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Natural killer cells: the next
wave in cancer immunotherapy

Xin Chen*, Lei Jiang and Xuesong Liu

Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
Immunotherapies focusing on rejuvenating T cell activities, like PD-1/PD-L1

and CTLA-4 blockade, have unprecedentedly revolutionized the landscape of

cancer treatment. Yet a previously underexplored component of the immune

system - natural ki l ler (NK) cell , is coming to the forefront of

immunotherapeutic attempts. In this review, we discuss the contributions of

NK cells in the success of current immunotherapies, provide an overview of the

current preclinical and clinical strategies at harnessing NK cells for cancer

treatment, and highlight that NK cell-mediated therapies emerge as a major

target in the next wave of cancer immunotherapy.
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Introduction

NK cells, a subset of lymphocytes that are principally innate immune cells, arise from

common lymphoid progenitors and constitute the third lymphoid lineage in addition to

T-cell and B-cell lineages (1). NK cells were initially discovered and named based on their

ability to kill cancer cells in vitro (2). They express a broad repertoire of activating and

inhibitory receptors, the “net weight” of which controls the final outputs. The biology of

NK cells has been extensively reviewed elsewhere (3, 4). In this review, we mainly focus

on the therapeutic potential of NK cells as the next wave in cancer immunity. We will

discuss the prognostic roles of NK cells in cancers, summarize the contributions of NK

cells in the success of immune checkpoint blockade (ICB) therapies and approaches

including cell therapies to harness NK cells in the cancer treatment.
NK cells in cancers

The immune surveillance role of NK cells in human cancers was first implicated in

1980s by reports revealing higher incidence of cancers in patients with NK cell defects (5,

6) and low NK cell activities in cancer patients or their families (7–11). Subsequently, a

landmark 11-year following-up study reported a positive correlation between impaired
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NK cell functions and higher risk to develop numerous types of

cancers (12). Meanwhile, the critical role of NK cells in control of

tumor growth and metastasis was demonstrated in mice models

in early studies (13, 14). However, due to the paucity of NK cells

usually overserved in primary tumors in clinic, questions have

been raised – as to whether NK cells play an important role in

tumor control and prognosis, and whether NK cells contribute

to therapies such as targeted antibody therapies, despite the role

of NK cells in immune surveillance.

Subsequent to early findings, accumulating evidence have

reported impaired functions of NK cells in chronic myelogenous

leukemia (CML) (15) and acute myeloid leukemia (AML) (16,

17). Intriguingly, NK cells in AML patients have been reported

to significantly down-regulate activating receptor NKp46 and

up-regulate inhibitory receptor NKG2A compared to those in

healthy age-matched controls (17). Furthermore, lower NKp46

expression on NK cells (18), phenotypic and functional defects

of NK cells (17) or defective NK cell maturation (19) have been

reported to be associated with adverse clinical outcomes in AML

patients treated with allogeneic stem cell transplantation (allo-

SCT) (18) or chemotherapy (17, 19).

Furthermore, the prognostic role of NK cells has not only

been observed in chemotherapy-based studies in hematopoietic

cancers, but also observed in targeted antibody therapy-based

studies, in both liquid and solid tumors (Table 1). In diffuse large

B-cell lymphoma (DLBCL) patients treated with Rituximab-

CHOP (20), breast cancer patients treated with anti-HER2

monoclonal antibody (mAb) and chemotherapy (22), and in

colorectal cancer patients treated with anti-EGFR mAb and

chemotherapy (24), the tumor-infiltration of NK cells have
Frontiers in Immunology 02
been reported to positively correlate with clinical responses.

Moreover, high baseline of antibody-dependent cellular

cytotoxicity (ADCC) has been reported to correlate with a

complete response (CR) and a long overall survival (OS) in

head and neck cancer patients treated with anti-EGFR mAb and

radiotherapy (23). Those evidence suggested a role of NK cells in

targeted antibody therapy, probably mediated by ADCC, and

support the development of tools harnessing ADCC activities of

NK cells for enhanced anti-tumor efficacy. We will expand the

discussion in later sessions of the review.

Another intriguing observation related to the prognostic and

predictive role of NK cells comes from the studies on immune

checkpoint blockades (ICBs) therapies. Higher NK cell

infiltration has been found in responders to anti-PD-1

treatment compared to non-responders from independent

studies (25, 26), and thus raise the question whether NK cells

contribute to the success of ICBs.
NK cells contribute to the success
of ICBs

Many inhibitory receptors including PD-1, LAG3, TIM3,

TIGIT, NKG2A etc. are expressed and mediate inhibition on

both NK cells and T cells (27) (Table 2). To date, anti-PD-1/PD-

L1 therapies have achieved remarkable efficacy in a wide

spectrum of cancers (28). Moreover, ICBs targeting LAG3 (29)

and TIGIT (30) are displaying great potentials to further

improve clinical outcomes in combination with anti-PD-1

therapy. Basically, the efficacy has been attributed to
TABLE 1 Clinical correlations of NK cells with patient outcomes.

Cancer
type

Treatments Correlation of NK phenotypes with clinical
outcomes

References

AML Chemotherapy Phenotypic and functional defects of NK cells associate with poor
response.

(17)

Conventional chemotherapy with or without the addition of anti-
CD33 mAb

Patients with hypomaturation profile had reduced OS and
progression-free survival (PFS) rates.

(19)

Allo-SCT NKp46high phenotype at diagnosis is associated with better PFS and
OS.

(18)

DLBCL Rituximab-CHOP (cyclophosphamide, doxorubicin, vincristine,
and prednisone)

Lack of NK cell infiltration associate with poor survival. (20)

CML Imatinib NK cell counts are associated with molecular relapse-free survival
after imatinib discontinuation.

(21)

Breast cancer All patients received a neoadjuvant combination treatment of
standard chemotherapy and anti-HER2 mAbs

Tumor-infiltrating NK cells associate with pathological CR and
disease-free survival.

(22)

Head and
neck cancer

anti-EGFR and radiotherapy High baseline of ADCC correlates with a CR and a long OS. (23)

Colorectal
cancer

A first-line anti-EGFR based chemotherapy Tumor infiltrating CD56+ cells are correlated with PFS and response. (24)

Melanoma Anti-PD-1 mAbs Higher NK cell infiltration in responding vs non-responding patients. (25)

Anti-PD-1 mAbs Up-regulated NK signatures and higher NK cells infiltration in
tumors in responding vs non-responding patients.

(26)
fr
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unleashing T cell responses, leaving the contributions of NK cells

yet to be fully explored. Recently, growing evidence is suggesting

a prognostic role of NK cell activation status and tumor

infiltration in the success of ICB (25, 26, 31), thus raising

considerable interests to fill the conceptual gap with respect to

whether and how NK cells play a role in the ICB practice.

First, NK cells may contribute to the ICB success by

restraining the emergence of cancer cell clones that have

escaped T cell attack through inactivation of antigen

presentation. There is growing evidence that loss of genes

associated with antigen presentation serves as an important

mechanism of acquired resistance to ICB (32). In pre-clinical

models, Nicolai et al. and Das et al. showed that NK cells mediate

the rejection of CD8+ T cell resistant B2m-/- tumors (33, 34). It is

in line with the longstanding observations that NK cells express

inhibitory receptors binding to MHC-I, thereby maintaining

“self-tolerance” to normal cells. When cancers down-regulate

MHC-I on their surface to escape T cell attack, the “missing-self

recognition” by NK cells is triggered, thus initiating NK cell

mediated cytotoxicity against the “escapers” (35).

Second, the ICB may confer a direct modulation on NK cell

activity. One study reported that PD-1 is upregulated on

circulating and intra-tumoral NK cells in patients of Hodgkin

lymphoma. PD-L1+ myeloid cells efficiently suppress the

function of PD-1+ NK cells in vitro, while anti-PD-1 treatment

can effectively reverse the suppression (36). Further evidence for

the PD-1/PD-L1 signaling in NK cells comes from studies

describing PD-1 upregulation in NK cells in non-small cell

lung cancer (NSCLC) and head and neck cancer (HNC)

patients. PD-L1 beads or PD-L1+ target cells impaired PD-1+

NK cell function, while anti-PD1 or anti-PD-L1 treatment

significantly activated PD-1+ NK cells in vitro (37, 38).

Moreover, there is evidence in in vivo mouse models that PD-

1 is up-regulated on most activated tumor-infiltrating NK cells,

and NK cells mediate full therapeutic efficacy of PD-1/PD-L1
Frontiers in Immunology 03
blockade (39). Nevertheless, to what extent the anti-PD-1/PD-L1

therapies could directly activate NK cells in patients and thereby

contribute to the efficacy remains an open question that needs to

be further explored. Another shared checkpoint between T cells

and NK cells, TIGIT, is constitutively expressed on PBMC-

derived NK cells as well as in vitro activated human NK cells

(40–43). In a recent publication, we have demonstrated the

direct activation of NK cells by the therapeutic TIGIT blocking

antibody ociperlimab (BGB-A1217) in an in vitroNK-cancer cell

co-culture assay (44). Remarkably, the full Fc effector function of

ociperlimab further elevated NK cell function in addition to

checkpoint blockade (44), probably through the synergy between

FcgRIIIa (CD16a) signaling and release of TIGIT mediated

suppression on NK cells (45). Another immune checkpoint,

TIM3, has been found to be up-regulated on NK cells from

patients with melanoma (46), gastric cancer (47) and lung

adenocarcinoma (48), and blockade of TIM3 has been

reported to release the exhaustion of NK cells from advanced

melanoma patients in vitro (46).

Recently, the NKG2A/CD94 blockade seems to carve a new

path in the adoption of ICB in the cancer treatment via

unleashing both T cells and NK cells. Pre-clinical data suggest

a dual role of NKG2A blockade on NK cells and T cells (49–51).

In clinic, monalizumab (49), a humanized IgG4 ICB targeting

the NKG2A/CD94 receptor, blocking its interaction with HLA-

E, is being investigated in the treatment of solid tumors.

Encouraging results from a large, randomized Phase II trial

showed monalizumab in combination with durvalumab, a PD-

L1 blockade antibody, improved PFS and objective response rate

(ORR) compared to durvalumab alone in patients with

unresectable, stage III NSCLC. The 12-month PFS rate was

72.7% for durvalumab plus monalizumab, versus 33.9% with

durvalumab alone (52).

From another perspective, it is noteworthy that the immune

checkpoint blockade antibodies can activate NK cells through
TABLE 2 Selected shared immune checkpoint receptors between NK cells and T cells.

Receptor Cell distribution Drugs approved or in advanced
clinical trials

Phase

PD-1 NK cells, T cells, B cells, myeloid cells Pembrolizumab FDA Approved

Nivolumab FDA Approved

Cemiplimab FDA Approved

Dostarlimab FDA Approved

Tislelizumab Phase III in US; approved in China

TIGIT NK cells, T cells Tiragolumab Phase III

Vibostolimab Phase III

Ociperlimab Phase III

TIM3 NK cells, T cells, DCs, monocytes, macrophages, mast cells MBG453 Phase II

BGB-A425 Phase I/II

TSR-022 Phase II

NKG2A NK cells and T cells Monalizumab Phase III
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the Fc effector functions, as we reviewed previously (53). Direct

evidence for this hypothesis comes from the Fc-competent

TIGIT antibody Ociperlimab. TIGIT expression is highly

expressed on Treg cells, relative to effector T cells, and is

further elevated on Tregs in tumor microenvironment (44,

54). Our data have shown that the ligation of TIGIT on Tregs

and Fcg receptors on NK cells by Ociperlimab directly promoted

NK cell activation and induced ADCC against cancer patient

PBMC derived Tregs in vitro. In the CT26 mouse model, we also

observed the decrease of intratumor Treg numbers (44). It is of

great interest to further explore the potential mechanisms in

clinical settings. Another T cell checkpoint, CTLA-4, is also

expressed on cancer cells such as melanoma, leading to potential

NK cell mediated ADCC against CTLA-4+ cancers induced by

anti-CTLA-4 treatment (55). Nevertheless, CTLA-4 is also

exp r e s s ed on CTLs , t hu s r ende r ing the ove r a l l

mechanisms complicated.

Third, emerging evidence have suggested an essential role of

NK cells in checkpoint therapy response through an NK-

dendritic cell (DC) axis (25, 56). Conventional type 1 dendritic

cells (cDC1) are a subtype of DC that stimulate robust T cell

response to cancer. They adept at taking up dead cells and cross-

present tumor antigen to CD8+ T cells (57, 58), attract T cells

into tumor (59), and elicit tumor-specific T cell responses (60).

Intriguingly, work from Bottcher et al. revealed a strong

correlation between cDC1 signatures and NK cell signatures in

cancers including skin cutaneous melanoma (SKCM), breast

invasive carcinoma (BRCA), head and neck squamous cell

carcinoma (HNSC) and lung adenocarcinoma (LUAD) (56).

Moreover, NK cell signatures were found positively associated

with patient survivals in all those cancers. Furthermore, they

discovered in pre-clinical models that intratumor NK cells

recruit cDC1 into tumors to promote tumor control (56).

Similarly, Barry et al. observed that NK cell signatures

positively correlate with stimulatory dendritic cells (SDC;

intratumor cDC1) in melanoma, patient response to anti-PD-1

therapy and overall survival. In line with the data from Bottcher

et al., they also uncovered a role of NK cells in the control of

CD103+ SDC in a mouse tumor model (25).

Taken together, NK cells may contribute to ICBs success

through multiple aspects. However, one caveat is that one should

be cautious to interpret the data from pre-clinical models and

translate from laboratory to clinic. Gaps exist between mouse

models and human cancers, e.g., FcgRIII on mouse NK cells is

actually not the homologue of FcgRIII on human NK cells.

Human FcgRIIIa is functionally similar with a unique mouse

FcgR – FcgRIV (61). Nonetheless mouse FcgRIV is not expressed

on mouse NK cells, but abundantly on macrophages (53). In

addition, syngeneic or xenograft tumor models may not truly

mimic the NK cell infiltration status in human tumors, thereby

suggesting translational gaps between pre-clinical tumor models

and cancer patients.
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Approaches to harness NK cells

NK cells express a broad range of activating and inhibitory

receptors. Whether NK cells attack a target cell depends on the

net equilibrium of the activating and inhibitory signals. Here we

focus on emerging novel modalities for NK cell targeting, e.g.,

ADCC enhanced antibodies, bi- or tri-specifics, and iPSC-

derived NK cells (iPSC-NK) therapies.
ADCC-enhanced antibodies

In humans, FcgRIIIa is the major type of FcgRs expressed on

NK cells (62). Binding of Fc portion of human IgG to FcgRIIIa
can trigger NK cell ADCC against mAb-opsonized target cells, as

has been firmly established. Two alleles encode different

FcgRIIIa variants that differ at the position 158, with either a

valine (V) or phenylalanine (F). Between the two isoforms,

FcgRIIIa-V158 exhibits higher affinity to IgG1, and mediated

more efficient ADCC (63). In clinic, the FcgRIIIa dimorphism

was strongly associated with the outcome of patients treated with

anti-EGFR or anti-CD20 antibodies (64–69). Although it

remains controversial about the relative contributions of

different immune cells or effectors in the therapeutic efficacy of

tumor-targeting mAbs (70–73), multiple studies have suggested

a positive correlation of NK cell infiltration and activity with the

response to tumor-targeting mAb treatment (22–24), and again,

caution is warranted on the interpretation of mechanistic studies

in mice given the discrepancies of FcgRs expression profiles

between human and mice. Therefore, several strategies have

been employed to develop ADCC-enhanced mAbs for

harnessing NK cell functions.

Removal of core fucose from N-glycans attached to human

IgG1 significantly enhances the binding affinity of IgG1 to

FcgRIIIa and ADCC (74, 75), and has been the most widely

adopted approach to harness the mAb mediated ADCC

response in clinical practice (76). As of today, three

afucosylated mAbs have been marketed for the treatment of

human cancers: Obinutuzumab, a CD20-directed afucosylated

antibody approved for the treatment of chronic lymphocytic

leukemia (CLL); Poteligeo (mogamulizumab), a CCR4-targeting

afucosylated mAb, approved for the treatment of Mycosis

Fungoides (MF) and Sézary Syndrome (SS); and Fasenra

(benralizumab), an afucosylated IL-5Ra targeting mAb for the

treatment of patients with severe eosinophilic asthma. In

addition, Rybrevant (amivantamab), an anti-EGFR and anti-

cMet bispecific low fucose antibody with enhanced Fc function,

have been approved for the treatment of NSCLC. Blenrep

(belantamab mafodotin-blmf), consisting of an afucosylated

humanized anti-BCMA IgG1 mAb conjugated to the tubulin

inhibitor, monomethyl auristatin F (MMAF), for the treatment

of adult patients with relapsed or refractory multiple myeloma, is
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the only FDA approved ADC with an afucosylated antibody

(77). Nowadays, numerous afucosylated mAbs targeting a

diverge range of receptors are actively in clinical development,

with the outcomes yet to be revealed (78).

Fc engineering represents another approach to enhance

ADCC (62, 79). Several Fc-enhanced mAbs through the

genetic engineering approach are being investigated in clinical

trials, with only one approved by FDA till now, Margenza

(margetuximab), for the treatment of metastatic HER2-positive

breast cancer. It is noteworthy that exploratory PFS analysis by

FcgRIIIa genotype suggested that presence of a FcgRIIIa-F158
allele may predict margetuximab benefit over trastuzumab.

Margetuximab provided no clinical benefit in FcgRIIIa-V158

homozygotes compared with trastuzumab (80). Since the Fc

engineering of margetuximab-cmkb increases affinity for both

FcgRIIIa allotypes, and FcgRIIIa-V158 per se has higher affinity to

IgG1, the none-benefit in FcgRIIIa-V158 homozygotes might be

attributed to the rapid cleavage and downregulation of FcgRIIIa
due to stronger binding of the antibodies to FcgRIIIa-V158. From

another perspective, strong binding to FcgRIIIa may induce

enhanced antibody internalization by FcgRIIIa expressing cells,

thus promoting the anti-drug antibody (ADA) production, to

compromise the efficacy. The exact underlying mechanisms are

yet to be elucidated.
NK cell engagers

There are a broad range of activating and inhibitory

receptors on NK cells. The integration of signals for activation

and inhibition determines the final outputs of NK cells. The loss

of inhibitory signaling, like downregulation of MHC-I

expression on tumor cells, renders tumor cells susceptible to

NK cell cytotoxicity. Alternatively, NK cells can attack cancer

cells that retain full expression of MHC-I if activating receptors

on NK cells are engaged.

Recently, bi-specific or tri-specific antibodies targeting NK

cell activating receptors are emerging as novel approaches to

harness NK activity. Preclinical results provide the rationale for

developing multi-specific NK cell engagers through ligation of

tumor antigens and activating NK receptors. Examples include

those targeting NKp46 (81), NKp30 (82), NKG2D (83, 84), and

FcgRIIIa (CD16a) (85, 86). Encouraging data comes from a

Phase I clinical study in which an anti-CD16/anti-CD30

bispecific NK-cell engager combined with pembrolizumab has

shown an ORR of 83% and a CR rate of 46% in patients with

relapsed or refractory Hodgkin Lymphoma (HL) (87). However,

it should be noted that most of the activating receptors are not

exclusively expressed on NK cells, instead are often shared with

T cells or myeloid compartments. Targeting the activating

receptors on NK cells may synergically augment both NK cells

and other immune effectors.
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NK cell-checkpoint blockades

A wide range of immune checkpoints are expressed on NK

cells. As with the activating receptors, NK checkpoints are

usually shared with other immune components (27). As

discussed in the earlier part of the review, some blockades that

can target checkpoints on both T cell and NK cells have obtained

remarkable success or promising preliminary clinical responses

(Table 2), albeit the contributions of NK cells therein are yet to

be fully understood. In addition, blockers that target inhibitory

killer Ig-like receptors (KIRs) have been investigated in clinical

settings. KIRs are a group of receptors on NK cells that bind to

HLA molecules to mediate inhibitory or activating signaling

(88). Clinical evidence have suggested that adoptive NK cell

transfer has the potential to improve outcomes of KIR ligand-

mismatched recipients even further (89–91). Lirilumab, a

humanized IgG4 mAb, binds to KIR2DL-1, KIR2DL-2 and

KIR2DL-3 and thereby blocks their inhibitory signaling

mediated by both HLA-C C1 and HLA-C C2 subtype

molecules (92). It has shown good safety profiles in phase I

trials, however, the phase II trial in patients with smoldering

multiple myeloma failed to demonstrate clinical efficacy (93).

The minimal efficacy may result from lack of the KIR matched

HLA types from patients, and existing of other dominant

inhibition signals (94). However, this does not rule out the

possibility that inhibitory KIR blockers could synergistically

work together with other ICBs or NK cell therapies to induce

a combination efficacy.
NK cell-based cell therapies

Adoptive cell therapies, basically chimeric antigen receptor T

(CAR-T) cell therapies, have exhibited remarkable clinical

responses in treating hematologic malignancies, and thus

spawned an explosion in the CAR-T field. As of today, six

CAR-T cell therapies have been approved by FDA, wherein four

targeting CD19, and two targeting BCMA. Although the

efficacies have been notable (95–101), limitations are still

obvious. First, as a highly personalized therapy, autologous

CAR-T cells have to be individually prepared for each patient

in a time- and material- consuming process that carries the risk

for failure and demanding logistics. Patients who have already

received multiple rounds of chemotherapy may not be able to

mobilize enough T cells for the CAR-T cell preparation.

Additionally, during the time waiting for CAR-T cells

manufacturing, patients may experience disease progression.

As such, the therapy results in low scalability and remains

unacceptable and unaffordable to most of patients. Second,

severe toxicity associated with CAR-T cells hampers the broad

applicability of the treatment. In several patients, CAR-T cell

treatments have been associated with substantial toxicity
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including cytokine release syndrome (CRS) and immune effector

cell-associated neurotoxicity syndrome (ICANS), thus

decreasing the feasibility due to demanding toxicity

management, and inconvenient administration (102).

In contrast, NK cell therapies harbor high potential to

overcome those hurdles. Firstly, the activating machineries of

NK cells differ from the TCR system of T cells. NK cells do not

require HLA matching to exert cytotoxicity against tumor cells.

This allows for using NK cells in an allogeneic way. On the other

hand, allogeneic NK cells do not result in graft versus host

disease (GvHD), even in the setting of substantial HLA disparity

between adoptive CAR-NK cells and the recipients (103), and

thus can be provided as complete “off-the-shelf” products,

significantly lowering the cost of manufacturing and logistics.

Secondly, both autologous and allogeneic NK cells have

exhibited excellent safety profile, without severe toxicity such

as CRS or ICANS (103, 104). Compared to their T cell

counterparts, NK cells present a safer cytokine profile, and

differ in the crosstalk with myeloid cells (4). This property

confers the feasibility of the NK cell therapy when specialized

care units are unavailable. Thirdly, from the efficacy perspective,

NK or CAR-NK cell therapies have shown inspiring clinical

outcomes in early phase clinical trials when used alone (103) or

in combination with other therapies (104), encouraging more

endeavors in the field. Last but not least, repeated doses can be

administrated given the short lifetime of NK cells, and NK cells

from different donors can be sequentially dosed to circumvent

rejection of donor NK cells by recipient memory T cells

recognizing allo-antigens on the same donors.

NK cells for cell therapy can be generated from different

sources and by a variety of methods (Table 3). Peripheral blood

derived, and ex vivo expanded autologous NK cells have been

well tolerated in clinical trials, whereas efficacy has been limited

(105, 106). The low efficacy may be attributed to the suppression

of autologous NK cells by self-HLA molecules. As such,

allogeneic NK cells serve as a promising alternative approach

to overcome the resistance. In a seminal study by Miller et al., a

complete remission induced by haploidentical allogeneic NK-

cell infusions in 5 of 19 poor-prognosis AML patients was
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observed (90). In a subsequent study in pediatric AML, all

patients who received adoptive haploidentical NK cells

remained in remission with a median follow-up time of 964

days (91). Later on, 53% complete remission was observed in

AML patients treated with haploidentical NK cells combined

with an IL-2 diphtheria toxin fusion protein, which was used to

deplete host regulatory T cells (107); 32% complete remission

was observed in AML patients treated with haploidentical NK

cells combined with IL-15 (108), and 44% complete remission

was observed in AML patients treated with allogeneic cytokine-

induced memory-like NK cells, in separate studies (109).

Besides peripheral blood-derived NK cells (PB-NK), an

alternative approach to generate functional NK cells is to

obtain NK cells from umbilical cord blood and expand ex vivo

(110, 111). A recent clinical study by Liu et al. has presented

inspiring results to show the remarkable efficacy and excellent

safety profile of engineered umbilical cord blood derived NK

cells (UCB-NK) in the treatment of CD19 positive relapsed or

refractory lymphoid tumors. The HLA-mismatched UCB-NK

cells were transduced with a retroviral vector encoding anti-

CD19 CAR, IL-15, and inducible caspase 9 as a safety switch. Of

the 11 patients who were treated, 8 (73%) had a response and 7

(64%) had a complete remission. Notably, no severe toxicity

including CRS, neurotoxicity or GvHD were observed (103).

Another method to derive NK cells from umbilical cord blood is

to differentiate them from CD34+ hematopoietic progenitor cells

(HPC) (112). In the first-in-human study, CD34+ HPC derived

NK cells (HPC-NK) were administrated to 10 older AML

patients after lymphodepleting chemotherapy without cytokine

boosting. Preliminary data showed that HPC-NK cells were well

tolerated, with neither GvHD nor toxicity observed. Notably, 2

of 4 patients with minimal residual disease (MRD) in bone

marrow before HPC-NK cells infusion became MRD negative,

which lasted for 6 months (113).

Albeit the encouraging efficacy achieved by those clinical

trials using PB-NK or UCB-NK, limitations exist due to the

requirement for collection from a donor by apheresis or from

umbilical cord blood, the variability of NK cell yield influenced

by donor variability, and the challenge in generic manipulation
TABLE 3 Comparison of clinical-scale NK cells generated from distinct sources.

Attributes NK-92 PB-NK UCB-NK HPC-NK iPSC-
NK

Source NK-92 cell line Peripheral
blood of donors

Cryopreserved umbilical cord
blood (UCB) in UCB unit

CD34+ hematopoietic
progenitor cells from UCB

iPSC

Tumorigenicity High (need to be
irradiated before infusion)

Low Low Low Low

Accessibility Easy Easy Less easy Less easy Easy

Homogeneity High Low Low Low High

Genetic engineering Easy Less easy Less easy Less easy Easy

Cell number sufficiency of a uniform cell
population for repeated doses

High Low Low Low High
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on differentiated cells with low proliferation capacity. To

overcome those limitations, a number of studies used NK-92,

a NK cell line originally established from a patient with non-

Hodgkin’s lymphoma (114–116). There are several advantages

of NK-92 cell line as a source for NK cell therapy – it provides a

homogeneous master cell bank, can be expanded indefinitely

and served as an uniform “off-the-shelf” product, is more

amenable to genetic modification and allows sufficient cells for

cell therapy (117). However, on the other hand, albeit NK-92

lack expression of most known KIRs and exhibit broad

cytotoxicity against numerous cancers, it loses expression of

typical activating receptors including NKp44, NKp46 and

notably, FcgRIIIa, which mediated ADCC (117). Additionally,

as a lymphoma cell line, NK-92 holds inherent draw backs such

as potential tumorigenicity and latent infection by Epstein-Barr

Virus (EBV). Thus, for safety considerations, NK-92 must be

irradiated before administration to patients. The irradiation

limits the proliferation and persistence of NK-92 in vivo, and

eventually may impede the long-term anti-tumor efficacy. And

this may account for the observed limited efficacy of NK-92 cells

in clinic (118, 119).

In recent years, iPSC-NK technology emerges as a

breakthrough innovation in the NK cell therapy field, offering

the potential to overcome challenges often seen with other

source-derived NK cells. Serial seminal studies from Kaufman

et al. have significantly optimized the protocols to derive NK

cells to a clinical-scale from embryonic stem cells (hESCs) or

iPSC (120), and demonstrated for the first time that CAR-NK

cells can be derived from iPSCs expressing CAR (121). Since

pluripotent stem cells have the potential to grow indefinitely in

an undifferenced state (122, 123), the iPSC can serve as a stable

cell bank for uniform NK cell generation and allows for sufficient

cell numbers for cell therapy. As such, the iPSC-NK can serve as

a standardized “off-the-shelf” product. In addition, iPSC is

amenable to genetic engineering. Once the genetically

modified clones are selected, it can be expanded for a

production of a uniform pool of iPSC-NK cells. Multiple

genetical modifications, such as ectopic expression of IL-15/IL-

15R fusion protein (124, 125), CAR (121), high-affinity non-

cleavable variant of CD16a (125, 126), deletion of CISH (127) or

CD38 (125) have been successfully introduced on iPSC-NK to

achieve enhanced expansion, better in vivo persistence or greater

cytotoxicity. The difference between iPSC-NK, PB-NK and

UCB-NK are yet to be fully understood, yet some pre-clinical

evidence have suggested that iPSC-NK may have comparable or

superior activities relative to PB-NK or UCB-NK (128–130). To

date, iPSC-NK cell therapies have entered phase I clinical trials,

used alone or in combination with therapeutic monoclonal

antibodies (mAbs) for the treatment of hematopoietic

lymphomas or solid tumors (131–136). Remarkably, the first

in human results are encouraging (137, 138). In a phase I trial,

FT516, an iPSC-NK cell therapy using iPSC-NK cells engineered

with a high-affinity, non-cleavable CD16a (hnCD16) that
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with a therapeutic mAb, was combined with rituximab to treat

patients with relapsed or refractory B-cell lymphoma (BCL)

(132). Eight of the 11 pts (73%) treated with ≥90 million FT516

cells achieved an objective response. Seven (64%) patients

achieved CR, including 2 patients with prior CD19 CAR T-cell

therapy (139). FT596 (140), is an iPSC-derived CAR-NK cell

therapy armed with three modalities: a CD19-targeting CAR, a

hnCD16, and IL15/IL-15 receptor fusion which promotes NK

cell persistence by the autonomous cytokine. In a phase I trial,

FT596 was administrated as monotherapy or in combination

with rituximab or obinutuzumab for the treatment of relapsed or

refractory BCLs and CLL (141). At single-dose levels of ≥90

million cells, 8 of 11 (73%) efficacy-evaluable patients achieved

ORR, including 7 (64%) CR. Of 4 patients with prior CAR T-cell

therapy treated at ≥90 million cells, 2 achieved CR (142).

Notably, no dose-limiting toxicities, CRS, ICANS, or GvHD of

any grade were observed for FT516 or FT596, and repeated doses

were allowed (139, 142).
NK cell-based combination strategies

Nowadays, NK cell-based combination strategies have been

investigated in the cancer immunotherapy and represent an

important direction in the future.

NK cell therapies in combination with ICBs
As we have discussed in the previous sessions, activated or

intra-tumor NK cells up-regulate checkpoint molecules (e.g.,

PD-1, TIGIT, TIM3, NKG2A) and blocked of those molecules

unleash NK cell activity. In a pre-clinical model, iPSC-NK cells

in combination with T cells and an anti-PD-1 antibody have

been reported to eliminate tumors in a xenograft ovarian cancer

mouse model (143). Combination of ICBs and adoptive NK cell

therapy would be a promising approach to achieve optimized

NK functions, and in concert with T cells.
NK cell therapies in combination with tumor
targeting mAbs or NK cell engagers

Adoptive NK cell therapy in combination with tumor-

targeting mAbs or other NK cell engagers represent an

approach to fully augment the tumor-specific NK cell

cytotoxicity. Impressive results have been obtained from a

phase I clinical study that combine CAR-iPSC-NK cell therapy

with anti-CD20 (139). Moreover, the combination of CB-NK

and a bispecific CD30/CD16 antibody is being actively

investigated in a phase I/II study (144, 145). As disclosed by

Affimed on the 2022 AACR meeting, as of the cut-off date, the

study had enrolled 22 patients with relapsed or refractory CD30+

Hodgkin and non-Hodgkin lymphoma having received a

median of seven prior lines of therapy. Out of the 13 patients
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treated at the recommended phase 2 dose (RP2D), 13 patients

(100%) achieved objective response, and 8 (62%) patients

achieved CR after two cycles of treatment (146).

CAR-NK and CAR-T cell combinations
Sequential infusions of CAR-NK cells and CAR-T cells

would be a good strategy to achieve better efficacy and safety.

CAR-NK cells should rapidly decrease the tumor burden,

particularly for patients with high tumor load. This may

decrease the CRS and neurotoxicity risk imposed by CAR-T

cells. Then subsequent CAR T cell infusion may eliminate

residual tumor cells and provide a lasting anti-tumor effect

through memory T cells that survive and persistence.

Other attempts to target NK cells

In addition to the approaches discussed above, strategies

targeting cytokines, such as IL-12, IL-15 and IL18 (109, 124,

147), targeting intracellular checkpoints, such as CISH (127,

148), Cbl-b (149) GSK3 (150) and CDK8 (151, 152), or targeting

tumor cells which can indirectly trigger NK cell surveillance

through non–cell autonomous mechanisms (153) may also

effectively augment NK cell functions and eventually result in

novel therapeutic candidates.

Conclusions and prospects

Taken together, NK cell-based therapies have attracted

intense interest and shown great potential in the treatment of

cancers, emerging as the next wave in cancer immunotherapy.

Multiple approaches, including checkpoint blockades, ADCC

enhanced antibodies, agonist antibodies and multi-specific NK

cell engagers, and adoptive NK cell therapies (particularly

engineered iPSC NK cell therapies) have significantly widened

the pool of potential clinical options. However, challenges exist

with the opportunities. As a heterogenous population, NK cells

are still not fully understood. It is crucial to continue to delineate

the NK cell biology and characterize the differences of NK cells

derived from distinct sources and methods. In addition,

although NK cell-based therapies have demonstrated great

potentials in the treatment of hematopoietic cancers, the

advances in solid tumors remain limited. It is important to
Frontiers in Immunology 08
further understand NK homing capacities and the reasons

underlying their poor infiltrations in solid tumors, which may

eventually lead to the development of novel approaches to

overcome the barriers. Furthermore, the questions about the

persistence of NK cells, and the durability of the response, and

the affordable cost for patients need to be considered. Along with

the advancing of new technologies and methods, NK cell-based

therapies will continue to evolve, and get closer to benefit

patients with otherwise no treatment options. In summary,

NK cell-mediated therapies have emerged as the next wave in

cancer immunotherapy.
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