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Cuproptosis status affects
treatment options about
immunotherapy and targeted
therapy for patients with kidney
renal clear cell carcinoma

Ganghua Zhang †, Xinyu Chen †, Jianing Fang, Panpan Tai,
Aiyan Chen and Ke Cao*

Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
The development of immunotherapy has changed the treatment landscape of

advanced kidney renal clear cell carcinoma (KIRC), offering patients more

treatment options. Cuproptosis, a novel cell death mode dependent on

copper ions and mitochondrial respiration has not yet been studied in KIRC.

We assembled a comprehensive cohort of The Cancer Genome Atlas (TCGA)-

KIRC and GSE29609, performed cluster analysis for typing twice using seven

cuproptosis-promoting genes (CPGs) as a starting point, and assessed the

differences in biological and clinicopathological characteristics between

different subtypes. Furthermore, we explored the tumor immune infiltration

landscape in KIRC using ESTIMATE and single-sample gene set enrichment

analysis (ssGSEA) and the potential molecular mechanisms of cuproptosis in

KIRC using enrichment analysis. We constructed a cuproptosis score (CUS)

using the Boruta algorithm combined with principal component analysis. We

evaluated the impact of CUS on prognosis, targeted therapy, and

immunotherapy in patients with KIRC using survival analysis, the predictions

from the Cancer Immunome Atlas database, and targeted drug susceptibility

analysis. We found that patients with high CUS levels show poor prognosis and

efficacy against all four immune checkpoint inhibitors, and their

immunosuppression may depend on TGFB1. However, the high-CUS group

showed higher sensitivity to sunitinib, axitinib, and elesclomol. Sunitinib

monotherapy may reverse the poor prognosis and result in higher

progression free survival. Then, we identified two potential CPGs and verified

their differential expression between the KIRC and the normal samples. Finally,

we explored the effect of the key gene FDX1 on the proliferation of KIRC cells

and confirmed the presence of cuproptosis in KIRC cells. We developed a

targeted therapy and immunotherapy strategy for advanced KIRC based on

CUS. Our findings provide new insights into the relationship among

cuproptosis, metabolism, and immunity in KIRC.
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Introduction

Renal cell carcinoma (RCC) is one of the most common

malignancies of the urinary system, and its most common

subtype is kidney renal clear cell carcinoma (KIRC), which

accounts for approximately 75% of all RCC cases (1).

Currently, early resection is considered the basic treatment for

patients with KIRC (2); however, up to 40% of patients develop

metastases after primary surgical treatment for local RCC,

resulting in poor prognosis (3). Furthermore, randomized

controlled clinical studies have shown that postoperative

adjuvant cytokine therapy, radiotherapy and chemotherapy

have little impact on reducing recurrence and metastasis rates

(4, 5). Therefore, once KIRC is metastatic or unresectable, the

treatment options become very limited.

The rapid development of targeted therapy and immunotherapy

has been a turning point in treating patients with metastatic or

unresectable KIRC. These two treatments and their combinations

have become the required options for these patients. Initially,

targeted therapy was shown to substantially prolong survival in

advanced KIRC (6, 7). Multitarget drugs, such as sunitinib and

sorafenib, have become the first choice for patients withmetastatic

or unresectable KIRC (8). In recent years, researchers have found

that targeted therapy combined with immunotherapy has

beneficial treatment effects and good prospects in patients with

advanced KIRC, and has shown a trend of gradually replacing

targeted therapy alone (9). However, many patients do not benefit

from the combined therapy because of the overlapping drug

toxicity that affects their quality of life (10). Therefore, new

molecular phenotypes should be established to divide the

population more finely for the individualized selection of

effective immunotherapy drugs or targeted drugs for patients

with advanced or unresectable KIRC.

Copper (Cu) ion is a double-edged sword in the life activities

of cells: on the one hand, Cu ions are key co-factors for many

enzymes, such as cytochrome c oxidase, which relies on Cu ions

to complete cellular respiration (11). On the other hand, excess

Cu ions induce cuproptosis in cells (12). Cuproptosis is an

emerging form of programmed cell death, dependent on
Abbreviations: CNV, copy number variation; CPG, cuproptosis-promoting

gene; CSRG, cuproptosis subtypes related gene; CUS, cuproptosis score; Cu,

Copper; CCK8, Cell Counting Kit-8; DEG, differentially expressed gene; EdU,

Ethynyl-2’-deoxyuridine; GEO, Gene Expression Omnibus; GEPIA, Gene

Expression Profiling Interactive Analysis; GSCA, Gene Set Cancer Analysis;

HPA, Human Protein Atlas; IC50, half maximal inhibitory concentration;

ICI, immune checkpoint inhibitor; IPS, Immunophenoscore; KEGG, Kyoto

Encyclopedia of Genes and Genomes; KIRC, kidney renal clear cell

carcinoma; OS, overall survival; PCA, principal component analysis; qRT-

PCR, quantitative reverse transcription polymerase chain reaction; SNV,

single nucleotide variation; ssGSEA, single sample gene set enrichment

analysis; TCA, tricarboxylic acid cycle; TCGA, The Cancer Genome Atlas;

TCIA, The Cancer Immunome Atlas.
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intracellular copper accumulation, which is distinct from the

known forms of cell death, such as ferroptosis, pyroptosis, and

apoptosis. Human mitochondrial ferredoxin 1 (FDX1) positively

regulates lipoylated enzymes, and Cu ions directly bind to

lipoylated components in the tricarboxylic acid cycle (TCA)

pathway, resulting in abnormal aggregation of lipoylated

proteins and loss of iron-sulfur cluster proteins and

proteotoxic stress response. This eventually leads to

cuproptosis of cells (13). Cu ions, protein lipoylation, and

mitochondrial respiration are important determinants of

cuproptosis. Therefore, in cancers that express a large number

of lipoylated mitochondrial proteins and have a high degree of

respiration, the use of metal carriers to transport Cu ions and

activate cuproptosis can kill cancer cells with this metabolic

feature. This approach could potentially become a new cancer

treatment (14). KIRC cells show the classic Warburg effect as the

main metabolic feature (15). Since they do not participate in the

mitochondrial respiratory pathway, we hypothesized that

cuproptosis would be inhibited in KIRC; thus, it is important

to promote cuproptosis in KIRC. In addition, intratumoral

copper levels affect the expression of programmed death

ligand 1 (PD-L1) in cancer cells, and Cu regulates a key

signaling pathway that mediates PD-L1-driven cancer immune

evasion (16). However, no reports have suggested a correlation

between cuproptosis and immunotherapy, and no studies are

available on the effect of cuproptosis on KIRC.

In this study, we selected seven genes that promote

cuproptosis as starting points for typing. We comprehensively

used the KIRC cohort of The Cancer Genome Atlas (TCGA) and

Gene Expression Omnibus (GEO) databases to establish novel

molecular typing and explored the intratumoral immune

infiltration landscape of KIRC using ESTIMATE and single-

sample gene set enrichment analysis (ssGSEA) algorithms. We

used a novel scoring model, the cuproptosis score (CUS), to

predict the prognosis and the efficacy of targeted therapy and

immunotherapy in patients with KIRC and explored specific

targets and drugs. Our results provide a new and detailed strategy

for individualized targeted therapy and immunotherapy in

patients with advanced or unresectable KIRC.
Materials and methods

Exploration of the genetics and
biological significance of cuproptosis-
promoting genes in KIRC

P. Tsvetkov et al. identified seven cuproptosis-promoting

genes (CPGs): FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1 and

PDHB (13). The Gene Set Cancer Analysis (GSCA) database

(http://bioinfo.life.hust.edu.cn/GSCA/#/) was used to analyze

differential mRNA expression, single nucleotide variation

(SNV), copy number variation (CNV), and methylation of
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seven CPGs (17). A network of seven CPGs was drawn using the

“igraph” R package. Attributes in the network were determined

using intergene correlations and univariate Cox regression analysis.
Data collection and processing of KIRC
comprehensive cohort

The TCGA-KIRC cohort containing 534 KIRC samples

from the TCGA database (https://tcga-data.nci.nih.gov/tcga/)

and the GSE29609 cohort (platform GPL1708) containing 39

KIRC samples from the GEO database (http://www.ncbi.nlm.

nih.gov/geo/) were used for data merging. Normalized matrix

files and clinical data were downloaded from the GEO database;

RNA sequencing data (fragments per kilobase million, FPKM

values) of gene expression and clinical data were obtained from

TCGA. The FPKM values were then converted to transcripts per

kilobase million (TPM) values for further analysis, “ComBat”

from the “SVA” R package was used to eliminate the batch

effects (18), and principal component analysis (PCA) was used

to eliminate the batch effects. Samples without complete survival

data were excluded. Finally, we obtained a comprehensive KIRC

cohort containing 537 samples and 14074 genes.
First unsupervised clustering based on
seven CPGs

We used the “ConsensusClusterPlus” R package for

unsupervised clustering and classification based on seven

CPGs (19), using agglomerative pam clustering with the

Euclidean distance and resampling 80% of the samples for 50

repetitions. We then used survival analysis to compare the

differences in overall survival (OS) between different subtypes,

box plots to compare the expression of seven CPGs between

different subtypes, and used the “pheatmap” R package to draw a

cluster heatmap to show the relationship between the expression

of seven CPGs, clinicopathological features, and classification.
Gene set variation analysis

We downloaded the data of the HALLMARK pathway, the

Kyoto Encyclopedia of Genes andGenomes (KEGG) pathway, and

the Reactome pathway from the Molecular Signatures Database

(MsigDB, http://software.broadinstitute.org/gsea/msigdb/), and

acquired “h.all.v7.5.1. symbols.gmt,” “c2.cp.kegg.v7.5.1.

symbols.gmt,” and “c2.cp.reactome.v7.5.1. symbols.gmt” as

reference gene sets (20). Then, we used the “GSVA” R package

to perform Gene Set Variation Analysis (GSVA) for different

subtypes and drew a heatmap to display the analysis results.
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Construction of KIRC immune infiltration
landscape

The “ESTIMATE” R package was used to calculate

StromalScore, ImmuneScore, and ESTIMATEScore. StromalScore

and ImmuneScore represent the abundance of stromal and

immune components, respectively, whereas ESTIMATEScore is

the sum of StromalScore and ImmuneScore, which is negatively

correlated with tumor purity (21). The “GSVA” R package was

then used for ssGSEA to calculate the enrichment score that

represents the relative infiltrating abundance of each immune

cell (22).
Screening of differentially expressed
genes (DEGs) and enrichment analysis

The “limma” R package (23) was used to screen for

differentially expressed genes (DEGs) between different subtypes

with |logFoldChange| >1 and p <0.05. KEGG and Gene Ontology

(GO) functional enrichment analyses were implemented using the

“clusterProfiler” R package (24), and adjusted p-value <0.05

represented statistically significant results.
Secondary unsupervised clustering based
on cuproptosis subtypes related genes

We screened the DEGs with p <0.05 using univariate Cox

regression analysis and named them cuproptosis subtype-related

genes (CSRGs). The “forestplot” R package was used to draw a

forest plot of the results. Then, secondary unsupervised

clustering classification was performed based on CSRGs, with

the same specific clustering parameters. Subsequently, we used

survival analysis to compare the differences in OS between

different subtypes, used box plots to compare CSRGs

expressions between different subtypes, and drew a cluster

heatmap to show the relationship among CSRGs expression,

clinicopathological features, and classification.
Calculation of cuproptosis score (CUS)

According to the positive and negative relationships between

the CSRGs and the cluster signature, the CSRGs were divided

into two groups, namely sigC1 and sigC2. Then, the

“clusterProfiler” R package was used for gene annotation. We

then used the Boruta algorithm (25)combined with PCA to

reduce the dimensionality of the CSRGs subgroups and

calculated the CUS for each sample. The KIRC comprehensive

cohort was divided into the high- and low-CUS groups based on
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the optimal cutoff value. The CUS of each KIRC sample was

calculated using the following formula:

CUS =oPsigC1 −oPsigC2
Prognosis and immune exploration
based on CUS grouping

We used the “survival” and “survminer” R packages to

perform survival analysis to compare the differences in OS

between the high- and low-CUS groups, and used the

“ggalluvial” R package to draw Sankey diagrams to visualize

the correspondence among CUS groups, different subtypes, and

prognosis. Box plots were used to compare the differences in the

CUS of different subtypes. ssGSEA was used to quantify the

infiltration abundance of immune cells, and the relationship

between CUS and immune cell infiltration levels was displayed

using a correlation heat map.
Clinical subgroup analysis based on CUS
grouping

We selected “survival status,” “histological grade,” “T stage,”

“N stage,” “M stage” and “clinical stage” as clinical subgroup

characteristics, and drew box plots to show the differences in the

CUS between different clinical characteristics. A stacked

histogram was drawn to show the proportion of each clinical

characteristic in the high- and low-CUS groups.
Comparison of immune targets and
prediction of immunotherapy efficacy

We used the “limma” R package to compare the differences in

the gene expression of several common immune targets. Next, we

downloaded the immunophenoscore (IPS) data of the TCGA-KIRC

cohort from The Cancer Immunome Atlas (TCIA) database to

explore the differences in the efficacy of the four immune

checkpoint inhibitors (ICIs) between the high- and low-CUS

groups (26), including ctla4_pos_pd1_pos, ctla4_neg_pd1_pos,

ctla4_pos_pd1_neg, and ctla4_neg_pd1_neg.
Analysis of targeted therapy based on
CUS grouping

We estimated the half maximal inhibitory concentration

(IC50) using the “pRRophetic” R package to predict the

sensitivity of the high- and low-CUS groups to 138 targeted

drugs. We selected eight commonly used targeted drugs for
Frontiers in Immunology 04
advanced KIRC (sunitinib, axitinib, sorafenib, erlotinib,

lapatinib, gefitinib, pazopanib, and temsirolimus) and a

cuproptosis-targeting drug (elesclomol) for key observation

(27). Subsequently, we downloaded the gene expression profile

and clinical data of the sunitinib monotherapy cohort in the

NCT02684006 clinical trial from the supplementary material of

PMID:32895571 (28). We used differential analysis to explore

the relationship between CUS groups and progression and

compared the differences in progression-free survival (PFS)

between the high- and low-CUS groups via survival analysis.

The significance of the difference in comparing the progression

rates of different CUS groups was achieved by the chi-

square test.
Mining seven CPGs-related targeted
drugs

We calculated the correlation between the mRNA expression

of seven CPGs and drug IC50 values via Pearson’s correlation

analysis of the “GDSC drug” and “CTRP drug” modules in the

GSCA database. The p-value was adjusted using the false

discovery rates (FDR).
Screening and validation of potential
CPGs and FDX1

Hazard ratio (HR) and p values of univariate COX regression

analysis were used to identify potential CPGs. Potential CPGs were

screened using p < 0.001 and 1-HR > 0.4 as the inclusion criteria.

Then, a comprehensive analysis was performed integrating TCGA

and the Genotype Tissue Expression (GTEx) (https://commonfund.

nih.gov/GTEx/) databases (29) through the “Expression DIY”

module of the Gene Expression Profiling Interactive Analysis

(GEPIA, http://gepia.cancer-pku.cn/) website (30). |Log2FC| > 1

and p <0.01 were set as the cutoff values. Additionally,

immunohistochemical (IHC) staining results of the three genes

between normal renal tubular epithelial and KIRC tissues at the

protein level were obtained from Human Protein Atlas (HPA,

https://www.proteinatlas.org/) database.
Cell culture and transfection

Human renal tubular epithelial cells (HK-2) and KIRC cells

(Caki-1 and 786-O) were obtained from the American Type

Culture Collection (ATCC, Manassas, VA, USA). All cells were

cultured in RPMI 1640 medium (Hyclone, Logan, UT, USA)

supplemented with 15% fetal bovine serum (Gibco, Grand

Island, NY, USA) and 1% penicillin-streptomycin (Hyclone).

Small interfering RNAs (siRNAs) targeting FDX1 were

synthesized by GenePharma (Shanghai, China). siRNA-FDX1
frontiersin.org
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and siRNA-control were cotransfected into Caki-1 cells using

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). The

primer sequences of siRNAs are listed in Supplementary Table 2.
Quantitative reverse transcription
polymerase chain reaction

Total RNA from the cultured cells was extracted using a

Faster reagent (Invitrogen). The PrimeScript RT Reagent Kit

(TaKaRa, Shiga, Japan) was used to reverse transcribe 1µg total

RNA into cDNA, and the SYBR Green PCR Master Mix was

used for quantitative reverse transcription polymerase chain

reaction (qRT-PCR). Relative gene expression was calculated

using equation 2–DDCT, with GAPDH as an internal loading

control. Visualization of qRT-PCR results and two samples

unpaired t-test was performed using GraphPad Prism version

9.0.1 (GraphPad Software, San Diego, California USA, www.

graphpad.com). All the primers used for qRT–PCR were

synthesized by Tsingke Biotech (Tsingke, China). The primer

sequences used are listed in Supplementary Table 2.
Western blotting

The total protein in human renal tubular epithelial cells

(HK-2) and KIRC cells (Caki-1 and 786-O) were extracted using

radioimmunoprecipitation assay (RIPA) buffer (Beyotime,

Shanghai, China), Protease Inhibitor Cocktail (Cwbio,

CW2200) and Phosphatase Inhibitor Cocktail (Cwbio,

CW2383) for 20 min at 4°C. Protein concentration was

determined using a BCA protein assay kit (Beyotime,

Shanghai, China). The protein samples were separated on an

SDS-PAGE Loading Buffer (Cwbio, CW0027), and transferred

onto polyvinylidene difluoride (PVDF) membranes (Millipore,

IPVH00010). Subsequently, the membrane was blocked in Tris-

buffered saline plus tween-20 (TBST; Servicebio, G0001)

containing 5% nonfat powdered milk (Sangon Biotech,

A600669) for 1 h. Anti-FDX1 (1:1000, A20895; Abclonal),

anti-ACAT1 (1:1000; 16215-1-AP, Proteintech), Beta Tubulin

(1:1000; 10094-1-AP, Proteintech) and GAPDH (1:1000;

R24404, Zen-Bioscience) were used as primary antibodies, and

the membrane was submerged in primary antibodies overnight

at 4°C. Then, the membrane was washed with TBST 3 times and

incubated with Goat Anti-Rabbit IgG-Horseradish Peroxidase

(1:5000; Elabscience, E-AB-1003) for 1 h at room temperature.

Immunoassay was performed by an enhanced chemiluminescence

detection system (ECL; Biosharp, BL520A) combined with a

Western blot system (Auragene). The expression of the target

band relative to the loading control was quantified with integrated

density by ImageJ software.
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Cell Counting Kit-8 (CCK-8) assay

The transfected Caki-1 cells were adjusted to 2000 cells/well

(100 mL medium) in 96-well plates and cultured for the indicated

days. Then, 10 mL of CCK-8 (BS350A, Biosharp Life Sciences)

was added to the cells, and the cells were cultured at 37°C for 1.5

hours. Optical density was measured at 450 nm (OD450nm) using

a microplate reader.

Caki-1 cells were transferred into 96-well plates at a density

of 2500 cells/well (100 mL medium). After 24 h the cells were

divided into 8 groups (n=3 per group), incubated with 100mL of

fresh medium containing CuCl2 (100nM; RHAWN, R019783),

Elesclomol (100nM; MedChemExpress, HY-12040), CuCl2
(100nM)& Elesclomol (100nM), CuCl2 (200nM), Elesclomol

(200nM), CuCl2 (200nM)& Elesclomol (200nM) or control

agents for indicated days. Briefly, 10 mL of CCK-8 was added

and OD450nm was measured.
Ethynyl-2’-deoxyuridine (EdU) assay

Caki-1 cells were stained using BeyoClick™ EdU-555 Cell

Proliferation Kit (Beyotime, Shanghai, China). To be specific,

Caki-1 cells (1.0×105 cells/well) were seeded in a 6-well plate,

transfected with NC or si-FDX1, and cultured in an incubator at

37°C for 72 h. Then, Caki-1 cells were incubated with EdU for

2 h, fixed with 1 mL paraformaldehyde (4%) for 15 min, and

permeabilized with 0.3% Triton X-100 (Beyotime) for 15 min.

After that, the Caki-1 cells were incubated with 500µL of the

click reaction mixture for 30 min in the dark, washed three times

with PBS containing 3% BSA, and incubated with Hoechst 33342

for another 10 min. Finally, fluorescence microscopy was used

for detection.
Colony formation assay

The transfected cells were cultured up to the logarithmic

growth phase and then counted and adjusted to 500 cells/well in

6-well plates. Cells were incubated for 2 weeks at 37°C, 5% CO2.

After being washed with PBS twice, the cells were fixed with

paraformaldehyde (4%) for 15 min and stained with crystal

violet buffer (Solarbio, Beijing, China) for 30 min. The clone was

counted if the number of cells in the clone was at least 50 under

a microscope.
Statistical analysis

All analyses were performed using R version 4.1.1. Unless

otherwise specified, Pearson’s correlation coefficient was used for
frontiersin.org
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correlation analysis in this study. For comparison between the

two groups in the bioinformatics analysis section, the Wilcoxon

test was used for difference analysis. For comparison between the

two groups in the experimental section, the Students’ t-test was

used for difference analysis. Two-way ANOVA was used for

difference comparison in CCK8 assay. For comparisons between

more than two groups, the Kruskal-Wallis test was used for the

difference analysis. Kaplan-Meier survival analysis and log-rank

tests were used to compare the survival of the different groups of

patients. For all statistical analyses, a two-tailed p <0.05 was

considered statistically significant.
Results

Genetic, transcriptional and post-
transcriptional alterations of CPGs
in KIRC

The workflow of this study is illustrated in Figure 1. We

performed different levels of analysis of the seven CPGs using the

GSCA database. At the mRNA level, DLAT, DLD, FDX1, PDHB,

and PDHA1 showed low expression in KIRC compared to the

normal samples (FDR <0.05, Supplementary Figure 1A). The SNV

frequencies of the six CPGs are shown in the form of a heat map

(no data are available for FDX1), with DLD having the highest

SNV frequency (Supplementary Figure 1B). Seven CPGs showed

large differences in CNV types (including heterozygous

amplification, homozygous amplification, heterozygous deletion,

and homozygous deletion) and proportions, and PDHB had a very

large proportion of heterozygous deletions, whereasDLD had only

heterozygous amplification (Supplementary Figure 1C). The CNV

of CPGs was positively correlated with their mRNA expression,
Frontiers in Immunology 06
especially that of PDHB (Supplementary Figure 1D). Conversely,

methylation levels of CPGs were negatively correlated with

mRNA expression (Supplementary Figure 1E). However, the

methylation of CPGs was not significantly different between

KIRC and normal samples (no data available for FDX1,

Supplementary Figure 1F).
Construction of comprehensive KIRC
cohort and CPGs network

We merged the TCGA-KIRC and GSE29609 datasets and

removed the batch effects to obtain a comprehensive cohort of

537 samples and 14,074 genes. PCA showed that batch effects

were effectively eliminated (Figure 2A). The baseline data on the

clinical characteristics of the comprehensive cohort are

presented in Table 1. The network of seven CPGs showed the

results of the correlation analysis and Cox regression analysis;

seven CPGs had significant positive correlations (p <0.0001) and

were protective factors for KIRC (HR < 1, Figure 2B). Finally, the

Kaplan-Meier survival analysis suggested that six CPGs

significantly affected the prognosis of patients with KIRC

(p <0.05, Figure 2C).
Identification and evaluation of subtypes
based on seven CPGs

We performed unsupervised clustering and classification based

on seven CPGs. The best classification effect could be obtained

when the patients were divided into Clusters A and B (Figure 3A).

The clustering results are shown in Supplementary Figures 2A–C.

There was a significant difference in OS between the two subtypes,
FIGURE 1

The flowchat of this study.
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with cluster A having a better prognosis than cluster B (p <0.001,

Figure 3B). Seven CPGs showed higher expression levels in cluster

A (p <0.001, Figure 3C).We showed the clinicopathological features

of the two subtypes and the expression distribution of the seven

CPGs using a heat map (Figure 3D). We used GSVA to compare

the enrichment pathways of the two subtypes from the three sets of

the HALLMARK pathway (Supplementary Figure 3A), KEGG

pathway (Supplementary Figure 3B), and Reactome pathway

(Supplementary Figure 3C), and detected significant differences

between the two subtypes, mainly in multiple metabolic pathways.

Patients in different clusters showed feature distinguishability

based on PCA (Figure 4A). Next, we used ESTIMATE to quantify

the infiltration characteristics of the tumor microenvironment in

patients with KIRC and observed that Cluster B had higher

StromalScore, ImmuneScore, and ESTIMATEScore than Cluster

A (p <0.001, Figure 4B). We used ssGSEA to quantify the

infiltrating abundance of 23 immune cells and explored the

differential patterns of the immune-infiltrating landscape of the

two subtypes. The infiltration levels of activated B cells, CD4 T

cells, CD8 T cells, dendritic cells, CD56dim structural killer cells,

gamma delta T cells, myeloid-derived suppressor cells (MDSC),

macrophages, mast cells, monocytes, natural killer T cells, natural

killer cells, type 1 T helper cells, and type 2 T helper cells were

significantly higher in cluster B than in cluster A (p <0.05,

Figure 4C). These results suggest that Cluster B has a higher

level of stromal and immune cell infiltration than Cluster A.
Frontiers in Immunology 07
Identification of CSRGs and the
secondary clustering

To further explore the potential biological behavior of each

cuproptosis subtype, we performed a differential analysis of the

two cuproptosis subtypes. The DEGs are shown using volcano

plots (p <0.05, Figure 5A). We then screened DEGs with |

logFoldChange| >1 and p <0.05, and identified 31 cuproptosis-

related DEGs. KEGG (Figure 5C) and GO (Figure 5D)

enrichment analyses were performed on these DEGs, and the

top five pathways based on the adjusted p-value in KEGG

analysis and their relationship networks with related genes

were displayed (p <0.05, Figure 5B). Several pathways were

related to mitochondrial metabolism, including the

peroxisome proliferator-activated receptor (PPAR) signaling

pathway, carbon metabolism, citrate cycle (TCA cycle), fatty

acid degradation, and the PI3K-Akt signaling pathway.

To identify cuproptosis-related genes with prognostic

significance for KIRC, we performed a univariate Cox

regression analysis on 31 cuproptosis-related DEGs; the results

are shown in Supplementary Table 1. All 31 DEGs had

prognostic significance and were identified as CSRGs (p <0.05,

Figure 6A). Based on 31 CSRGs, we performed secondary

clustering and identified two subtypes: gene clusters C1 and

C2 (Figure 6C). The clustering results are shown in

Supplementary Figures 2D–F. The plots of the Kaplan-Meier
A

B

C

FIGURE 2

Correlation analysis and survival analysis of CPGs in KIRC. (A) Fusion of TCGA-KIRC and GSE29609 cohort data and removal of batch effects.
The left plot shows PCA before removing batch effects, and the right plot shows PCA post removing batch effects. (B) Correlation network of
seven CPGs. The line represents a correlation between genes, the sphere represents the COX test of each gene. (C) Kaplan-Meier survival
analysis of CPGs in KIRC (OS, Log-rank test, p < 0.05). CPG, cuproptosis-promoting gene.
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survival curves of C1 and C2 showed that C2 had a better

prognosis than C1 (p <0.001, Figure 6B). The 31 CSRGs were

significantly differentially expressed between C1 and C2 (p

<0.001, Supplementary Figure 4A). We used a heatmap to

show the clinicopathological characteristics of the two

subtypes and the expression distribution of the 31 CSRGs

(Supplementary Figure 4B). According to the positive and

negative relationships between DEGs and cluster features,

CSRGs were divided into two groups: sigC1 and sigC2. The

genes in the sigC1 group were highly expressed in C2 and lowly

expressed in C1, whereas the opposite was true for the genes in

the sigC2 group.
Calculation of CUS and classification of
patients with KIRC

To quantify the cuproptosis status to predict the clinical

characteristics and treatment outcomes of the patients, we

calculated the CUS for each sample using the Boruta

algorithm combined with PCA based on two gene sets, sigC1

and sigC2. According to the best cutoff value “-0.4318927,” the

samples of the comprehensive cohort were divided into the high-

and low-CUS groups. The results of the Kaplan-Meier survival

analysis revealed that patients in the high-CUS group had a

poorer prognosis (Figure 7A). The Sankey diagram shows the
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corresponding relationship among the CUS, classification, and

prognosis (Figure 7B). Patients with KIRC in cluster B had a

higher probability of corresponding to genecluster C1, with a

higher CUS and poorer prognosis. The different box plots also

verify this conclusion (p <2.22e-16, Figures 7D, E). We created a

correlation heatmap to explore the relationship between the

CUS and immune cell infiltration (Figure 7C) and observed a

negative but weak correlation between the CUS and most

immune cells (p <0.05, except natural killer cells).
CUS-related clinical subgroup analysis

To further explore the correlation between the CUS,

prognosis, and clinical characteristics, we used box plots to

show the differences in the CUS between different clinical

characteristics and stacked histograms to show the proportion

of each clinical characteristic in the high- and low-CUS groups.

Patients who died had a higher CUS than those alive (p =2.4e-09,

Supplementary Figure 5A); patients with histological grade G4

had a higher CUS than those with histological grade G1, G2 and

G3 (p <0.1, Supplementary Figure 5B); patients with T4 had a

higher CUS, while patients with T1 had a lower CUS (p <0.05,

Supplementary Figure 5C); CUS did not show a significant

difference in lymph node metastasis (Supplementary

Figure 5D); patients with distant metastasis had a higher CUS

than those without distant metastasis (p =0.009, Supplementary

Figure 5E), and patients with clinical stage I had a lower CUS

than those with clinical stage II, III and IV (p <0.05,

Supplementary Figure 5F).
Exploration of immunotherapy targets
and efficacy based on CUS

To explore the potential relationship between CUS and

immunotherapy, we compared the expression levels of several

common immune-related targets in the high- and low-CUS

groups. In the high-CUS group, the TGFB1 expression level was

higher (p =4.8e-05, Figure 8D), whereas CD274 expression was

lower (p =0.012, Figure 8C) than that in the low-CUS group. There

were no significant differences in PDCD1 (Figure 8A) and CTLA4

(Figure 8B) expression levels between the high- and low-CUS

groups. In addition, we downloaded the IPS of the TCGA-KIRC

cohort from the TCIA database to explore differences in the efficacy

of immunotherapy between the high- and low-CUS groups. The

IPS of ctla4_pos_pd1_pos (Figure 8E), ctla4_neg_pd1_pos

(Figure 8F) , ct la4_pos_pd1_neg (Figure 8G), and

ctla4_neg_pd1_neg (Figure 8H) was lower in the high-CUS

group (p <0.05) than in the low-CUS group.
TABLE 1 Baseline Data Sheet for the Comprehensive Cohort of
TCGA-KIRC and GSE29609.

Characteristic levels N (%)

Age >60 years old 291 (50.8%)

≤60 years old 282 (49.2%)

Grade G1 15 (2.7%)

G2 243 (43%)

G3 217 (38.4%)

G4 90 (15.9%)

T_stage T1 285 (49.7%)

T2 75 (13.1%)

T3 201 (35.1%)

T4 12 (2.1%)

N_stage N0 271 (91.9%)

N1 21 (7.1%)

N2 3 (1%)

M_stage M0 449 (83%)

M1 92 (17%)

Stage I 268 (50.5%)

II 58 (10.9%)

III 123 (23.2%)

IV 82 (15.4%)
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Sensitivity analysis and efficacy
prediction of targeted drugs

To explore the impact of the CUS on targeted therapy, we

first calculated the IC50 values of a variety of commonly used

targeted drugs for advanced KIRC using the pRRophetic package

and then predicted the sensitivity of targeted drugs. For
Frontiers in Immunology 09
sunitinib, axitinib, and elesclomol, the IC50 values of the high-

CUS group were lower and showed higher sensitivity (p <0.05,

Figures 9D–F). For sorafenib, erlotinib, and lapatinib, the high-

CUS group had higher IC50 values and lower sensitivity

(p <0.0001, Figures 9A–C). However, the IC50 values of

gefitinib, pazopanib, and temsirolimus were not significantly

different between the high- and low-CUS groups (Figures 9G–I).
A B

D

C

FIGURE 3

Construction of CPG subtypes and exploration about clinical and biological features of subtypes. (A) consensus matrix that divides all KIRC
samples into two clusters (k=2). (B) Kaplan–Meier curves for the two subtypes of KIRC patients (OS, Log-rank test, p < 0.001). (C) Expression
differences of seven CPGs between the two subtypes. (D) Heatmap of the distribution of clinicopathological features and CPG expression
between two different subtypes. CPG, cuproptosis-promoting gene; ***p < 0.001.
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Furthermore, we downloaded the cohort data from

NCT02684006 using sunitinib-targeted therapy for prognostic

analysis. The proportion of patients with progression in the

high-CUS group was lower than that in the low-CUS group

(42% vs. 59%, Figure 9J), and the patients who progressed had

lower CUS than those who did not (p <0.05, Figure 9K). The

results of the Kaplan-Meier survival analysis showed that the

high-CUS group had a longer PFS than the low-CUS group

(p =0.0087, Figure 9L).

Additionally, we systematically mined the targeted drugs

associated with the seven CPGs using the GSCA database. Using

the GDSC (Supplementary Figure 6A) and CTRP data sources

(Supplementary Figure 6B), the top 30 targeted drugs whose

sensitivity was most strongly correlated with the mRNA

expression of the seven CPGs were determined.
Frontiers in Immunology 10
Identification and multi-level expression
validation of potential CPGs

We identified two potential CPGs, ACADM and ACAT1,

based on 31 CSRGs. We then performed differential expression

validation of these two potential CPGs and seven identified

CPGs (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1 and PDHB).

The GEPIA database showed that the expression of FDX1

(Figure 10A), ACADM (Figure 10D) and ACAT1 (Figure 10G)

in KIRC was lower than that in the normal kidney tissue

(p <0.05). The immunohistochemical results of FDX1

(Figure 10B), ACADM (Figure 10E) and ACAT1 (Figure 10H)

in the HPA database showed that the protein expression of these

genes significantly decreased in KIRC tissues compared to that

in normal renal tubular epithelial tissues. In addition, we
A B

C

FIGURE 4

Tumor immune microenvironment analysis of two CPG subtypes. (A) PCA shows a significant difference in transcriptomes between the two subtypes.
(B) Correlations between the two CPG subtypes and TME score. (C) The abundance of 23 kinds of infiltrating immune cells was evaluated by ssGSEA in
the two CPG subtypes. CPG, cuproptosis-promoting gene; ns, no significant difference, *p < 0.05; **p < 0.01; and ***p < 0.001.
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detected the expression differences of FDX1 (Figure 10C),

ACADM (Figure 10F), ACAT1 (Figure 10I), PDHA1

(Figure 10K), PDHB (Figure 10L), DLAT (Figure 10M), DLD

(Figure 10N), LIAS (Figure 10O) and LIPT1 (Figure 10P)

between renal tubular epithelial cells (HK-2) and KIRC cells

(Caki-1 and 786-O) using qRT-PCR. The expression of these

genes was significantly down-regulated in Caki-1 cells compared

to that in HK-2 cells (p <0.05). Finally, western blot results

indicated that FDX1 and ACAT1 expression was higher in HK-2

cells than in Caki-1 cells, but there was no significant difference

between 786-O and HK-2 cells (Figure 10J).
Proliferation functional validation of
FDX1 and validation of cuproptosis in
KIRC cells

To further investigate the function of FDX1, a key

cuproptosis gene, in KIRC, we silenced FDX1 to detect its
Frontiers in Immunology 11
effect on Caki-1 cells’ proliferation. Subsequently, si-FDX1#1

and si-FDX1#2 were determined for further study because they

showed higher silencing efficacy compared to NC-transfected

cells (Figure 11A). CCK8 and EdU assays showed that FDX1

depletion promoted KIRC cell growth (Figures 11B, C), and the

clone formation assay demonstrated that FDX1 improves the

proliferative capacity of KIRC cells (Figure 11D). To figure out

the relationship between FDX1 and two potential CPGs, we

detected the expression of ACADM and ACAT1 in transfected

Caki-1 cells. However, no significant expression difference was

found (Figure 11E).

Elesclomol has recently been found to be a potent copper

ionophore. We performed the CCK8 assay of elesclomol and

CuCl2 to test whether there is cuproptosis in Caki-1 cells.

Compared with the negative control group, the CuCl2 group

showed slight cytotoxicity, but was not very significant, the

elesclomol group showed certain cytotoxicity, while CuCl2&

elesclomol group had a significantly enhanced cytotoxicity on

Caki-1 cells (Figure 11F).
A B

DC

FIGURE 5

Screening and enrichment analysis of DEGs between the two CPG subtypes. (A) Volcano plot about Difference analysis between the two CPG
subtypes. (B) The network diagram shows the correspondence between the KEGG top five pathways and related genes. (C) KEGG enrichment
analysis of DEGs among two CPG subtypes. (D) GO enrichment analysis of DEGs among two CPG subtypes. DEG, differentially expressed gene;
CPG, cuproptosis-promoting gene.
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Discussion

KIRC is insensitive to both radiotherapy and chemotherapy

(5), and targeted therapy has been the mainstay of treatment of

advanced KIRC. In recent years, the development of ICIs has

changed the treatment landscape of advanced KIRC and ICIs

have become the first-line treatment option (31). Single-agent

pembrolizumab has shown antitumor activity in the first-line
Frontiers in Immunology 12
treatment of patients with advanced KIRC according to the

phase II KEYNOTE-427 study (32). In the phase III CheckMate

214 clinical trial, nivolumab combined with ipilimumab

improved OS in patients with intermediate- or low-risk

previously untreated advanced KIRC (33). Targeted therapy

combined with immunotherapy has become the first-line

treatment for metastatic or unresectable KIRC and tends to

gradually replace targeted therapy alone (9). However, there is
A

B

C

FIGURE 6

Construction of CSRG gene subtypes and prognostic analysis. (A) Univariate COX regression analysis of 31 DEGs to screen CSRGs. (B) Kaplan–
Meier curves for the two gene subtypes (OS, Log-rank test, p < 0.001). (C) consensus matrix that divides all samples into two geneclusters (k=2).
CSRG, cuproptosis subtypes related gene; DEG, differentially expressed gene.
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still a lack of effective targets to help patients with metastatic or

unresectable KIRC more precisely and to individually select

therapeutic drugs.

Cuproptosis is an emerging cell death mechanism, which is

closely related to mitochondrial metabolism and the TCA cycle,

which is different from other death modes such as ferroptosis,

necroptosis, and pyroptosis. It is precise because of the unique

metabolic characteristics of cuproptosis that KIRC is considered

to be more closely related to cuproptosis than to several other

cell death modes. These previously discovered cell death modes

have been found to have many predictive models and molecular

typing constructed in KIRC (34–36), and cuproptosis still has

great research prospects for KIRC typing. FDX1, a key gene that

promotes cuproptosis, functions as an upstream regulator of

protein lipoylation. The lipoylated component of the TCA cycle

directly binds to Cu ions to activate cuproptosis (13). Therefore,

both Cu ions and mitochondrial respiration are key factors in

cuproptosis. KIRC has a unique metabolic profile that exhibits

the classic Warburg effect in vivo (37). This means that KIRC
Frontiers in Immunology 13
exhibits marked inhibition of glucose oxidation and activation of

aerobic glycolysis (38). Based on the correlation between

worsening prognosis and metabolic shifts in patients with

KIRC, including decreased TCA cycle activity, increased

dependence on pentose phosphate shunt, decreased AMP-

activated protein kinase, increased glutamine transport, and

fatty acid production (39), we hypothesized that cuproptosis

may be suppressed in KIRC. Differential analysis verified our

conjecture, and seven CPGs displayed varying degrees of low

expression in KIRC. This result suggests an association between

cuproptosis and the gene map of KIRC.

First, we selected seven CPGs with similar functions and

strong correlations and identified two clusters with different

biological and clinical characteristics in the comprehensive

cohort of TCGA-KIRC and GSE29609. Cluster B showed a

poorer prognosis and a higher level of immune infiltration

than cluster A, which includes immune-promoting cells, such

as CD4+ T cells, CD8+ T cells, and immune-suppressing cells,

such as MDSCs and macrophages. Next, we performed a
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FIGURE 7

Construction of CUS and grouping based on score. (A) Kaplan–Meier survival analysis between the high- and low-CUS groups (OS, Log-rank
test, p < 0.001). (B) Sankey diagram of subtype distributions in groups with different CUSs and survival outcomes. (C) The correlation matrix of
cuproptosis and all 22 infiltrating immune cells. Red means positive correlation, whereas blue means negative correlation. p < 0.05 was the cut-
off. (D) Differences in CUS levels between the two CPG subtypes. (E) Differences in CUS levels between the two CSRG gene subtypes. CUS,
cuproptosis score; CPG, cuproptosis-promoting gene; CSRG, cuproptosis subtypes related gene; *p < 0.05.
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differential analysis of the two subtypes and identified 31 DEGs.

Enrichment analysis revealed that DEGs were associated with

various metabolic pathways, including the PPAR signaling

pathway, carbon metabolism, TCA cycle, fatty acid

degradation, and the PI3K-Akt signaling pathway. The PPAR

signaling pathway is related to mitochondrial metabolism, fatty

acylation of proteins involves the attachment of fatty acids to

peptide chains in the form of fatty acyl groups, and lipoylation of

key proteins in the mitochondrial TCA cycle is the core

mechanism of cuproptosis. The downstream target of PI3K/

Akt is a mammalian target of rapamycin (mTOR), which is key

to the treatment of advanced KIRC. This finding also provided

us with more potential molecular mechanisms of cuproptosis

in KIRC.

Using univariate Cox regression analysis, we selected all 31

DEGs for CSRGs. We further constructed two new clusters

based on the 31 CSRGs. Among them, geneclusterC1 had the

poorest prognosis. To quantify the status of cuproptosis, predict

the prognosis of KIRC more accurately, and guide clinical

decision-making, we constructed the CUS using the Boruta

algorithm combined with PCA. The patients in the high-CUS

group had a poorer prognosis. The expression of immune-

related targets showed that patients in the high-CUS group

had significantly higher expression of TGFB1, which is one of

the ligands of the TGFB pathway and is the most prevalent

isoform expressed in many human tumors. Regulatory T cells

(Tregs) exert a contact-dependent inhibitory effect on immune

cells by producing TGFB1. On the surface of Tregs, TGFB1
Frontiers in Immunology 14
binds to the membrane protein GARP in its inactive form.

Monoclonal antibodies against the GARP/TGFB1 complex alone

or in combination with antibodies targeting the CTLA4 or PD1/

PD-L1 pathways can improve the efficacy of immunotherapy

(40). In addition, selective inhibition of TGFB1 may alter

resistance to anti-PD-1 therapy by altering the tumor immune

environment (41). Galunisertib is a novel inhibitor of TGF-b
receptor 1. Phase 1 studies have demonstrated the safety of

galunisertib and its antitumor activity in patients with glioma

(42). In addition, combination therapy with TGFB and ICIs is in

the clinical drug development stage for hepatocellular

carcinoma, non-small cell lung cancer, and pancreatic cancer

(NCT02423343; NCT02734160) (43). We then used TCIA data

to predict the efficacy of immunotherapy and observed that the

patients in the high-CUS group showed poorer results for all

four ICIs. This finding suggests that the effect of different CUS

values on the efficacy of immunotherapy is not dependent on

PD1 and CTLA4, but may be dependent on TGFB1. This finding

is consistent with the results of our study. Therefore, our

findings suggest that the combination of TGFB1 inhibitors and

immunotherapy may improve the efficacy of immunotherapy for

patients in the high-CUS group.

Next, we explored targeted therapy. The results of the IC50

drug susceptibility analysis suggested that the patients in the

high-CUS group were more likely to develop resistance to

sorafenib, erlotinib, and lapatinib, but they were more

sensitive to sunitinib and axitinib. Thus, although patients in

the high-CUS group have poorer prognosis and immunotherapy
A B D
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C

FIGURE 8

Exploratory analysis of immunotherapy based on CUS grouping. (A–D) The expression levels of immune target genes in different CUS groups:
PDCD1 (A), CTLA4 (B), CD274 (C) and TGFB1 (D). (E–H) The efficacy of 4 ICIs was predicted by IPS scores from the TCGA-KIRC cohort in TCIA
database: ctla4_pos_pd1_pos (E), ctla4_neg_pd1_pos (F), ctla4_pos_pd1_neg (G) and ctla4_neg_pd1_neg (H). CUS, cuproptosis score; ICI:
immune checkpoint inhibitor; IPS, immune cell proportion score; pos, positive; neg, negative.
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efficacy, sunitinib and axitinib may bring clinical benefits.

Sunitinib monotherapy is the classic first-line therapy for

advanced KIRC (7, 44). We further performed prognostic

validation in a cohort of patients with sunitinib-treated

advanced KIRC in NCT02684006. After sunitinib treatment,

the high-CUS group showed slower progression and even
Frontiers in Immunology 15
reversed the original poor prognosis in the PFS curve. This

suggests that sunitinib may be one of the few treatment options

for patients with high CUS.

Drug susceptibility analysis also revealed that the patients in

the high-CUS group were more sensitive to elesclomol. Cancer

cells with high mitochondrial respiration are more prone to
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FIGURE 9

Drug susceptibility analysis of common targeted drugs and validation of targeted therapy cohort in KIRC. Based on cuproptosis grouping, drug sensitivity
of Sunitinib(A), Axitinib (B), Elesclomol (C), Sorafenib (D), Lapatinib (E), Erlotinib (F), Gefitinib (G), Pazopanib (H) and Temsirolimus (I) is conducted. (J)
Obtaining data from the KIRC cohort using Sunitinib in NCT02684006. Proportional distribution of progression status in the high- and low-CUS groups.
(K) Comparison of CUS levels between progression group and non-progression group. (L) Kaplan–Meier survival analysis between the high- and low-
CUS groups (PFS, Log-rank test, p < 0.001). CUS, cuproptosis score; PFS: progression free survival; *p < 0.05.
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cuproptosis, and copper ionophores represented by elesclomol

may present a new cancer therapy (13). Current clinical trials of

elesclomol have not achieved satisfactory results (14, 45),

however, we expect to discover new ways to activate cuproptosis.
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The distinct metabolic profile of KIRC suggests that activation of

cuproptosis may require a combination of elesclomol and aerobic

glycolysis inhibitors. Studies have shown a relationship between

metabolic and immune activity in KIRC (46), whereas TGFB was
A B

D E F

G IH

J K

L M N

C

O P

FIGURE 10

Differential expression validation of 7 CPGs and 2 potential CPGs between KIRC and normal samples. GEPIA database was used to compare the
expression differences of FDX1 (A), ACADM (D) and ACAT1 (G) between KIRC and normal kidney tissues. The HPA database showed the
expression of FDX1 (B), ACADM (E) and ACAT1(H) at the tissue protein level by immunohistochemistry. Western Blot was used to compare the
protein levels of FDX1 and ACAT1 in KIRC cells (Caki-1 and 786-0) and normal renal tubular epithelial cells (HK-2), and the results were semi-
quantified by integrated density (J). qRT-PCR was used to compare mRNA levels of FDX1 (C), ACADM (F), ACAT1 (I), PDHA1 (K), PDHB (L), DLAT
(M), DLD (N), LIAS (O) and LIPT1 (P) in KIRC cells (Caki-1, 786-0) and normal renal tubular epithelial cells (HK-2). CPG, cuproptosis-promoting
gene; N, normal; T,tumor; ns, no significant difference, *p < 0.05, **p < 0.01, and ****p < 0.0001. Western Blot data are means ± SD, with n = 3;
qRT-PCR data are means ± SD, with n = 4.
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found to promote aerobic glycolysis in renal fibroblasts (47).

TGFB1 may play a role in this relation; therefore, combination

therapy may benefit from TGFB1 inhibitors.

Finally, we identified two potential CPGs from 31 CSRGs:

ACADM and ACAT1. We verified that these two genes were

weakly expressed in KIRC compared to the normal samples

through three levels of validation in the GEPIA database, HPA

database, and qRT-PCR results. The main function of ACADM

is to catalyze the initial step of the mitochondrial fatty acid b-
Frontiers in Immunology 17
oxidation pathway. Inhibition of ACADM can promote

dysregulation of fatty acid oxidation, leading to hepatocellular

carcinoma progression (48). ACAT1 is a key enzyme that

catalyzes the production of mitochondrial ketone bodies.

Combination therapy with an ACAT1 inhibitor and anti-PD-1

antibody showed better efficacy than immunotherapy alone in

controlling tumor progression (49). Previous studies show that

ACADM and ACAT1 are protective tumor suppressors of KIRC,

which is consistent with our findings (50, 51).
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FIGURE 11

Proliferation functional validation of FDX1 and validation of cuproptosis in KIRC cells. (A) Silencing efficiency of FDX1 by qRT-PCR. CCK8 assay
(B), EDU assay (C) and Colony formation assay (D) show the effect of FDX1 knockdown on the proliferation of Caki-1 cells. * is for si-F1#1, + is
for si-F1#2. (E) Changes in ACADM and ACAT1 mRNA expression levels after knockdown of FDX1 by qRT-PCR. (F) The effects of elesclomol and
CuCl2 on Caki-1 cell death were explored by CCK8 assay. si-F1#1, si-FDX1#1; si-F1#2, si-FDX1#2; ns, no significant difference, *p < 0.05, **p <
0.01, ***p < 0.001 and ****p < 0.0001; ++p < 0.01 and +++ p < 0.001; CCK8 assay and Colony formation assay data are means ± SD, with n = 3;
qRT-PCR data are means ± SD, with n = 4.
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In summary, we performed cluster analysis for typing based

on CPGs and constructed a score that quantifies the cuproptosis

status. The CUS can effectively predict the prognosis and efficacy

of targeted therapy and immunotherapy. In conjunction with

the 2021 National Comprehensive Cancer Network (NCCN)

guidelines (52), we developed a detailed treatment strategy for

treatment options for patients with metastatic or unresectable

KIRC. For patients in the low-CUS group, conventional targeted

therapy combined with immunotherapy strategies recommended

by the guidelines can be used as the first-line treatment. Note that

among the targeted therapy drugs, axitinib and sunitinib can be

avoided if possible. For the first-line treatment of patients in the

high-CUS group, we recommend a triple-drug combination of

axitinib, pembrolizumab, and a TGFB1 inhibitor. Sunitinib

monotherapy is also a feasible treatment option. Axitinib

monotherapy can be used as a second-line therapy.

To further explore the relationship between the cuproptosis

gene and KIRC, we first verified the differential expression of the

CPGs at mRNA and protein levels. Next, we silenced FDX1 in

Caki-1 cells and found that the proliferation of Caki-1 cells was

significantly promoted. Finally, to provide preliminary evidence

that Cuproptosis may be present in KIRC, we designed CCK8

assays with reference to the research of Tsvetkov P et al. (53). We

found that when copper was added to elesclomol at a molar ratio

of 1:1, it significantly reduced the activity of KIRC cells. These

results suggest that the delivery of large amounts of copper ions

into cells by elesclomol may trigger cuproptosis in KIRC.

The study has some limitations. First, more cohorts of

immunotherapy and targeted therapy are needed to validate

and optimize the conclusions and improve the predictive

power of the scoring system. Second, TGFB1 inhibitors,

elesclomol, and aerobic glycolysis inhibitors are new

therapeutic agents based on cuproptosis. Further basic

clinical trials are required to explore the efficacy of

these agents.
Conclusion

In this study, a scoring system for cuproptosis—CUS was

constructed, which developed a novel and precise strategy for the

selection of targeted therapy and immunotherapy in patients

with advanced KIRC, and also provided new insights into the

relationship among cuproptosis, metabolism and immunity

in KIRC.
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SUPPLEMENTARY FIGURE 1

Genetic, transcriptional and post-transcriptional alterations of CPGs in

KIRC in GSCA database. (A) Expression level of seven CPGs. (B)
Frequencies of SNV among CPGs. (C) Percentage of various types of

CNV in CPGs. (D) Spearman correlation between mRNA expression and
CNV levels of CPGs. (E) Spearman correlation between mRNA expression

and methylation levels of CPGs. (F) Differences in methylation levels of
CPGs. CPG: cuproptosis-promoting gene.

SUPPLEMENTARY FIGURE 2

Detailed results of consensus clustering. (A–C) Detailed Results of
consensus clustering to construct CPGs subtypes: cumulative

distribution curve (A), area under the cumulative distribution curve (B)
and tracking plot (C). (D–F) Detailed Results of consensus clustering to
construct CSRGs gene subtypes: cumulative distribution curve (D), area
under the cumulative distribution curve (E) and tracking plot (F). CPG,
cuproptosis-promoting gene; CSRG, cuproptosis subtypes related gene.
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SUPPLEMENTARY FIGURE 3

Difference comparison of enriched pathways of two different CPG
subtypes by GSVA. (A–C) Heatmaps comparing GSVA pathway scores

for two CPG subtypes from three items: HALLMARK (A), KEGG (B), and
Reactome (C). CPG, cuproptosis-promoting gene.

SUPPLEMENTARY FIGURE 4

Differences in clinicopathological and biological features between two
gene subtypes. (A) Expression differences of 31 CSRGs between the two

gene subtypes. (B) Heatmap of the distribution of clinicopathological
features and CSRG expression between two different gene subtypes.

CSRG, cuproptosis subtypes related gene; ***p < 0.001.

SUPPLEMENTARY FIGURE 5

Clinical subgroup analysis of CUS in KIRC. (A–G) Finding the relationship
between six clinical features and CUS by difference comparison and ratio

distribution: fustat (A), Grade (B), T_stage (C), N_stage (D), M_stage (E)
and Stage (F). CUS, cuproptosis score.

SUPPLEMENTARY FIGURE 6

Observation of the sensitivity of CPGs to targeted drugs using the GSCA

database. (A) Correlation between GDSC drug sensitivity and CPGs mRNA
expression. (B) Correlation between CTRP drug sensitivity and CPGs

mRNA expression. CPG, cuproptosis-promoting gene.
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Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture
from expression data. Nat Commun (2013), 4:2612. doi: 10.1038/ncomms3612

22. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette
MA, et al. Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci U.S.A. (2005)
102(43):15545–50. doi: 10.1073/pnas.0506580102

23. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res (2015) 43(7):e47. doi: 10.1093/nar/gkv007

24. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an r package for comparing
biological themes among gene clusters. Omics (2012) 16(5):284–7. doi: 10.1089/
omi.2011.0118

25. Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection
methods for random forests and omics data sets. Brief Bioinform (2019) 20
(2):492–503. doi: 10.1093/bib/bbx124

26. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D,
et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.954440/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.954440/full#supplementary-material
https://doi.org/10.1038/s41585-019-0211-5
https://doi.org/10.1038/s41585-019-0211-5
https://doi.org/10.1016/s0140-6736(09)60229-4
https://doi.org/10.1016/j.semcancer.2012.06.004
https://doi.org/10.1016/j.semcancer.2012.06.004
https://doi.org/10.1097/01.ju.0000165574.62188.d0
https://doi.org/10.1053/j.seminoncol.2006.06.005
https://doi.org/10.1016/s1470-2045(14)70366-3
https://doi.org/10.1056/NEJMoa1611406
https://doi.org/10.1038/nrdp.2017.9
https://doi.org/10.1038/nrdp.2017.9
https://doi.org/10.1056/NEJMoa1816714
https://doi.org/10.3390/vaccines9080919
https://doi.org/10.1016/j.cub.2021.03.054
https://doi.org/10.1039/c8mt00182k
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1200/jco.2012.44.5585
https://doi.org/10.1016/j.redox.2019.101218
https://doi.org/10.1158/0008-5472.Can-20-0471
https://doi.org/10.1093/bioinformatics/bty411
https://doi.org/10.1093/bioinformatics/bty411
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/bib/bbx124
https://doi.org/10.3389/fimmu.2022.954440
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.954440
relationships and predictors of response to checkpoint blockade. Cell Rep (2017) 18
(1):248–62. doi: 10.1016/j.celrep.2016.12.019

27. Geeleher P, Cox N, Huang RS. pRRophetic: an r package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One
(2014) 9(9):e107468. doi: 10.1371/journal.pone.0107468

28. Motzer RJ, Robbins PB, Powles T, Albiges L, Haanen JB, Larkin J, et al.
Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma:
biomarker analysis of the phase 3 JAVELIN renal 101 trial. Nat Med (2020) 26
(11):1733–41. doi: 10.1038/s41591-020-1044-8

29. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat
Genet (2013) 45(6):580–5. doi: 10.1038/ng.2653

30. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server
for large-scale expression profiling and interactive analysis. Nucleic Acids Res
(2019) 47(W1):W556–w560. doi: 10.1093/nar/gkz430

31. Lin E, Liu X, Liu Y, Zhang Z, Xie L, Tian K, et al. Roles of the dynamic tumor
immune microenvironment in the individualized treatment of advanced clear cell
renal cell carcinoma. Front Immunol (2021) 12:653358. doi: 10.3389/
fimmu.2021.653358

32. McDermott DF, Lee JL, Bjarnason GA, Larkin JMG, Gafanov RA,
Kochenderfer MD, et al. Open-label, single-arm phase II study of
pembrolizumab monotherapy as first-line therapy in patients with advanced
clear cell renal cell carcinoma. J Clin Oncol (2021) 39(9):1020–8. doi: 10.1200/
jco.20.02363

33. Cella D, Grünwald V, Escudier B, Hammers HJ, George S, Nathan P, et al.
Patient-reported outcomes of patients with advanced renal cell carcinoma treated
with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised,
phase 3 trial. Lancet Oncol (2019) 20(2):297–310. doi: 10.1016/s1470-2045(18)
30778-2

34. Xing XL, Liu Y, Liu J, Zhou H, Zhang H, Zuo Q, et al. Comprehensive
analysis of ferroptosis- and immune-related signatures to improve the prognosis
and diagnosis of kidney renal clear cell carcinoma. Front Immunol (2022)
13:851312. doi: 10.3389/fimmu.2022.851312

35. Xin S, Mao J, Duan C, Wang J, Lu Y, Yang J, et al. Identification and
quantification of necroptosis landscape on therapy and prognosis in kidney renal
clear cell carcinoma. Front Genet (2022) 13:832046. doi: 10.3389/
fgene.2022.832046

36. Sun Z, Jing C, Guo X, Zhang M, Kong F, Wang Z, et al. Comprehensive
analysis of the immune infiltrates of pyroptosis in kidney renal clear cell carcinoma.
Front Oncol (2021), 11:716854. doi: 10.3389/fonc.2021.716854

37. Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer:
a metabolic disease. Nat Rev Urol (2010) 7(5):277–85. doi: 10.1038/nrurol.2010.47

38. Courtney KD, Bezwada D, Mashimo T, Pichumani K, Vemireddy V, Funk
AM, et al. Isotope tracing of human clear cell renal cell carcinomas demonstrates
suppressed glucose oxidation in vivo. Cell Metab (2018) 28(5):793–800.e2.
doi: 10.1016/j.cmet.2018.07.020

39. Cancer Genome Atlas Research Network. Comprehensive molecular
characterization of clear cell renal cell carcinoma. Nature (2013) 499(7456):43–9.
doi: 10.1038/nature12222

40. Cuende J, Liénart S, Dedobbeleer O, van der Woning B, De Boeck G, Stockis
J, et al. Monoclonal antibodies against GARP/TGF-b1 complexes inhibit the
Frontiers in Immunology 20
immunosuppressive activity of human regulatory T cells in vivo. Sci Transl Med
(2015) 7(284):284ra56. doi: 10.1126/scitranslmed.aaa1983

41. Martin CJ, Datta A, Littlefield C, Kalra A, Chapron C, Wawersik S, et al.
Selective inhibition of TGFb1 activation overcomes primary resistance to
checkpoint blockade therapy by altering tumor immune landscape. Sci Transl
Med (2020) 12(536): eaay8456. doi: 10.1126/scitranslmed.aay8456

42. Rodon J, Carducci MA, Sepulveda-Sánchez JM, Azaro A, Calvo E, Seoane J,
et al. First-in-human dose study of the novel transforming growth factor-b receptor
I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and
glioma. Clin Cancer Res (2015) 21(3):553–60. doi: 10.1158/1078-0432.Ccr-14-1380

43. Holmgaard RB, Schaer DA, Li Y, Castaneda SP, Murphy MY, Xu X, et al.
Targeting the TGFb pathway with galunisertib, a TGFbRI small molecule inhibitor,
promotes anti-tumor immunity leading to durable, complete responses, as
monotherapy and in combination with checkpoint blockade. J Immunother
Cancer (2018) 6(1):47. doi: 10.1186/s40425-018-0356-4

44. Staehler M, Motzer RJ, George DJ, Pandha HS, Donskov F, Escudier B, et al.
Adjuvant sunitinib in patients with high-risk renal cell carcinoma: safety, therapy
management, and patient-reported outcomes in the s-TRAC trial. Ann Oncol
(2018) 29(10):2098–104. doi: 10.1093/annonc/mdy329

45. Monk BJ, Kauderer JT, Moxley KM, Bonebrake AJ, Dewdney SB, Secord
AA, et al. A phase II evaluation of elesclomol sodium and weekly paclitaxel in the
treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube or
primary peritoneal cancer: An NRG oncology/gynecologic oncology group study.
Gynecol Oncol (2018) 151(3):422–7. doi: 10.1016/j.ygyno.2018.10.001

46. Wang Y, Zheng XD, Zhu GQ, Li N, Zhou CW, Yang C, et al. Crosstalk
between metabolism and immune activity reveals four subtypes with therapeutic
implications in clear cell renal cell carcinoma. Front Immunol (2022) 13:861328.
doi: 10.3389/fimmu.2022.861328

47. Ding H, Jiang L, Xu J, Bai F, Zhou Y, Yuan Q, et al. Inhibiting aerobic
glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am J
Physiol Renal Physiol (2017) 313(3):F561–f575. doi: 10.1152/ajprenal.00036.2017

48. Ma APY, Yeung CLS, Tey SK, Mao X, Wong SWK, Ng TH, et al.
Suppression of ACADM-mediated fatty acid oxidation promotes hepatocellular
carcinoma via aberrant CAV1/SREBP1 signaling. Cancer Res (2021) 81(13):3679–
92. doi: 10.1158/0008-5472.Can-20-3944

49. Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, et al. Potentiating the
antitumour response of CD8(+) T cells by modulating cholesterol metabolism.
Nature (2016) 531(7596):651–5. doi: 10.1038/nature17412

50. Xiao H, Chen P, Zeng G, Xu D, Wang X, Zhang X. Three novel hub genes
and their clinical significance in clear cell renal cell carcinoma. J Cancer (2019) 10
(27):6779–91. doi: 10.7150/jca.35223

51. Chen L, Peng T, Luo Y, Zhou F, Wang G, Qian K, et al. ACAT1 and
metabolism-related pathways are essential for the progression of clear cell renal cell
carcinoma (ccRCC), as determined by Co-expression network analysis. Front
Oncol (2019) 9:957. doi: 10.3389/fonc.2019.00957

52. Motzer RJ, Jonasch E, Boyle S, Carlo MI, Manley B, Agarwal N, et al. NCCN
guidelines insights: Kidney cancer, version 1.2021. J Natl Compr Canc Netw (2020)
18(9):1160–70. doi: 10.6004/jnccn.2020.0043

53. Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, et al.
Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem
Biol (2019) 15(7):681–9. doi: 10.1038/s41589-019-0291-9
frontiersin.org

https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1038/s41591-020-1044-8
https://doi.org/10.1038/ng.2653
https://doi.org/10.1093/nar/gkz430
https://doi.org/10.3389/fimmu.2021.653358
https://doi.org/10.3389/fimmu.2021.653358
https://doi.org/10.1200/jco.20.02363
https://doi.org/10.1200/jco.20.02363
https://doi.org/10.1016/s1470-2045(18)30778-2
https://doi.org/10.1016/s1470-2045(18)30778-2
https://doi.org/10.3389/fimmu.2022.851312
https://doi.org/10.3389/fgene.2022.832046
https://doi.org/10.3389/fgene.2022.832046
https://doi.org/10.3389/fonc.2021.716854
https://doi.org/10.1038/nrurol.2010.47
https://doi.org/10.1016/j.cmet.2018.07.020
https://doi.org/10.1038/nature12222
https://doi.org/10.1126/scitranslmed.aaa1983
https://doi.org/10.1126/scitranslmed.aay8456
https://doi.org/10.1158/1078-0432.Ccr-14-1380
https://doi.org/10.1186/s40425-018-0356-4
https://doi.org/10.1093/annonc/mdy329
https://doi.org/10.1016/j.ygyno.2018.10.001
https://doi.org/10.3389/fimmu.2022.861328
https://doi.org/10.1152/ajprenal.00036.2017
https://doi.org/10.1158/0008-5472.Can-20-3944
https://doi.org/10.1038/nature17412
https://doi.org/10.7150/jca.35223
https://doi.org/10.3389/fonc.2019.00957
https://doi.org/10.6004/jnccn.2020.0043
https://doi.org/10.1038/s41589-019-0291-9
https://doi.org/10.3389/fimmu.2022.954440
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Cuproptosis status affects treatment options about immunotherapy and targeted therapy for patients with kidney renal clear cell carcinoma
	Introduction
	Materials and methods
	Exploration of the genetics and biological significance of cuproptosis-promoting genes in KIRC
	Data collection and processing of KIRC comprehensive cohort
	First unsupervised clustering based on seven CPGs
	Gene set variation analysis
	Construction of KIRC immune infiltration landscape
	Screening of differentially expressed genes (DEGs) and enrichment analysis
	Secondary unsupervised clustering based on cuproptosis subtypes related genes
	Calculation of cuproptosis score (CUS)
	Prognosis and immune exploration based on CUS grouping
	Clinical subgroup analysis based on CUS grouping
	Comparison of immune targets and prediction of immunotherapy efficacy
	Analysis of targeted therapy based on CUS grouping
	Mining seven CPGs-related targeted drugs
	Screening and validation of potential CPGs and FDX1
	Cell culture and transfection
	Quantitative reverse transcription polymerase chain reaction
	Western blotting
	Cell Counting Kit-8 (CCK-8) assay
	Ethynyl-2’-deoxyuridine (EdU) assay
	Colony formation assay
	Statistical analysis

	Results
	Genetic, transcriptional and post-transcriptional alterations of CPGs in KIRC
	Construction of comprehensive KIRC cohort and CPGs network
	Identification and evaluation of subtypes based on seven CPGs
	Identification of CSRGs and the secondary clustering
	Calculation of CUS and classification of patients with KIRC
	CUS-related clinical subgroup analysis
	Exploration of immunotherapy targets and efficacy based on CUS
	Sensitivity analysis and efficacy prediction of targeted drugs
	Identification and multi-level expression validation of potential CPGs
	Proliferation functional validation of FDX1 and validation of cuproptosis in KIRC cells

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


