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Acute lung injury (ALI) is a heterogeneous inflammatory condition associated

with high morbidity and mortality. Neutrophils play a key role in the

development of different forms of ALI, and the release of neutrophil

extracellular traps (NETs) is emerging as a common pathogenic mechanism.

NETs are essential in controlling pathogens, and their defective release or

increased degradation leads to a higher risk of infection. However, NETs also

contain several pro-inflammatory and cytotoxic molecules than can

exacerbate thromboinflammation and lung tissue injury. To reduce NET-

mediated lung damage and inflammation, DNase is frequently used in

preclinical models of ALI due to its capability of digesting NET DNA scaffold.

Moreover, recent advances in neutrophil biology led to the development of

selective NET inhibitors, which also appear to reduce ALI in experimental

models. Here we provide an overview of the role of NETs in different forms

of ALI discussing existing gaps in our knowledge and novel therapeutic

approaches to modulate their impact on lung injury.

KEYWORDS

NETs (neutrophil extracellular traps), ALI (acute lung injury), ARDS (acute respiratory distress
syndrome), sterile inflammatory response, infections and sepsis, COVID-19, DAMPs (damage-
associatedmolecular patterns), Thromboinflammation
Introduction

ALI is an inflammatory condition characterized by the acute onset of lung tissue

damage and pulmonary dysfunction originating from infectious or sterile insults (1).

Typical features of ALI are the alveolar accumulation of protein-rich fluid and activated

immune cells due to pulmonary endothelial barrier disruption and increased vascular

permeability (2). The pathological alterations of ALI are responsible for a clinical

syndrome characterized by extensive non-cardiogenic pulmonary edema and

decreasing oxygenation, also known as acute respiratory distress syndrome (ARDS)
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(3). ARDS is associated with high morbidity and mortality

(~40%), and its increasing incidence, particularly related to the

recent COVID-19 pandemic, represents a significant global

burden (4).

Airway neutrophilia has been historically considered a

hallmark of ARDS (5). However, the underlying mechanisms

that control neutrophil contribution to ALI are not fully

understood. Although neutrophils play well-established

functions in regulating pulmonary injury through the

generation of reactive oxygen species (ROS) or conducting

phagocytosis and degranulation, recent reports have highlighted

a critical role for NETosis in ALI pathogenesis. NETs consist of a

mix of nuclear chromatin (6), mitochondrial DNA (7–9) and

neutrophil granule proteins (10) that primarily absolve a defensive

role against lung infections. On the other hand, accumulating

evidence indicate that NETosis is also increased in lung sterile

inflammatory conditions and that exuberant NET release

promotes microvascular dysfunction, thromboinflammation,

and direct cellular injury (11). Moreover, high levels of NETs in

the peripheral blood or bronchoalveolar lavage (BAL) of critically

ill subjects are frequently associated with the worst ARDS

outcomes (12, 13).

In this review, we will discuss general mechanisms of

NETosis and NET-mediated tissue damage (Figure 1) with a

specific focus on the contribution of NETs to different forms of

infective and sterile ALI (Figure 2).
Non-vital and vital NETosis

NETosis was first described in 2004 when Brinkman and

coworkers observed that activated neutrophils could kill bacteria

by releasing nuclear chromatin decorated with proteins usually

confined to their granules (14). Following studies characterized

the NADPH oxidase 2 (NOX2) Ros-dependent pathway

involved in the release of NETs and defined NETosis as a new

mechanism of neutrophil programmed cell death distinct from

apoptosis and necrosis (15, 16). NETosis was originally

described as a slow multistep process that leads directly to

senescence, where chromatin decondensation and nuclear

envelope rupture allow for mixing nuclear material with

cytoplasm content. Pore-forming proteins like gasdermin D

then permeabilize the plasma membrane allowing for the

release of NETs into the extracellular space (17). However, this

view of NETosis as a terminal process has been recently

challenged by the demonstration of an alternative, non-lytic

and NADPH-independent mechanism of NET release, which

appears to be particularly rapid in response to bacterial infection

and leaves behind a neutrophil that can still exclude vital dyes

(18). This form of NETosis is initiated by a sudden rise in

intracellular calcium that leads to the expulsion of nuclear

chromatin and granule proteins, resulting in an anucleated

cytoplast still capable of migration and phagocytosis (11, 18,
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19). Finally, a third type of fast, vital and ROS-dependent

NETosis was recently described in response to granulocyte-

macrophage colony-stimulating factor or lipopolysaccharide

(LPS) leading to the release of mitochondrial DNA (mtDNA)

mixed with granule proteins (7).

Almost two decades after the first observations, it is now

commonly accepted that NET release can occur in response to

multiple stimuli via several and frequently interconnected

activation pathways (17, 20–22) that are not necessarily

associated with neutrophil death (7, 18, 19). Regardless of the

stimuli and the activation mechanisms, NET composition has

intrinsic pro-inflammatory characteristics due to the presence of

granule-derived proteases, histones and cell-free DNA (23).
NET composition

Serine proteases

Under homeostatic conditions, neutrophil azurophilic

granules contain different serine proteases, including neutrophil

elastase (NE), cathepsin G (CatG), proteinase 3 (PR3), and

neutrophil serine protease 4 (NSP4). Due to their antimicrobial

and immunomodulatory function, these pre-stored catalytically

active mediators play a major contribution in the physiological

response to infection (24). However, their uncontrolled

extracellular release may have unintended consequences by

causing damage to the surrounding healthy tissue (25).

Proteomic analysis and studies on the functional activity of

human NETs indicate that NE is the most abundant non-

histone protein and the predominant responsible for the NET

“proteolytic signature” (10, 26). NE is a well-established mediator

of alveolo-capillary permeability where it is thought to trigger

microvascular injury through primarily catalyzing endothelial cell

cadherin proteolysis (27–29). In a mouse model of LPS induced

endotoxemia, treatment with the NE selective inhibitor Sivelestat

attenuated pulmonary endothelial injury reducing endothelial

glycocalyx damage and preserving thrombomodulin and

syndecan-1 expression (30). Similar findings were observed in

work by Okeke and colleagues, where Sivelestat treatment reduced

NET-mediated injury on human umbilical vein endothelial cells

(HUVECs) (31). Interestingly, Sivelestat was able to reverse the

NET-mediated upregulation of Intercellular Adhesion Molecule-1

(ICAM-1) on HUVECs, suggesting that NETs may propagate the

inflammatory response of endothelial cells through NE (31).

Furthermore, reduced NET deposition after Sivelestat treatment

also suggested that NE may be directly involved in the release of

NETs (31). This observation would be consistent with previous

findings describing the role of NE nuclear translocation in

facilitating histone degradation and chromatin decondensation

(32). However, in mice genetically deficient for NE, the

stimulation with the well-known NETosis inducer, phorbol 12-

myristate 13-acetate (PMA), does not abrogate the release of
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NETs (33). In addition, the effect of NE inhibition appears to vary

among neutrophils from different healthy donors, suggesting that

NE may not always be necessary for the execution of

NETosis (34).

Other proteases such as PR3 and Cat G are known to

enhance inflammatory reactions by modulating the balance

between pro and anti-inflammatory proteins (35). However,

despite their documented proteolytic activity in human NETs,

the precise contribution to mediating ALI is currently less clear.

In summary, besides the explicit role of NE in NET-

mediated lung microvascular damage, the overall contribution

of neutrophil serine proteases to NET-dependent inflammation

in ALI is still undefined.
Histones

Histones are generally located within the cell nucleus, where

they play an essential role in organizing and regulating DNA

(36). During NETosis, the enzyme peptidyl arginine deiminase 4

(PAD4) alters histone intermolecular interactions by converting
Frontiers in Immunology 03
arginine residues into citrulline (37). Citrullination decreases

histone protein stabi l i ty and faci l i tates chromatin

decondensation and chromosomal DNA expulsion (38, 39).

PAD4-dependent histones citrullination has been frequently

reported as a critical component of NETosis in response to

numerous physiological stimuli (40), and treatment with PAD4

inhibitors such as Cl-amidine (41) and GSK484 (42) have been

shown positive effects in attenuating ALI. Interestingly, recent

works indicate that there are conditions where NETosis can

occur even in the absence of PAD4 activity, for example, in

response to Candida albicans, Klebsiella pneumoniae or

cholesterol crystals (43–45). These evidence suggest that

during NETosis, chromatin decondensation may be not

exclusively dependent on histone citrullination and that

alternative mechanisms, such as direct histone cleavage by NE

nuclear translocation, may also be involved (32). How different

NET stimuli activate alternative mechanisms of chromatin

decondensation and what is the level of redundancy and

interaction between such pathways remains unclear, indicating

the need for a better characterization of the upstream signaling

involved in NET formation and release.
FIGURE 1

Mechanisms of NET release and NET-mediated lung injury (A) Neutrophils release NETs in response to endogenous and exogenous stimuli.
Endogenous factors include DAMPs, pro-inflammatory cytokines, mtDAMPs, and molecules released by activated platelets; exogenous factors
include PAMPs associated with microbial infections. (B) Inhibition of NET generation and release. The contribution of platelets to NETosis can be
attenuated by using platelet activation inhibitors; neutrophil chromatin decondensation can be targeted by using PAD4 inhibitors; neutrophil
membrane permeabilization can be prevented by using gasderimin D inhibitors. (C) NETs comprise a DNA scaffold decorated with granule
proteases and histone proteins. NET DNA scaffold can be digested by DNase; NET proteolytic activity can be abrogated by specific protease
inhibitors. (D) NETs release contributes to the pathogenesis of ALI. NETs facilitate the formation of thrombi, promote endothelial cell activation,
and induce microvascular injury. These microvascular alterations result in increased vascular permeability, intra-alveolar accumulation of
protein-rich fluid, and infiltration of inflammatory cells. Image created by DS using BioRender (https://biorender.com/).
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Extracellular histones account for ~70% of all NET-

associated proteins (10), and their presence highly contributes

to NET-mediated thromboinflammation (36, 46). For example,

histone engagement of TLR2 and TLR4 can induce platelet

activation resulting in the release of thrombin (47). In

addition, histones can activate aIIbb3 integrin on the platelet

surface, inducing subsequent fibrinogen-mediated platelet

aggregation (48). Histones also appear to stimulate TLR9-

dependent responses leading to mitochondrial ROS production

and NLR Family Pyrin Domain Containing 3 (NLRP3)

inflammasome activation (49). In a mouse model of ALI

secondary to severe trauma, high circulating histones were

associated with signs of edema, increased alveolar wall

thickening, and occasional hemorrhage (50). However,

inhibition with TLR4 and TLR2-neutralizing antibodies did

not show protective effects on cultured endothelial cells

suggesting that TLR activation may not be the major pathway

for histone toxicity. In this regard, extracellular histones have

been shown to cause endothelial cell damage through direct

interactions with the plasma membrane phospholipids, which

lead to increased transmembrane conductance (50). Although

DNase treatment is generally considered effective in degrading

NET DNA scaffold, questions remain on the fate of NET

proteins, particularly histones, after DNase digestion. For
Frontiers in Immunology 04
example, Saffarzadeh and coworkers show that DNase-

mediated NET degradation was insufficient to abolish NET

cytotoxicity, suggesting that histone proteins, after DNA

digestion, can still mediate most of the NET-related tissue

damage (51). Similar findings are also present in work by

Kolaczkowska and colleagues where, in a model of

b loods t r eam in f e c t i on wi th meth i c i l l in - r e s i s t an t

Staphylococcus aureus (MRSA), they demonstrate that

significant amount of active histones and NE remained

attached to the vasculature wall after DNase treatment (52).

In summary, extracellular histones play a potent

and heterogeneous contr ibut ion in NET-mediated

thromboinflammation and tissue injury. Reducing the release,

neutralizing, or blocking histone signal transduction may

represent in the future a novel pharmacological approach for

ALI treatment.
DNA

DNA forms the NET backbone, and for a long time, its

singular function has been thought limited to maintaining NET

structural integrity. However, recent findings suggest that DNA

may also play a direct role in promoting thromboinflammation.
FIGURE 2

Association of NETs with different ALI/ARDS etiologies. Image created by DS using BioRender (https://biorender.com/).
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Besides providing a scaffold for the recruitment of platelets,

leukocytes, and coagulation factors (53), cell-free DNA derived

from NETs has been shown to mediate thrombin generation

through the Factor XII- or Factor XI-dependent coagulation

pathways in patients with sepsis (54). Accordingly, the digestion

or precipitation of DNA networks markedly diminishes NET

pro-coagulant effects (55). In addition to nuclear DNA, NETs

can also be enriched with DNA derived from mitochondria

(mtDNA) (7–9). mtDNA are circular molecules of double-

stranded DNA that encode for some of the genes that form

the electron transport chain as well as drive mitochondrial-

specific protein synthesis (56). However, given their ancient

bacterial origin (57), NET-associated mtDNA release can act as a

damaged associated molecular pattern (DAMP) by stimulating

the CpG DNA sensor TLR9 (58, 59) as well as triggering NLRP3

inflammasome pathway activation on immune cells (60). In

addition, the NET-mediated release of oxidized mtDNA has

been shown to stimulate type I interferon (IFN) signaling

through a signaling pathway dependent on the DNA sensor

stimulator of interferon genes (STING), an intracellular pattern

recognition receptor (9). Moreover, recent findings indicate that

mtDNA can also directly activate neutrophils to release NETs

through TLR9 engagement (61–63).

In summary, besides acting as a scaffold, NET DNA may

directly stimulate innate immune responses that promote

pulmonary inflammation.
NETs and ALI etiologies

Sepsis and pneumonia

Sepsis is a common and deadly inflammatory condition

defined as a dysregulated host response to infection associated

with multi-organ dysfunction (64). With the development of

ARDS, lung involvement is frequently observed in critically ill

subjects affected with sepsis (65). Moreover, infectious

pneumonia is one of the leading causes of sepsis and the most

frequent cause of ALI (66–68). Although pathogens themselves

can directly damage the lung, a significant contribution to the

injury comes from the exuberant activation of the host immune

cells in response to pathogen-associated molecular patterns

(PAMPs) and DAMPs, collectively defined as “alarmins”

(69–71).

NETs have been firstly described as a potent defensive

mechanism able to block and inactivate pathogens preventing

their growth and dissemination (14, 72). The cationic NETs

components provide an ideal scaffold for electrostatic

interactions with the negatively charged surface of

microorganisms exposing them to a high local concentration

of cytotoxic molecules. Moreover, even in the absence of direct

killing, experiments in primary human neutrophils showed that
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NETs can indirectly increase the complement ability to destroy

pathogens such as Pseudomonas aeruginosa and Staphylococcus

aureus (73). Considering the major role played by NETs in

controlling infections, it is not surprising that several microbes

have evolved specific adaptive strategies to counteract this

defensive mechanism (74). For example, Streptococcus

pneumoniae, the most common cause of community-acquired

pneumonia (CAP), expresses endonucleases that degrade the

NET DNA scaffold allowing for bacterial escape (75). In

alternative, Bordetella pertussis, the causative agent of

whooping cough, expresses adenylate cyclase toxin (ACT)

which inhibits the release of NETs by increasing cAMP levels

and reducing intracellular ROS production (76). In humans, the

critical role of NETs in protecting from lung infections is evident

in subjects affected by Chronic Granulomatous Disease (CDG), a

systemic disorder caused by a genetic deficiency in NADPH

oxidase and consequent impairment in NET formation. Initially

described as “a fatal granulomatous disease of childhood’’, CGD

used to be associated with recurrent respiratory infections and

high mortality rate before the introduction of effective

antimicrobial treatments (77). The protective role of NETs,

particularly in the early phase of infection, in controlling

pathogen growth and dissemination is also evident from

experimental observations (78–84). In a mouse model of

polymicrobial sepsis by cecal ligation puncture (CLP),

Czaikoski and coworkers report that DNase treatment

increased systemic bacterial burden and decreased survival

(78). Consistent results were also reported by Meng and

coworkers that, using DNase treatment in a similar mouse

model of sepsis, described a profound and sustainable

reduction of NET-mediated bactericidal activity associated

with worst inflammation, more severe organ injury and higher

early mortality (79). Finally, better outcomes in sepsis were

reported by Lee and coworkers in mice deficient for

phospholipase D2 (PLD2) that exhibit an intrinsic up-

regulation of PAD4 activity associated with augmenting NET

formation and bacterial killing (80).

Although the contribution of NETs in pathogen clearance is

well established, aberrant NET release, particularly into the lung,

has also been associated with the exacerbation of inflammation,

immunothrombosis, and tissue injury (85–90). For example,

NETs formed during LPS-induced ALI have been shown to

directly cause organ damage and exacerbate an inflammatory

response characterized by leukocyte accumulation, diffuse

alveolar damage and cytokine release which could be

improved by DNase treatment (85). Further details into the

mechanism of NeT-mediated damage during bacterial sepsis

were provided by McDonald and coworkers that recently

described the implication of NET–platelet–thrombin axis in

the promotion of intravascular coagulation and showed that

PAD4 deficient mice or mice that received DNase have reduced

microvascular occlusion and organ dysfunction (86). Blocking
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NET release by pharmacological inhibition of Gasdermin D (91)

or PAD4 (41, 92) similarly reduced signs of sepsis-related multi-

organ dysfunction and ALI. Moreover, data on critically ill

subjects affected with infectious pneumonia and sepsis indicate

that higher circulating NETs are associated with the worst

clinical outcomes and directly correlate with organ dysfunction

(12, 69, 93–96). Finally, a meta-analysis of randomized

controlled trials on the use of Sivelestat for the treatment of

ARDS in subjects with sepsis showed improved lung function

even in the absence of a significant increased overall

survival (97).

A possible explanation for the complex interplay between

antimicrobial and pro-inflammatory NET function has been

recently proposed by Lafrançais and coworkers (95). In this

study, the authors confirmed the presence of higher levels of

NETs in ARDS subjects with infectious etiology that correlated

with the worst clinical outcomes. Moreover, in a mouse model of

bacterial pneumonia, they found that NET release exacerbated

signs of ALI, which could be attenuated in PAD4 deficient mice

or by DNase administration. Interestingly, increased bacterial

growth, particularly observed in mice with a genetic defect in

NETosis, partially counteracted these beneficial effects,

suggesting that the early release of NETs is important in

initially control the infection and that ARDS in sepsis may

represent the maladaptive consequence of this primarily defense

mechanism (95). This view is consistent with previous findings

showing that early DNase administration in a CLP model of

sepsis increased signs of ALI but that the same treatment

delivered in later phases was beneficial in reducing the level of

systemic inflammation and increased survival (98).

In conclusion, the experimental evidence summarized in

Table 1, and the clinical observations from sepsis subjects with

ARDS, indicate that NETs play a dual role in ALI associated with

sepsis and pneumonia. On the one hand, the early release of
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NETs at the site of infection is essential for controlling pathogen

growth, and defects in NETosis or early NET degradation are

associated with recurrent pneumonia and disseminated

infections. However, NET exuberant release, particularly in a

later phase dominated by post-infectious inflammatory events,

appears largely detrimental and concurrently exacerbates tissue

damage and ALI. Possible therapeutic strategies directed to

modulate NET-mediated lung damage during infection should

consider this dynamic relation between the early contribution to

pathogen control and the late post-infectious exacerbation of

systemic inflammation.
COVID-19

COVID-19 is a global pandemic caused by severe acute

respiratory syndrome coronavirus-2 (SARS-CoV-2) infection,

which in its most severe clinical presentation, is associated with

ALI/ARDS and multiple organ failure (99–101). COVID-19

infection with a high neutrophil-to-lymphocyte ratio is

generally associated with the worst clinical outcomes (102,

103). Neutrophil activation signature is a prominent feature of

circulating leukocyte transcriptomes of severe cases (104, 105).

Additionally, single-cell RNA sequencing (scRNA-seq) analysis

of COVID-19 whole blood samples has revealed distinct

neutrophil clusters associated with NET release and disease

severity (106). In order to characterize COVID-19

immunopathogenesis, several studies have focused on

neutrophil effector functions, and in particular, NETosis (107–

111). SARS-CoV-2 infection has been shown to directly induce

NETosis in healthy neutrophils (111). NETosis has also been

reported as a predictor of COVID-19 severity (110, 112). Post-

mortem examinations of lungs from COVID-19 patients reveal

diffuse neutrophil infiltration with abundant NET deposition
TABLE 1 The effects of NET treatment in experimental models of sepsis.

NET treatment Sepsis model Microbial Burden Tissue Injury Survival Reference

DNase (NET digestion) CLP Increased Increased Reduced Czaikoski et al. (78)
Meng et al. (79)

DNase (NET digestion) E.Coli IP infection Increased Decreased – McDonald et al. (84)

DNase (NET digestion) MRSA IT infection No effect Decreased Increased Lafrancais et al. (95)

PAD4-/- (NET inhibition) MRSA IT infection Increased Decreased No effect Lafrancais et al. (95)

Alcohol intoxication (NET inhibition) CLP Increased – Reduced Jin et al. (82)

DNase (NET digestion) + Antibiotics CLP Reduced Reduced Increased Czaikoski et al. (78)

Delayed DNase (NET digestion) CLP Reduced Reduced Increased Mai et al. (98)

Disulfiram (NET inhibition) CLP – Reduced Increased Silva et al. (91)

Cl-Amidine (NET inhibition) CLP – – Increased Biron et al. (41)

DNase (NET digestion) LPS – Reduced Increased Czaikoski et al. (78)

DNase (NET digestion) LPS – Reduced – Liu et al. (85)
- , ‘Not Studied’ ; CLP, Cecal Ligation Puncture; LPS, lipopolysaccharide; MRSA, Methicillin-resistant Staphilococcus aureus; E.coli, Escherichia Coli; PAD4, Peptidylarginine deiminase 4;
IP, intra-peritoneal; IT, intra-tracheal.
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frequently associated with platelet accumulation and

microvascular thrombosis (113–116). This inflammatory

pattern of thrombosis is consistent with findings from Zuo

and colleagues, who showed a positive correlation between

markedly elevated cell-free DNA and D-dimer levels, a

degradation product of fibrin (110). The pathogenic role of

NET release has also been described in different thrombosis-

mediated inflammatory states associated with ARDS (90, 117).

One current view of the underlying causes of ALI-mediated

pulmonary thrombosis is that NET web-like structures

immobilize and activate platelets and leukocytes. Through

mechanisms that have yet to be fully elucidated, this induces a

feed-forward loop that triggers additional intravascular NETosis

and higher local concentrations of histones and proteases that

increase endothelial permeability and promote microvascular

obs t ruc t i on (117) . G iven the prominent ro l e o f

immunothrombosis in the pathogenesis of COVID-19 ALI/

ARDS, pharmacological NET inhibition or degradation could

represent an intriguing approach to attenuate disease severity

and improve survival. A recent study by Fisher and colleagues

supports this notion by showing remarkable improvement in

clinical outcomes in five severely ill COVID-19 subjects treated

with off-label aerosolized recombinant human (rh) DNase (118).

Similar findings were also observed in different single-center

case series and cohort studies where nebulized rhDNase

administration showed favorable clinical outcomes in the

absence of drug-associated toxicities (119, 120). Although the

results from these small observational studies are encouraging,

larger and randomized clinical trials will be required to assess the

long terms effects of DNase treatment on COVID-19 ARDS.
Transfusion-related acute lung
injury (TRALI)

TRALI is a form of ALI that occurs within six hours of

transfusion that cannot be explained by another ALI risk factor

(121). Neutrophil activation and sequestration within the

pulmonary capillaries in response to blood components is

considered a central feature in the pathogenesis of TRALI

(122). Recent insights into the mechanisms of neutrophil-

mediated tissue damage indicate that NETs form in the lung

and contribute to the pathogenesis of this disease (123–125).

Using an established mouse model of TRALI (126), Caudrillier

and coworkers show that platelet sequestration increases with

NET proximity and that aspirin treatment decreases NET

formation and NET-associated platelets (123). Moreover,

human platelets activated with the PAR-1 agonist, thrombin

receptor-activating peptide (TRAP), induced robust NET release

via Thromboxane A2 (123). Further investigation into how

platelets drive NETosis revealed dependence on the canonical

Raf/MEK/ERK signaling pathway that is also critical to PMA-

induced NADPH-dependent NETosis (127). Despite the
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reported association of NETs with TRALI, a different study by

Thomas and colleagues found that platelet depletion did not

completely abrogate NETosis and that FcgR engagement by anti-

neutrophil antibodies was sufficient to promote NET release

(124). Moreover, this study showed that DNase administration

effectively prevented NET-mediated ALI only when delivered

through inhalation, probably because of the predominant

accumulation of NETs within alveolar spaces (124). NET

inhibition rather than digestion also appears to be a promising

approach to preventing TRALI as indicated by a recent study

where the administration of Disulfiram, an FDA-approved

gasdermin D inhibitor for the treatment of alcohol abuse,

prevented signs of lung injury (125).

In summary, NETs appear to have a pathogenic role in

TRALI, and preclinical observations indicate that NET

inhibition or digestion may improve TRALI outcomes.

However, conflicting reports as to the specific contribution of

platelet activation to NET-mediated tissue injury in TRALI

further highlight the need for studies to dissect the molecular

mechanisms of NETosis in vivo.
Lung ischemia-reperfusion injury (LIRI)

LIRI is a primarily sterile inflammatory disease occurring in

lungs that sustain ischemic damage followed by reperfusion.

LIRI is typically associated with pulmonary embolisms and

various cardiothoracic surgical procedures, including lung

transplantation (LTx) (128). The physiopathological

mechanisms of LIRI are incredibly complex (129), and the

specific contribution of neutrophils is still debated (130, 131).

The prevailing view is that LIRI is a bimodal process, with an

early phase primarily dependent on pulmonary macrophages

and activated platelets followed by later neutrophil-mediated

damage (132–134).

A recent study by Sayah and colleagues demonstrated a

pathogenic role for NETs in primary graft dysfunction (PGD), a

common form of LTx-related LIRI occurring within 72 hours.

after surgery. Using a mouse model of syngeneic orthotopic left

lung transplant (OLT), this group detected the presence of intra-

graft NETs in association with platelet activation. Pretreatment

with aspirin or intrabronchial administration of DNase were

both able to attenuate signs of PGD in the OLT model (135). A

later study by our group extended these findings by visualizing

intragraft NETosis by intravital 2-photon microscopy in an

allogeneic mouse model of OLT. Interestingly, the systemic

administration of DNase improved lung function but at the

cost of increasing alloimmune responses and graft rejection due

to the release of inflammatory NET fragments. However, directly

targeting NET generation by the genetic deletion or

pharmacological inhibition of PAD4 prevented alloimmune

responses and allograft rejection (136). The unintended

consequences associated with NET digestion have been
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increasingly described in different animal models, raising the

question of whether it is more effective to prevent NETosis in

lieu of DNase treatment (137). For example, NETs have been

described to merge in high-density structures named aggNETs,

which are thought to prevent bystander tissue injury as well as

contribute to wound healing and inflammation resolution

through driving the proteolytic degradation of cytokines and

histones (138–140). Most recently, our group has provided

further insight into the mechanisms of NET-mediated graft

injury by showing that necroptosis, occurring in response to

warm-ischemia, drives early neutrophil accumulation into the

sub-pleural capillary network resulting in NET-mediated

microvascular damage (59). Necroptosis is a Receptor

Interacting Serine/Threonine Kinase 3 activation-mediated

form of cell death that leads to the extracellular release of

various alarmins, including mitochondrial-derived DAMPs

(mtDAMPs) (141). Additionally, our group and others have

shown that LIRI leads to the release of mtDAMPs, which guide

neutrophil intragraft trafficking, stimulate ROS production and

trigger NETosis (61, 142).

Altogether, the observations from the LIRI models and

human LTx recipients with PGD support the notion that

DAMPs released from the ischemic tissues induce innate

immune responses resulting in NETosis and tissue injury.

Interfering with the mechanisms that activate NETosis rather

than enhancing the degradation of NETs appears a more

desirable option for attenuating LTx-related ALI without

increasing the risk of allograft rejection.
Ventilator-induced lung injury (VILI)

VILI is a form of ALI triggered by mechanical ventilation

(143). Neutrophil recruitment in response to VILI is driven by L-

selectin expression and is promoted by stretch-induced

inflammatory events (144) that lead to the release of

neutrophil chemokines such as CXCL1 (KC) and CXCL2/3

(MIP-2) (145). Short periods of mechanical ventilation have

been shown to be associated with the release of pro-

inflammatory cytokines, including TNF-a, IL-1b and IL-8

(146, 147), which are well-known activators of NETosis (148).

Accordingly, recent studies have focused on the possible

contribution of NETs to VILI pathogenesis. Using a “double-

hit”model of intra-tracheal LPS challenge followed by high tidal

mechanical ventilation, Yildiz and colleagues showed that VILI

is associated with significant NET release. DNase, also

administrated intratracheally, reduced BAL markers of NETs

and improved lung compliance but did not affect other measures

of lung injury including oxygenation, inflammatory cell

infiltration and lung permeability (149). The singular

improvement in lung compliance led the authors to

hypothesize that DNase treatment decreased airway secretion

viscosity rather than imparting VILI protection (149). In
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contrast to these findings, Rossaint and coworkers found that

targeting NETs with DNase effectively protected mice from ALI

in a single hit model of VILI (150). Moreover, the group further

demonstrated that VILI-induced NETosis is a platelet-

dependent process requiring simultaneous stimulation of

integrins and G-protein–coupled receptors on neutrophils

(150). Using the same single hit model of VILI, Li and

coworkers confirmed the beneficial effect of DNase treatment

in preventing ALI and showed that TLR4 signaling is implicated

in the release of NETs in VILI (151).

In summary, the current evidence shows that NETs are

released during VILI and that targeting NETs may be beneficial

in preventing injury in this setting. The differing effects observed

with DNase treatment may be related to the use of alternative

experimental models suggesting further pre-clinical evaluation is

likely necessary to better characterize the effects of NETosis

on VILI.
Trauma

Trauma is defined as an injury caused by an external

physical force, as it may result in the consequence of blunt

force impact, penetrating injuries, or extensive thermal and

chemical burns. Although advancements in surgery and

resuscitation have substantially increased the chance of

surviving a major trauma, some patients still develop

systemic inflammatory response syndrome (SIRS) and

infections (152). ARDS is a well-known complication of

major trauma, and it represents one of its leading causes of

death (153). Trauma is commonly associated with the loss of

natural barrier function, which places large demands on

neutrophils to scavenge tissue debris and control the

diffusion of pathogens. However, due to the large

microvascular bed and the long transit time, the lung

represents a preferred site for the accumulation of activated

neutrophils after trauma (154). NET release has been

demonstrated in several experimental models of trauma (63,

155–157), and elevated levels of circulating NET markers have

been associated with the worst clinical outcomes in subjects

developing trauma-related ARDS (50). Interestingly, ARDS

resulting from trauma seems to be overall associated with

better clinical outcomes when compared to other forms of

ARDS, suggesting the presence of peculiar immunological

features (158–161). In this regard, trauma is a known driver

of emergency hematopoiesis leading to a high number of

circulating immature neutrophils (162) with impaired

effector functions (163, 164). In addition, trauma induces the

expansion of specific neutrophil subsets that are either

unresponsive or display immunosuppressive activity,

increasing the risk of secondary infections (165–167). Recent

work by Hazeldine and colleagues has suggested that reduced

neutrophil activity in the trauma setting is related to their
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ability to form NETs (168). This group demonstrated that a few

minutes after the injury, neutrophils exhibit an activated

phenotype characterized by enhanced glucose metabolism

and NETosis. However, hours later, neutrophils became

unresponsive, and their ability to form NETs dramatically

decreased. To explain this apparent change in neutrophil

function, the authors hypothesize that mtDAMPs, such as N-

formylated peptides, desensitize neutrophils to further

stimulation, effectively reducing their ability to release NETs

(168). Recent findings from Itagaki and colleagues support the

existence of this regulatory pathway. They showed that

blocking the N-formylated peptide receptor-1 (FPR1)

preserves neutrophil function after trauma (169). Other

evidence, however, point to the pro-inflammatory role of

mtDAMPs in activating neutrophils (58, 170, 171), increasing

NETosis (61, 62), and predisposing to the development of SIRS

(172). Further complicating this picture, studies of trauma

subjects show reduced endogenous DNase activity and

increased circulating cell-free DNA levels associated with

post-injury complications (164, 173, 174). Despite the

general state of immune unresponsiveness and the increased

risk of infection, these studies suggest that restoring DNase

activity is likely beneficial after trauma.

In summary, ALI associated with trauma appears to display

peculiar immunological features, possibly related to the sudden

and massive release of DAMPs and the alteration of regulatory

mechanisms that promote DAMP clearance. How different

DAMPs control neutrophil metabolism, differentiation and

NETosis as well as shape host responses to trauma remains to

be determined.
Discussion

Increasing evidence suggests that NETs play an essential role

in infectious and sterile ALI and that circulating NET markers

can predict worst clinical outcomes in ARDS subjects (5). Most

of the current literature has focused on the use of DNase in

preventing NET-mediated ALI (175). However, although DNase

has shown promising results in reducing signs of lung injury and

inflammation associated with NET release, several questions

about its global use to treat ARDS conditions remain. For

example, does DNase-mediated NET degradation increase the

risk of infection? In addition, do the rapid release of histones and

proteases following DNAse treatment have unintended effects

on outcomes? Preventing formation rather than digesting NETs

may offer a more suitable alternative strategy to treat some forms

of ALI. In this regard, selective inhibitors have been developed to

prevent the generation and release of NETs at different stages of

NETosis (17, 37). Nevertheless, it remains to be determined if

NET formation inhibitors will be effective for most forms of ALI

and, like DNase, could potentially dysregulate host defense. It

also remains to be determined if NET inhibitors will be effective
Frontiers in Immunology 09
for all forms of NETosis, given the apparent redundancy in the

pathways that generate NETs. Platelet activation and

coagulation factors appear to be highly interconnected with

NET release leading to a state of thromboinflammation (176).

Although this mechanism appears to be extremely relevant in

the ARDS associated with COVID-19, its contribution still needs

to be precisely characterized for other ALI etiologies. In addition,

the molecular details that control the crosstalk between innate

immunity and coagulation remain poorly understood. DAMPs,

particularly those derived from mitochondria, appear to be

strongly involved in the activation of NETosis (61, 62).

Interfering with their signals may represent a promising

strategy to reduce exuberant NET release and prevent

neutrophil desensitization to microbial PAMPs. However, to

safely leverage these observations, pathways that control the

delicate balance between neutrophil activation and

desensitization will need further investigation.

In conclusion, future studies that better define the

mechanisms involved in the formation, release, and degradation

of NETs could form the basis of therapeutic strategies that target

ALI without disabling pathogen surveillance.
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