Figures 4B, C). Phytate-induced defense

genes included the antimicrobial peptide Reg3g and the

bactericidal nitric oxide producer Nos2 (Figures 4C, D), both

known mediators of early defense against C. rodentium (51, 52).

Furthermore, IEC upregulation of Reg3g and Nos2 occurred in

rice bran diet-fed mice compared to control mice (Figure 4E).

Therefore, consuming rice bran or phytate induces basal

epithelial antimicrobial defense mechanisms that protect

against pathogenic bacterial infection in the intestine.
Epithelial STAT3 activation in the
intestine is induced by phytate

To further dissect the mechanism of phytate-induced

epithelial regulation, network analyses were conducted on the

enriched phytate-induced defense genes. Interestingly, these
Frontiers in Immunology 04
analyses identified the transcription factor Signal Transducer

And Activator Of Transcription 3 (STAT3) as the most central

and essential factor for regulating this network (Figures 5A, B).

Consistently, multiple known STAT3-controlled downstream

genes were upregulated in IECs of phytate-fed mice

(Figure 5C). This finding led to the hypothesis that phytate

activates IEC-intrinsic STAT3. STAT3 activation is

characterized by phosphorylation of its tyrosine 705 residue.

Therefore, to test whether phytate alters STAT3 activation,

pSTAT3 (Y705) in the large intestinal epithelium of control

mice and mice receiving 2% phytate were compared.

Interestingly, phytate feeding significantly increased

phosphorylation of STAT3 in IECs relative to control mice

(Figures 5D, E). Further, IECs harvested from rice bran-fed

naïve mice also exhibited enhanced STAT3 activation

(Figure 5F). Collectively, these data reveal that consuming

phytate-enriched diets can increase epithelial STAT3 activation

and therefore prime expression of antimicrobial targets that are

regulated by STAT3.
Phytate-mediated epithelial STAT3
activation requires HDAC3

Deacetylation of STAT3 by the histone deacetylase HDAC3

promotes STAT3 activation in hepatocytes and lymphoma cells

(53, 54). HDAC3 is an enzyme sensitive to environmental

signals, and IEC expression of HDAC3 is critical in host

defense against C. rodentium (55, 56). The phytate-derived

metabolite inositol trisphosphate activates HDAC3 (47), and

consistent with this, phytate-fed mice displayed increased
A

B

D

C

FIGURE 2

The natural component phytate in rice bran protects mice against C. rodentium. (A) Experimental approach. (B) CFUs of C. rodentium in stool of
infected vehicle- or 2% phytate-treated mice, normalized to sample weight, days 3 and 10 post-infection. (C) Clinical scores representing
severity of diarrhea, day 10 post-infection. (D) Histological staining of colon tissues of infected mice, day 10 post-infection. Scale bars: 10 mm.
Data are representative of 2-3 independent experiments. n=4 per group. Results are mean ± SEM. *p < 0.05.
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mucosal HDAC activity relative to vehicle-fed mice (Figure 6A).

Therefore, we first hypothesized that HDAC3 regulates STAT3

activation in IECs. To test this hypothesis, we utilized an IEC-

specific HDAC3 knockout mouse model (57). Interestingly,

IECs isolated from mice lacking IEC-intrinsic HDAC3

(HDAC3DIEC) displayed displayed significantly lower pSTAT3

levels relative to floxed littermate mice (HDAC3FF), indicating

that STAT3 activation in IECs requires HDAC3 (Figures 6B, C).

We next hypothesized that phytate-induced STAT3 activation

was HDAC3-dependent. To test this, HDAC3DIEC mice and

littermate HDAC3FF mice were treated with 2% phytate, and the

levels of IEC pSTAT3 (Y705) were compared. The results

exhibited that phytate ingestion increased STAT3 activation in

IECs of HDAC3FF mice, but not IECs of HDAC3DIEC mice

(Figure 6D). Taken together, these data demonstrate that dietary

phytate mechanistically induces activation of epithelial STAT3

through regulation of HDAC3.
Frontiers in Immunology 05
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In this study, we identified that consumption of rice bran or

phytate induces innate intestinal epithelial pathways that

decrease susceptibility to bacterial infection (Figure 6E).

Furthermore, this diet-induced protection is mediated by the

commensal bacterial metabolism of phytate and subsequent

activation of the HDAC3-STAT3 axis in epithelial cells

(Figure 6E). Phytate-induced activation of IEC-intrinsic

STAT3 required expression of HDAC3, as phytate failed to

induce STAT3 activation in the absence of HDAC3 expression.

Direct deacetylation of the lysine 685 residue of STAT3 by

HDAC3 has been described to precede phosphorylation and

nuclear translocation of STAT3 in hepatocytes (53), however,

indirect mechanisms may also contribute. Similarly, inhibition

of HDAC3 in lymphoma cells resulted in nuclear export of

STAT3 to the cytoplasm, thus hindering STAT3 function as a
A B D
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C

FIGURE 3

Metabolism of phytate by commensal bacteria mediates protection against infection. (A) Schematic of phytate metabolism by microbial phytase.
(B) Inositol trisphosphate (IP3) concentration in fecal samples collected from vehicle- or 2% phytate-treated mice, normalized to sample weight.
(C) Experimental approach. (D) CFUs of C. rodentium in stool of infected vehicle- or 2% phytate-treated GF mice, normalized to sample weight,
days 3, 6 and 10 post-infection. (E) Bacterial cell density of E. coli. (F) IP3 concentration in media from E. coliWT and E. coliDphy cultured with
1mM phytate, per 108 CFU of bacteria. (G) Experimental approach. (H) CFUs of E. coli in stool of monoassociated mice, normalized to sample
weight, day 7 post-inoculation. (I) Bacterial cell density of C. rodentium. (J) CFUs of C. rodentium in stool of infected mice monoassociated
with E. coliWT or E. coliDphy, normalized to sample weight, days 3 and 6 post-infection. Data are representative of 2-3 independent experiments.
n = 3-4 per group. Results are ± SEM. *p < 0.05.
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FIGURE 4

Phytate consumption primes elevated epithelial antimicrobial defense. (A) Volcano plot showing differentially expressed LI IEC genes between
Vehicle- and 2% phytate-treated naïve mice identified by RNA-seq. Red: upregulated, blue: downregulated with phytate, p < 0.05. (B) Ontology of
the genes upregulated with phytate in (A). Circle sizes correspond to gene numbers in pathways. (C) Heatmap of relative mRNA expression of IEC
defense response genes upregulated in phytate. (D) mRNA expression levels in LI IEC, normalized to vehicle. (E) mRNA expression in large intestinal
IECs, normalized to control. Data are representative of 2-3 independent experiments. n = 3-4 per group. Results are mean ± SEM. *p < 0.05.
A B
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C

FIGURE 5

Epithelial STAT3 activation in the intestine is induced by phytate. (A) Interaction network of phytate-induced IEC defense genes. (B) Top hub
genes in (A). (C) Heatmap of relative mRNA expression of IEC STAT3-target genes upregulated in phytate-treated. (D) Representative flow
cytometry plots from IECs of vehicle- or 2% phytate-treated mice, gated on live EpCAM+ cells. (E, F) Mean Fluorescence Intensity (MFI) of
pSTAT3 (Y705), normalized to vehicle (E) or control (F). Data are representative of 2-3 independent experiments. n=4 per group. Results are
mean ± SEM. **p < 0.01.
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transcriptional factor (54). Similar to these cells, our analyses

demonstrate that loss of HDAC3 impairs STAT3 activation

in IECs.

Although phytate induces HDAC3-mediated activation of

STAT3 in IECs, involvement of other STAT3 activators, such as

IL-22, IL-18, and IL-1b (58–60) cannot be excluded. IL-22, a

well-characterized STAT3 activator, is produced by several

different immune cells in the intestine in response to cytokines

IL-6 and IL-23, and aryl hydrocarbon receptor (AhR) ligands

(51, 61, 62). Further, vitamin A, tryptophan metabolites, and

short-chain fatty acids have been shown to induce IL-22

production from intestinal immune cells (63–65). In addition,

IECs can propagate the immune cell IL-22 response through

secretion of chemoattractant resistin-like molecule-beta (RELM-

b) that recruits IL-22 producing CD4+ T cells to the sites of

infection (66). Thus, beyond epithelial-intrinsic regulation,

future studies will be necessary to determine the contribution

of phytate to local and systemic immune cell responses that

promote host defense. This will include extending the analyses of

phytate effects on immune follicles and mucin-producing goblet

cells (66), as well as additional sites such as the small intestine

and extra-intestinal tissue.

Constituents of the microbiota can alter susceptibility to

pathogenic C. rodentium infection through direct inhibition via

nutritional competition or production of bacteriostatic molecules

such as butyrate and sulfide (13, 67, 68). Phytate supplementation

did not result in a significant deviation of microbiota composition
Frontiers in Immunology 07
or luminal SCFAs concentrations compared to vehicle-

supplemented mice in dextran sulfate sodium (DSS)-treated mice

(47). On the other hand, increased Lactobacillus spp. has been

reported with phytate supplementation in high sucrose-fed rats

(69). Increased levels of Lactobacillus spp. have also been reported

with 4-week consumption of 10% bran diet in rodents (70).

Microbial phytases encompass multiple classes of enzymes and

are expressed by a variety of commensal bacterial and fungal species

in the intestinal lumen (71). Our gnotobiotic model employing a

phytase-deficient commensal strain demonstrated that microbial

phytase was essential in protection against infection, verifying the

importance of phytate and its metabolites in the regulation of host

epithelial defense. Phytase deficiency in commensal E. coli did not

result in growth disadvantage in the monocolonization model in

our study. However, it is possible that commensal bacterial phytase-

derived products also directly alter C. rodentium virulence and

therefore not only promote protection via regulation of host

immunity. Elucidating the association between phytase

abundance and individuals’ responsiveness to dietary phytate may

be essential for guiding the use of phytate for nutritional

intervention strategies.

The data presented in this manuscript reveal a new

mechanism of dietary regulation of mucosal immunity in

which metabolism of phytate-rich foods by commensal

bacteria primes epithelial defense against infection via an

HDAC3-STAT3 pathway. Evidence also suggests that rice bran

decreases susceptibility to other enteric pathogens, such as
A B
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C

FIGURE 6

Phytate-mediated epithelial STAT3 activation requires HDAC3. (A) Intestinal epithelial HDAC activity of vehicle- or phytate-treated mice.
(B) Representative flow cytometry plots from IECs of vehicle- or 2% phytate-treated mice, gated on live EpCAM+ cells. (C) Mean Fluorescence
Intensity (MFI) of pSTAT3 (Y705), normalized to FF. (D) MFI of IEC pSTAT3 of vehicle- or 2% phytate-treated HDAC3FF or HDAC3DIEC mice,
normalized to FF-vehicle. (E) Through phytate metabolism by microbial phytases, rice bran and its component phytate activate IEC STAT3 and
downstream defense mechanisms against enteric infection. Data are representative of 2-3 independent experiments. n=4 per group. Results are
mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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Salmonella and rotavirus (40, 72). Therefore, consuming bran

and other phytate-enriched foods may represent an effective

dietary strategy for broadly boosting innate mucosal defense

against multiple intestinal pathogens. Discovery of this diet-

microbiota-host regulatory mechanism provides fundamental

insights that can guide practical and personalized nutritional

interventions designed to enhance mucosal immunity.
Methods

Mice

All murine experiments were performed according to

guidelines of the Institutional Animal Care and Use

Committee. Animals were housed up to 4 per cage in a

ventilated cage with 12 h light/dark cycle and free access to

chow and water. Animals were provided with appropriate care

by a licensed veterinarian. Floxed Hdac3 mice were bred to

C57BL/6 mice expressing Cre-recombinase under the control of

villin promoter to generate HDAC3DIEC mice (57). Gnotobiotic

mice were maintained in sterile isolators (Class Biologically

Clean) in the CCHMC Gnotobiotic Mouse Facility, fed

autoclaved food and water, and routinely monitored to ensure

the absence of microbial contamination. To establish E.coli and

phytase-KO E. coli monoassociated mice, GF mice received 1

x109 CFU bacteria in PBS via oral gavage. Monoassociated mice

were housed on a sealed positive pressure IVC rack (Allentown).

Phytate (phytic acid sodium salt hydrate, Sigma) was dissolved

in water to make 2% phytate and filtered (0.22mm) prior to

providing to the mice as drinking water. Control diet

(TD.160791) or 20% rice bran (NOW stabilized rice bran) diet

(TD.210517) were custom made by Envigo with matched

macronutrients, calories, minerals, vitamins, and fiber. Mice

were infected with 1x109 CFU GFP-C. rodentium (DBS100)

via oral gavage. Stool and colon tissues were homogenized in

sterile PBS using a Tissue Lyser II, serially diluted and plated on

MacConkey agar. CFUs were counted and normalized to stool

weight after 16 hr. For histologic analyses, sections of colon were

fixed in 10% neutralized formalin, paraffin embedded, sectioned,

and stained with hematoxylin and eosin.
IEC isolation and RNA analyses

IECs were isolated from the large intestine by shaking tissue

in 1mM EDTA/1mM DTT 5% FBS PBS at 37°C for 10 min as

described previously (57). RNA was extracted from cells using

the RNeasy Kit (Qiagen) according to manufacturer’s
Frontiers in Immunology 08
instructions. For RT-qPCR, RNA was reverse-transcribed with

Verso reverse transcriptase (Invitrogen) and expression was

compared using SYBR (Applied Biosystems) and analyzed in

the linear range of amplification. Target gene expression was

normalized to an unaffected control gene. For global expression

analyses, 3 biological replicates of IECs from vehicle- and

phytate-treated mice were compared. Reads were bar codes

trimmed and mapped to mouse genome (GRCm38) using

Bowtie2. The reads aligning to known transcripts were

quantified using Seqmonk (V1.47.1) and visualized using

Genepattern Multiplot Studio. Differential expression analysis

was performed using EdgeR within Seqmonk (p<0.05, fold

change >1.5). For pathway and ontological analyses, gene lists

were submitted to the Toppgene database (toppgene.cchmc.org),

which amasses ontological data from over 30 individual

repositories. Network construction and identification of hub

genes using Cytohubba were done on Cytoscape v3.9.1.
Flow cytometry

IECs were isolated as described above. Cells were stained

using the following fluorescence-conjugated monoclonal

antibodies diluted in FACS buffer (2% FBS, 0.01% sodium

azide, PBS): Brilliant Violent 711 anti-CD326 (EpCAM)

(Clone: G8.8, BD Biosciences), PE anti-pSTAT3 (Tyr 705)

(Clone: LUVNKLA, Invitrogen), PE anti-Mouse IgG2bk
isotype (Clone: eBMG2b, Invitrogen). Dead cells were

excluded with the Violet dead Cell Stain Kit (Invitrogen). For

pSTAT3 staining, the cells were fixed in 4% PFA following dead

cell staining, then permeabilized with methanol prior to surface

and pSTAT3 or isotype staining. Samples were acquired on the

Canto III and analyzed with FlowJo™ v10.8 Software (BD

Life Sciences).
IP3 assay

Fecal pellets were homogenized in cold PBS and extract was

collected after centrifugation at 4°C. IP3 ELISAwas performed on

fecal extract or bacterial culture supernatant according to

manufacturer instructions (MyBiosource). Briefly, samples were

incubated with 50 µl of biotinylated detection antibody for 45

minutes at 37°C, washed 3 times, and incubated with HRP

conjugate at 37°C for 30 minutes. The plate was rinsed with

wash buffer followed by substrate incubation for 15 minutes at

37°C. The reaction was stopped, and the optical density of each

well was measured using a micro-plate reader (Biotek Synergy 2)

set to 450 nm.
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Bacterial culture and quantification

Wild type commensal E. coli K-12 (ATCC 700926) and phytase-

KO E. coli CU-1867 (ATCC 47092) colonies were grown on LB agar

plate and inoculated in 10 ml LB broth for overnight culture prior to

administration to GF mice in mono-association studies. For culture

media IP3 quantification study, E. coli were cultured with 1 mM

phytate. Mono-associatedmice weremonitored for contamination by

quantitative PCR. Fecal samples were collected in 2ml pre-weighed

sterile microcentrifuge tubes. Fecal bacterial DNA was isolated using

QIAamp® Fast DNA Stool Mini Kit (Qiagen) following the kit

protocol. Bacterial DNA was assessed by quantitative PCR

(QuantStudio3; Applied Biosystems) using 16S-rRNA and

bacterial-specific primer pairs (Invitrogen, MilliporeSigma). PCR of

E. coli phytase gene (AppA) was performed to confirm lack of AppA

in phytase-KO E. coli (47). To determine CFUs in mono-associated

mice, stool was homogenized, serially diluted, and grown on Lennox

LB plates in aerobic condition overnight. CFUs were normalized to

stool weights.
HDAC activity

LI mucosa was lysed in RIPA buffer and HDAC activity was

assayed using a fluorometric assay (Active Motif). Briefly, 10 mg
of cell lysate was incubated with 100 mM of HDAC substrate at

37°C for 1 hour. 50 ml of developer solution containing 2 mM of

trichostatin A (TSA) was added at room temperature to stop the

reaction. Fluorescence was measured using a fluorescent plate

reader (Biotek Synergy 2) with an excitation wavelength of 340

nm and an emission wavelength of 460 nm.
Statistics

All statistical analyses were performed using GraphPad

Prism 8.0. Statistical significance was determined by students

t-test or ANOVA. All data meet the assumptions of the statistical

tests used. Results are shown as mean ± SEM and considered

significant at p<0.05 (*); p<0.01 (**); p<0.001 (***).
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