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Innate immune checkpoint
inhibitor resistance is associated
with melanoma sub-types
exhibiting invasive and
de-differentiated gene
expression signatures
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Peter A. Stockwell 1,2, Peter Tsai3, Cristin G. Print2,3,
Janusz Rys4, Bozena Cybulska-Stopa4, Magda Ratajska1,2,5,
Agnieszka Harazin-Lechowska4, Suzan Almomani1,2,
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and Michael R. Eccles1,2*

1Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin,
New Zealand, 2Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand,
3Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
4Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of
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Melanoma is a highly aggressive skin cancer, which, although highly

immunogenic, frequently escapes the body’s immune defences. Immune

checkpoint inhibitors (ICI), such as anti-PD1, anti-PDL1, and anti-CTLA4

antibodies lead to reactivation of immune pathways, promoting rejection of

melanoma. However, the benefits of ICI therapy remain limited to a relatively

small proportion of patients who do not exhibit ICI resistance. Moreover, the

precise mechanisms underlying innate and acquired ICI resistance remain

unclear. Here, we have investigated differences in melanoma tissues in

responder and non-responder patients to anti-PD1 therapy in terms of

tumour and immune cell gene-associated signatures. We performed multi-

omics investigations on melanoma tumour tissues, which were collected from

patients before starting treatment with anti-PD1 immune checkpoint inhibitors.

Patients were subsequently categorized into responders and non-responders

to anti-PD1 therapy based on RECIST criteria. Multi-omics analyses included

RNA-Seq and NanoString analysis. From RNA-Seq data we carried out HLA

phenotyping as well as gene enrichment analysis, pathway enrichment analysis

and immune cell deconvolution studies. Consistent with previous studies, our

data showed that responders to anti-PD1 therapy had higher immune scores

(median immune score for responders = 0.1335, median immune score for

non-responders = 0.05426, p-value = 0.01, Mann-Whitney U two-tailed exact
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.955063/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.955063/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.955063/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.955063/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.955063/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.955063/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.955063&domain=pdf&date_stamp=2022-09-28
mailto:michael.eccles@otago.ac.nz
https://doi.org/10.3389/fimmu.2022.955063
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.955063
https://www.frontiersin.org/journals/immunology


Hossain et al. 10.3389/fimmu.2022.955063

Frontiers in Immunology
test) compared to the non-responders. Responder melanomas were more

highly enriched with a combination of CD8+ T cells, dendritic cells (p-value =

0.03) and an M1 subtype of macrophages (p-value = 0.001). In addition,

melanomas from responder patients exhibited a more differentiated gene

expression pattern, with high proliferative- and low invasive-associated gene

expression signatures, whereas tumours from non-responders exhibited high

invasive- and frequently neural crest-like cell type gene expression signatures.

Our findings suggest that non-responder melanomas to anti-PD1 therapy

exhibit a de-differentiated gene expression signature, associated with poorer

immune cell infiltration, which establishes a gene expression pattern

characteristic of innate resistance to anti-PD1 therapy. Improved

understanding of tumour-intrinsic gene expression patterns associated with

response to anti-PD1 therapy will help to identify predictive biomarkers of ICI

response and may help to identify new targets for anticancer treatment,

especially with a capacity to function as adjuvants to improve ICI outcomes.
KEYWORDS

neoantigen, melanoma, immunotherapy, de-differentiation, neural crest-like, tumour
mutation burden, cancer-associated fibroblast, gene expression signatures
Introduction

The incidence of melanoma has increased continuously over

the past 30 years (1) and cutaneous malignant melanoma

accounts for 73% of skin cancer-related death (2). Although

targeted therapies and immune checkpoint inhibitors (ICI)

have become available to treat cutaneous melanoma (3),

unfortunately, half of all the patients respond poorly

to currently available targeted therapies and only 20–40%

of melanoma patients respond well to anti-PD1 ICI

monotherapies. Treatment with a combination of these drugs

can result in approximately 60% response rates being achieved

(4), but resistance to therapy and disease recurrence is very

common, despite recent therapeutic advances provided by

immunotherapy and targeted drugs. In addition, cancer ICI

therapy has limitations, such as inability to accurately

predict treatment efficacy and patient response. Furthermore,

the therapy can lead to the development of cancer

immunotherapy resistance, autoimmunity, and additionally

there is overall high treatment cost (5).

Several studies have been conducted to investigate

gene expression as a predictive biomarker for anti-PD1

monotherapy, or for anti-PD1 in combination with anti-

CTLA4 monoclonal antibodies. Hugo et al. (6) conducted a

study using 38 pre-treated (anti-PD1 therapy) cutaneous

melanoma patient samples, and found that tumour mutation

burden (TMB) was not sufficient to predict anti-PD1 therapy

response. However overall high mutational loads were associated

with improved survival. These authors also identified a
02
transcriptional signature referred to as the IPRES, which

indicates that non-responding melanomas up-regulate genes

involved in mesenchymal transition, cell adhesion,

extracellular matrix remodelling, angiogenesis, and wound

healing. However, in this study the authors had used several

samples from melanoma patients pre-treated with a MAPK

inhibitor. The main limitations of using MAPK-inhibitor

treated patients for ICI immunotherapy in melanoma is that

the patients who relapse following MAPK pathway inhibitors,

are frequently cross-resistant to immunotherapies too (7). In a

later study, Riaz et al. (8) investigated 68 advanced melanoma

samples to identify a biomarker for positive response to

treatment with anti-PD1 monoclonal antibodies. They studied

melanoma tissues before and after Nivolumab therapy and

characterized activation of specific transcriptional networks,

and upregulation of immune checkpoint genes. A limitation of

this study was that they used different melanoma subtypes of

melanoma patients, such as cutaneous, mucosal, uveal and other

melanomas to identify response to anti-PD1 therapy.

Unfortunately, patients with uveal melanoma do not receive

benefit from anti-PD1 or anti-CTLA4 therapy, and the reasons

behind poor ICI immunotherapy response in uveal melanoma

are unclear (9). The action of immunotherapy usually relies on

antigen-specific T cell responses by alleviating tumour-induced

neoantigens (10). Cutaneous melanoma is a tumour type with

one of the highest prevalence rates of somatic mutations. In

contrast, uveal melanoma frequently presents with a low somatic

mutation rate (11). The lack of neoantigens could be a possible

reason for uveal melanoma not to respond to immunotherapy.
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For this reason, in our study we only used cutaneous melanoma

samples to study the tumour microenvironment in response to

anti-PD1 therapy.

The surrounding niche of melanoma, that is, the tumour

microenvironment (TME), is composed of fibroblasts, endothelial

cells, extracellular matrix (ECM), various immune cells, such as

tumour infiltrating lymphocytes (TILs), as well as interactions with

human leukocyte antigen class I antigens (HLA-1) expressed on

tumour cells, and other tumour-associated factors, such as PD-L1,

which togetherplayacrucial role inmelanomadevelopment (12–15).

Increased T cell infiltration and immunotherapy response is closely

related to increased neoantigen [tumour-associated antigen (TAA)

and tumour-specific antigen (TSA)] formation (16). Cancers

frequently escape immune attack by promoting defective tumour

antigen presentation, as well as secretion of immunosuppressive

mediators, altering activated T-cells in both peripheral blood and

lymph nodes and leading to the presence of inhibitory signals

expressed by TILs in the TME (17, 18). Expression of PD-L1

protein is not the most accurate option for the prediction of

response in melanoma (19), as patients with negative PD-L1 in

immunohistochemistry can also frequently benefit from anti-PD-1

or anti-PD-L1 therapies (20, 21). Anti-PD1 therapy blocks

interactions in the PD-1/L1 inhibitory axis and activates tumour-

reactive T cells to induce anti-tumour responses (22, 23).

Primary (innate) resistance, and acquired resistance to ICI

therapy, can occur in melanoma patients as a result of tumour

immune escape mechanisms in antitumor immune response

pathways regulated by the TME (24). Patterns of immune cell

infiltration, changes in antitumor immune response pathways,

or alterations of signalling pathways in tumour cells, and other

changes in tumour cells can lead to an inhibitory

immunosuppressive microenvironment and innate resistance

(16). In contrast, the host immune system can facilitate

tumour growth and progression by interactions between

tumour cells, immune cells, and the TME, as an extrinsic

factor (25).

In this study our goal was to gain a more comprehensive

understanding of the immune infiltrate characteristics and

malignant cell subsets in melanomas treated with ICI.

Through an analysis of mRNA expression and TMB in

cutaneous melanoma tissues between responding and non-

responding patients, we have identified patterns of immune

suppression, along with aggressive, invasive, and de-

differentiated gene expression signatures, which we show

correlate with poor response to ICI immunotherapy.
Methods and materials

Tumour specimens and profiling

From a Polish melanoma cohort, which was received from

the Maria Sklodowska-Curie National Research Institute of
Frontiers in Immunology 03
Oncology, Krakow, Poland, a total of 40 patients’ samples

were selected for the study. The patient selection criteria were

– all the patients who received/are receiving Pembrolizumab or

Nivolumab treatment (alone) for advanced stage 4 cutaneous

melanoma, and who did not receive any previous cancer

treatment, and where a sufficient amount of tissue was

retrieved from the lymph node dissection (where available).

The clinical data about the patients including the response to

immunotherapy treatment, was collated from all melanoma

patients. Ethical approval has been given for the Polish

samples (KB/430-74/20).
RNA and DNA extraction

We performed macrodissection to obtain cancer cells from

heterogeneous histological samples. Hematoxylin and eosin

(H&E) staining was performed to identify and mark the

tumour regions on a representative slide-mounted tissue

section for each tumour sample. The H&E-stained tumour

slides were used as a reference for dissecting the area of

interest from serial unstained slides from the same patients’

samples. Finally, a scalpel was used to carefully scrape off the

tissues within the marked area of interest for downstream

molecular analysis. RNA was extracted from macrodissected

FFPE tissue samples using an Qiagen RNeasy mini prep kit, and

then quantified using an Invitrogen™ Qubit™ RNA HS (High

Sensitivity) Assay Kit. DNA was extracted using QIAamp DNA

FFPE Tissue Kit, and quantified using an Invitrogen™ Qubit™

1X dsDNA HS (High Sensitivity) Assay Kit. Isolated RNA and

DNA concentrations were measured using an Invitrogen Qubit 4

fluorometer. Nanodrop assays were carried out to measure

A260/A230 purity ratio to observe whether the isolation

technique required further optimization.
RNA sequencing and immune
cell deconvolution

RNA integrity was determined using a 2100 Bioanalyzer system

andassociatedRNA6000Nanokit (5067-1511;Agilent,CA,USA) to

assess the quality of extracted RNA. Due to the low RNA yield and

low RNA quality from approximately half the FFPE samples, we

could only perform RNA-Seq analysis on 20 melanoma patient

samples (responder=10, non-responder=10). ForRNA-Seq, 500ng

of RNA for each sample was sent to the Otago Genomics Facility

(OGF)where the RNA-Seq library preparationwas performed using

the ribo-depletion method (Gold). A TrueSeq mRNA stranded

library prep kit (RS-122-2101; Illumina, CA, USA) was used for

RNAlibrarypreparation.Thiswas followedbyrunning theRNA-Seq

samples on an Illumina HiSeq 2500 sequencer (Illumina, USA) with

single-end reads, read length of 101 basepairs and 20million reads to

produce raw fastq files.
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The RNA-Seq reads were then adaptor trimmed using the

cutadapt tool (26) and clean reads were then mapped to the

human genome (assembly GRCh37) using HISAT2 (27). Quality

base determination in the sequencing runs was performed using

fastq-mcf tools, discarding results with a Phred score lower than

Q20 (accuracy of 99%). The read counts for each sample were

retrieved, first by exon, and then summarized by gene using

featureCounts (28). To avoid spurious alignment, a mapping

quality of 10 was used. Only high-quality data that had passed

were further processed by using RStudio (Version 1.2.5042). The

normalized gene expression levels were measured in TPM

(Transcripts Per Million) values. Differential gene expression

analysis using edgeR was performed to carry out CAMERA

analysis. Further, normalised RNA-Seq data was used to

estimate absolute abundance for immune and stromal cells in

each sample using computational tools xCell package (29) and

CIBERSORT (30).
NanoString nCounter PanCancer
Pathway Panel

Gene expression was measured using the NanoString

nCounter PanCancer Pathways Panel (NanoStr ing

Technologies, Seattle, WA, USA). Each Panel consists of 770

genes, including 13 housekeeping genes. A total of eight tumour

samples (four responder and four non-responder) from the same

patients as were analysed by RNA-Seq, were subjected to

NanoString analysis, to validate RNA-Seq gene expression

data, and to perform cancer pathway analysis. The samples

were selected based on mapping efficiency (more than 90%) to

the human genome (assembly GRCh37) based on our RNA-Seq

data analysis. For each NanoString assay, 1 mg of total tissue

RNA was isolated, mixed with a NanoString code set mix and

incubated at 65°C overnight (16–18 hr). The reaction mixes were

loaded on the NanoString nCounter Prep Station for binding

and washing, and the resulting cartridge was transferred to the

NanoString nCounter digital analyzer for scanning and data

collection. Raw count data was preprocessed using the geNorm

algorithm in nCounter Advanced Analysis ver. 2.0.115

(NanoString Technologies) (31). A quality check of raw data

was conducted using nSolver Analysis Software ver. 4.0 and

NanoStringQCpro ver. 1.14.0 (NanoString Technologies). Z-

scores were generated for each gene from normalised data to

perform further analysis.
Tumour mutation burden panel analysis

DNA quantification for Ion AmpliSeq™ Library

Preparation was carried out using TaqMan® RNase P
Frontiers in Immunology 04
Detection Reagents, as described by the manufacturer

(ThermoFisher). DNA samples were first quantitated, and

the DNAs were then shipped for analysis using Oncomine™

Tumor Mutation Load Assays, which were carried out as

d e s c r i b ed by th e manu f a c t u r e r (Th e rmoF i sh e r ,

Melbourne, Australia).
Bioinformatics methods used to analyse
TMB data

The data were received in a BAM file format to process for

further analysis. The initial data was analysed on Oncomine

Tumour Mutation Load – w3.0 – DNA – Single Sample in the

Ion Reporter cloud server. We selected only 31 samples for

further analysis because these samples passed in-built QC

(quality control) tests with ≥80% depth reads uniformity in

the whole genome. Then the mutation load, driver mutation,

nsSNVs, mutation type and mutation location were identified

for each sample (p-value < 0.05). Then the multiple genomic

alteration events were presented by OncoPrint heatmap

using RStudio.
Neoantigen analysis

We used pVAC-tools 3.0.0 (pVAC-Seq command) pipeline to

predict neoantigen production from each sample of RNA

sequencing data. We used an RNA variant-calling pipeline to

identify a list of somatic non-synonymous mutations and then

annotated transcripts sequence for changed amino acids, followed

by in silico approach to determine HLA haplotypes of the patient.

At first, the fastq files from RNA sequencing were trimmed using

Cutadapt3.4 and aligned using STAR 2.2.2.5 against the human

genome (assembly GRCh37). We performed local indel

rearrangement, base quality score recalibration and RNA variant

calling using GATK 2.2.0 with default parameters (32, 33).

Variants with known dbsnp138 ID were excluded from

subsequent neoantigen analysis as those are likely to be germline.

In parallel, RNA-Seq data were analysed using OptiType v1.3 to

predict the MHC class I alleles haplotype of each patient. Kallisto

0.46.2 (GRCh37, genecode v19) was used to quantify abundances

of transcripts and genes from the RNA-Seq data. To predict high

affinity peptides that are likely to bind to the MHC class I

molecule, we used four different epitope prediction softwares:

MHCflurry, NetMHC, NetMHCpan and PickPocket. To

streamline the comparison, we first built an output file that

consisted of two amino acid sequences per variant site: wildtype

WT (normal) and mutant MT (tumour). Then the best MT score

was calculated based on the lowest binding score for MT sequence
frontiersin.org
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with the localized peptides and per mutation between all

independent HLA alleles that were used as input.
Bioinformatics methods used to analyse
online available data

For validation purposes, we used publicly available

melanoma data accessed through the Gene Expression

Omnibus (GEO, URL: https://www.ncbi.nlm.nih.gov/geo/)

from NCBI, associated with recent publications (6, 8). These

data included RNA-Seq data for pre-treated melanoma patients

using anti-PD1 therapy, and were downloaded as SRA files (raw

sequence data), followed by using fastq-dump to produce fastq

files. After that, we used an in-house pipeline to generate read

counts for each sample. To maintain the consistency with our

patients’ categorization, we excluded the samples which were

pre-treated with MAPK-inhibitors from the GSE78220 dataset,

and only used cutaneous pre-treated melanoma samples from

the GSE91061 dataset.
Statistical analysis

Gene Set Enrichment Analysis (GSEA) was performed using

gene sets available in the Broad Institute Molecular Signatures

Database (MsigDB) which included H1 (hallmark), C2

(curated), and C5 (gene ontology) (34). CAMERA tests were

performed as available from the edgeR package and a FDR

adjusted p value ≤ 0.05 used as the statistically significant

threshold (35). For generating a gene-set score for each

sample, single sample GSEA (ssGSEA) (36) was used from the

GSVA Bioconductor R package (37). The endothelial-

mesenchymal transition (EMT) score, viral mimicry score, and

differentiation score were self-curated from different published

articles. The viral mimicry gene sets, which included DDX58,

DDX41, IFIH1, OASL, IRF7, IRF1, ISG15, MAVS, IFI27, IFI44,

IFI44L, and IFI16, were obtained from our previously published

work (38). EMT signature genes including CDH1, EPCAM,

GRHL2, KRT19, RAB25, CDH2, VIM, ZEB1, ZEB2, SNAI2 and

TWIST1 were collected from Tan and colleagues (39) and also

merged with “HALLMARK_EPITHELIAL_MESENCHYMAL_

TRANSITION” from MsigDB. Proliferative signature genes that

were used were from the Widmer et al. identified dataset (40).

Differentiation signature genes (see Supplementary Table S1)

from Tsoi and colleagues (41) were acquired to further evaluate

the dedifferentiation signature in our patients’ derived samples.

These genes included 7 groups, in order, from least differentiated

to the most differentiated: (1) Undifferentiated, (2)

Undifferentiated-Neural crest-like, (3) Neural crest-like, (4)

Neural crest-like-Transitory (5) Transitory, (6) Transitory-

Melanocytic, (7) Melanocytic. Z-scores were generated for
Frontiers in Immunology 05
each gene and unsupervised hierarchical clustering was

performed. Mann-Whitney U test was performed using

GraphPad Prism software (Version 8, GraphPad Software,

Inc., San Diego, CA, USA).
Results

Patients’ characteristics

In this investigation, formalin-fixed paraffin-embedded

(FFPE) melanoma tissue samples were obtained from 40

melanoma patients, who had been treated with anti-PD-1

monotherapy (nivolumab or pembrolizumab). The patients

did not receive any prior treatment, and all FFPE tissues were

collected before treatment was started. The tissues were obtained

from either primary melanoma or lymph node metastases,

which had been resected prior to starting immunotherapy

treatment for diagnostic purposes. Responders were defined as

patients with a RECIST 1.1 criteria (42) – complete response

(CR), partial response (PR), or stable disease (SD) of greater than

6 months with no progression. Non-responders were defined as

progressive disease (PD) or SD for less than or equal to 6 months

before disease progression. We stratified our dataset into 19

responder and 21 non-responders (Table 1).
Responder melanomas exhibit higher
mutation burden compared to
non-responder melanomas

Clonal mutations were more frequent in responders than non-

responders, with a median TMB value of 16.7 and 8.5, respectively

(p = 0.07).NRAS,HNF1A, BRAFV600E,TP53 andNOTCH1were the

most commondrivermutations in thispatient cohort (Figure1),with

NRAS gain of functionmutations being themost common (n=17/31

patients; 55%). BRAFV600E mutations were identified in 23% cases

(n=9/40). These results are consistent with previous studies (6). No

melanomas were observed with both NRAS and BRAFV600E

mutations. Mutation in NRAS causes reactivation of the MAPK

pathway, and corresponding NRAS and BRAF mutations in single

cells are very rare due to self-induced apoptosis by sustained hyper-

activation of theMAPKpathway (43). An indelmutation inHNF1A

was identified in 29% of cases, and gain of functionmutations in the

MET oncogene were observed in 2 non-responding melanomas.

Mutations in HNF1A (Hepatocyte Nuclear Factor 1A) have

previously been identified in hepatoma, colon cancer and

endometrial cancer, and HNF1A gene mutations are associated

with risk of pancreatic cancer (44).

Our data indicate that most of the driver mutant genes are

involved in DNA damage repair pathways (Figure 1), such as TP53,

NOTCH1, PTEN, CREBBP, MAP2K1, SF3B1, MET, ATM, ALK,
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SETD2, ERCC2, BAP1,DNMT3A, SMARCA4, ATRX, RB1, CDK12,

and IDH1, indicating genomic instability in melanoma. There were

nomutations in specific genes that strongly correlated with response

or resistance to anti-PD1. The ZNF384 gene harboured nsSNVs in 8

of 16 non-responding tumours (50%), but in only 2 of 15 responding

tumours (13.3%) (Supplementary Figure S1).
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Relatively lower immune scores occur in
non-responding melanomas

To better understand the immune landscape of melanoma,

neoantigens from the FFPE tumour samples in our cohort were

predicted by using the pVAC-tools bioinformatics pipeline on our
TABLE 1 Clinicopathological features of the melanoma patients (refer to Supplementary Text).

Total BRAFV600EMutation Responder for the ICI (RECIST criteria)

n = 40 n = 9 n = 19

Age (years)*

Median = 65

Range = 34 – 90

<40 2 1 1

40 – 60 11 5 5

>60 27 3 13

Gender

Male 21 6 11

Female 19 3 8

No patients who have positive LNs 25 8 13
*Age is the year of surgery.
FIGURE 1

Tumour mutation analysis between responding and non-responding melanomas. Driver mutations in pre-treatment melanomas of responding
versus non-responding patients prior to anti-PD-1 therapy. The heatmap represents only 31 samples because these samples passed an in-built
QC (quality control) test with ≥80% depth of read uniformity in sequencing using the Oncomine Tumour Mutation Load – w3.0 – DNA – Single
Sample in the Ion Reporter cloud server.
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RNA-Seq raw data files. In total, we found 5457 neoantigens

predicted to have a high binding affinity to human leukocyte

antigen I (HLA-I) (IC50 < 500 nanomolar (nM)), and a lower

HLA-I binding affinity (IC50 > 500 nM) to the corresponding

wildtype peptides. Since immune cells recognize neoantigens that

are expressed and presented by HLA molecules on the tumour cell

surface, we filtered out the 788 best binding epitopes, which passed

the above criteria, and had strong MT binding (IC50 < 500) and

strong expression (TPM * RNA_VAF > 3). While the predicted

neoantigens were directly derived from somatic mutations and were

expected to correlate with TMB, we confirmed that the expressed

neoantigens had a statistically significant correlationwith TMB in all

samples (Pearson correlation, R = 0.8, p = 0.0006, two-

tailed) (Figure 2A).

Moreover, it is known that cancer cells with high tumour

antigen loads may avoid presenting neoantigens on the surface

of MHC, through altering the antigen presenting machinery

such as proteasome subunits or transporters associated with

antigen processing (TAP), beta-2-microglobulin (B2M) or MHC

itself (45, 46). Therefore, we investigated the expression level of

beta-2-microglobulin mRNA (B2M) and human leukocyte

antigen (HLA) in both groups of patients and found the

expression of B2M is downregulated compared to the

responding tumours (Figure 2C, Supplementary Figure S2).

Downregulation of B2M and HLA was observed in non-

responder melanomas, although these were not significant.

Given the overall strong correlation between TMB and the

expressed neoantigens, we next examined the correlation between

TMB and tumour immune score. In our cohort, TMB showed

positive correlation with tumour immune score (Pearson

correlation, R = 0.6, p = 0.01, two-tailed) (Figure 2B), suggesting

that higher TMB may cause increased expression of neoantigens

leading to activation of immune response.
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The non-responding tumour
microenvironment promotes
immunosuppression, and enhanced
aggressiveness and malignancy

High TMB (non-synonymous mutations) is a tumour-

intrinsic feature and is associated with antitumor immune

responses and responses to ICIs (47, 48). To determine the

tumour microenvironment of cell subsets in each patient’s

sample and to compare between responding and non-

responding melanomas, we performed CIBERSORT and xCell

analyses. Gene expression values in transcripts per million

(TPM) were used to estimate the immune cell content, and to

calculate an immune score by analysis using the xCell package.

[54]. The immune score was calculated based on quantifying the

density and location of immune cells within the tumour. The

median immune scores for responders and non-responders were

0.1335 and 0.05426, respectively, with a p-value of 0.01 Mann-

Whitney U two-tailed exact test) (Figure 3), suggesting that high

numbers of TILs are present in responders to anti-PD1 therapy,

and which is indicative that responding tumours are highly

antigenic and melanocytic in nature, while in contrast non-

responding tumours are metastatic in nature.

To characterize the tumour microenvironment of responder

and non-responder groups of melanomas, we performed

CIBERSORTx, which is an in silico algorithm (49) for estimating

specific cell types in a mixed cell population, using transcriptomic

data, which were available for 20 melanoma patients from our

cohort. A reference marker gene or signature matrix was prepared

using the Tirosh et al. (50) single cell RNA-Seq metastatic

melanoma dataset. This signature matrix was used to acquire the

abundance of melanoma malignant cells and cancer associated

fibroblast (CAFs) cell subsets in each sample. Non-responding
A B C

FIGURE 2

Correlation of mutation burden with neoantigens and immune score analysis. (A) Pearson correlation between tumour mutation burden and
expressed neoantigens in melanomas. (B) Pearson correlation between tumour mutation burden and immune score in melanomas. (C) Beta-2-
microglobulin (B2M) expression level in responder and non-responder tumours in log-normalised expression value (p = 0.06, not significant,
Mann-Whitney U). Here, because RNA-Seq was performed on twenty samples, it was only possible to match twenty samples from TMB and
RNA-Seq data (responder = 10, non-responder = 10) were used to perform Pearson correlation analysis. On the horizontal axis in C), R,
responder; N, non-responder.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.955063
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hossain et al. 10.3389/fimmu.2022.955063
melanomas were highly enriched with malignant cell types

(p-value = 0.05) and with CAFs cell subsets (p-value = 0.02)

compared to the responding melanomas (Figure 3). Previously,

several studies reported that melanoma-associated fibroblasts

can induce immune suppression via melanoma–stroma crosstalk

(51–53), which prompted us to check the immune cell component

in the tumour microenvironment of the responders and non-

responders to the anti-PD1 therapy.

The tumour microenvironment of melanoma contains

many immune cells or tumour infiltrating lymphocytes

(TILs), such as different subsets of T−cells, dendritic cells,

macrophages, neutrophils, mast cells, B lymphocytes, and

natural killer (NK) cells (54). To estimate the presence of

different immune subtypes in the TME, we used a microarray

derived LM22 signature matrix (55) for profiling 22

functionally defined human immune cell types in each

sample. Responder melanomas were more highly enriched

with a combination of CD8+ T cells, T helper cells (Th1 and

Th2), dendritic cells (p-value = 0.03) and an M1 subtype of

macrophages (p-value = 0.001) (Figure 4). Interestingly, non-

responding tumours were replete with an M2 subtype of

macrophages (p-value = 0.02) and B-cells (p = 0.05). We

identified that non-responding tumours were significantly

enriched with CAFs, M2 macrophages, malignant cell types

and lower immune score, which we hypothesize promotes

immunosuppression, tumour aggressiveness and distant

metastasis of this group of melanomas.

To validate the immune cell proportions in responding and

non-responding melanomas, we performed an analysis with the

CIBERSORT and xCell packages on pre-treated melanoma

samples, using bulk RNA-Seq datasets (GEO: GSE78220) and

(GEO: GSE91061) (Supplementary Figures S3A, B). To

categorize the samples as responder and non-responder, we

followed precisely the information provided with the
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GSE78220 dataset, and for the GSE91061 dataset, the patients

with complete response (CR) and partial response (PR) were

defined as responders, and stable disease (SD) and progressive

disease (PD) were defined as non-responders following the

RECIST 1.1 criteria. These analyses gave similar patterns as

our own dataset for the presence of immune cells, such as

dendritic cells, M1 and M2 subtypes of macrophages, CD8+ T

cells, CD4+ T cells and naïve B cells in the melanoma tumour

bed, which can discriminate between responders and non-

responders to anti-PD1 therapy.
Non-responding melanomas to
immunotherapy represent a state
of de-differentiation and neural
crest-like gene signatures

To determine the altered transcriptomic state in the non-

responding tumours compared to the responding tumours, we

performed unsupervised hierarchical clustering using Tsoi et al.

(41) gene sets (see Supplementary Table S1). Tsoi and colleagues

identified that melanomas could exhibit four major

transcriptomic states that are coupled to a differentiation

trajectory corresponding to (1) undifferentiated, (2) neural

crest-like, (3) transitory, and (4) melanocytic. Our data

analysis confirmed that the non-responding tumours were

enriched for genes characteristic of the undifferentiated and

neural crest-like states. The responding tumours were mainly

character ized by transi tory and melanocyt ic gene

signatures (Figure 5).

The presence of distinct phenotypic diversity was further

confirmed in analyses with pre-treated melanoma samples, using

bulk RNA-Seq datasets (GEO: GSE78220) and (GEO:

GSE91061) (Supplementary Figures S4A, B). These data also
FIGURE 3

Deconvolution study for malignant cells, cancer associated fibroblasts and immune score between responding (n = 10) and non-responding
(n = 10) melanomas. Significance tests were performed using Mann–Whitney U test. On the horizontal axis, R, responder; N, non-responder;
CAF, cancer associated fibroblast; and MEScore, micro-environment score.
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showed that non-responding melanomas were enriched for

genes characteristic of the undifferentiated and neural crest-

like states.

In our previous study, Jeffs et al. (56) identified gene

expression signatures that were associated with MITF high and

low expression, which were observed in melanoma cell lines that

were either non-invasive, or invasive, respectively

(Supplementary Figure S5B). Independently, Widmer et al.

(40) classified melanoma cell lines with MITF high and low
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expression as proliferative, and invasive, and identified

respective signatures of gene expression in melanoma

(Supplementary Figure S5A). We used these two independent

gene expression signatures (40, 56) to distinguish invasive, non-

invasive, and proliferative cell phenotypes from our

transcriptomic data between responder and non-responder

melanomas. In each analysis, we revealed that the non-

responding melanomas were associated with an invasive gene

signature (Supplementary Figure S5).
FIGURE 4

Deconvolution study to estimate different immune cell abundance in responding (n = 10) and non-responding (n = 10) melanoma tissues.
Significance tests were performed using Mann–Whitney U test. Here, R, responder; N, non-responder, DC, dendritic cells; NK cell, Natural killer
cell; Th1, T helper cell 1; Th2, T helper cell 2; Tregs, regulatory T cells.
FIGURE 5

Transcriptomic states of responding (n = 10) versus non-responding (n = 10) melanomas. The non-responder group of melanomas exhibited
undifferentiated and neural crest-like gene expression signatures. In contrast, the responder group of melanomas mainly exhibited melanocytic
and transitory gene expression signatures. Values are in z-score. Here, Pt, patient; R, responder; N, non-responder.
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Loss of interferon-gamma signalling,
downregulation of cell apoptosis, and
DNA damage repair pathways contribute
to anti-PD1 resistance

We performed gene-set enrichment analysis using CAMERA

(35) from our RNA-Seq data. From the gene-set enrichment

analysis, thirty-four gene sets were found to be significantly

altered (FDR adjusted p value threshold of 0.05). Of these, 198

genes involved in interferon gamma (IFN-g), and 48 genes in Signal
transducer and activator of transcription 3 (STAT3) signalling, were

among the most significantly upregulated processes in the

responding group (FDR adjusted p-value = 0.006 for

HALLMARK_INTERFERON_GAMMA_RESPONSE, p-value =

0.0002 for DAUER_STAT3_TARGETS_DN) (Figure 6). This

would be expected, given that the non-responding group of

melanomas harboured relatively few immune cells. For the non-

responding group of melanomas, approximately 243 genes were

significantly involved in metastatic processes (FDR adjusted

p-value = 0.0007 for JAEGER_METASTASIS_DN). Our data
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suggest that, IFN-g in the responding melanomas might produce

an anti-tumour effect by generating anti-proliferative and pro-

apoptotic effects, enhancing increased tumour antigen

presentation, and recruiting other immune cells (57).

To investigate which biological processes were altered in

the non-responding melanomas compared to the responding

melanomas, we performed pathway analysis using NanoString

gene expression analysis, which was carried out using eight

melanoma tissues (four responders and four non-responders),

due to having limited amounts of RNA available. Interestingly,

genes involved in cell apoptosis (CAPN2, ATM, CHEK1,

PRKDC, RAD21 and TNFRSF10A) and DNA damage repair

(ALKBH2, H2AFX, POLE2) pathways were significantly

upregulated in the responding melanomas, indicating that

tumour intrinsic factors in responding melanomas were not

as extremely altered as in non-responding tumours (Figure 7).

In addition, our data suggest IFN-g may trigger antiviral and

adaptive immune responses through a Jak-STAT signalling

pathway (Figure 7). Genes involved in these pathways were

downregulated in the non-responder group of melanomas
FIGURE 6

Gene set enrichment analysis (GSEA). The upregulated GSEA groups in the responder group of patients were enriched for genes involved in the
immune response pathway and transcription, and the down-regulated genes were enriched for genes in differentiation, viral mimicry, and
metabolic pathways. Number of responders = 10 and non-responders = 10. In total, 34 gene sets were identified in GSEA using CAMERA test.
The p-value is <0.05.
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(Table 2), which may ultimately contribute to melanoma

immune escape.

Overall, this analysis hinted that multiple tumour intrinsic

factors such as loss of interferon-gamma (IFN-g) signalling

pathways, lack of T cell responses due to loss of tumour antigen

expression, downregulation of cell apoptosis pathway and DNA

damage repair may have contributed to immunotherapy resistance.
Non-responding melanomas have an
increased expression of genes involved
in epithelial mesenchymal transition and
viral mimicry

In non-responder melanomas there was enrichment of genes

involved in epithelial mesenchymal transition, and viral mimicry

pathways, while in responder melanomas differentiation genes were
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enriched (Figure 8). EMT signature genes included CDH1, EPCAM,

GRHL2, KRT19, RAB25, CDH2, VIM, ZEB1, ZEB2, SNAI2 and

TWIST1, collected from Tan and colleagues (39). Viral mimicry

pathway genes were obtained from our previously published work

(38), and included 12 genes, which play roles ranging from pattern

recognition receptors that detect dsRNA and dsDNA (DDX58,

DDX41, IFIH1), to activation of mitochondrial antiviral signalling

proteins (MAVS), and transcription factors (IRF7, IRF1) and the

activation of interferons (IFI27, IFI44, IFI44L, IFI16). However,

overexpress ion of DDX58 i s responsible for local

immunosuppression in the tumour bed and is associated with

poor prognosis and higher tumour grade of ovarian cancer (63).

Differentiation gene set and proliferative signature gene plots

showed that responding melanomas were enriched with a gene

set associated with a proliferative state or melanocytic stages of

melanoma differentiation. In contrast, the non-responding

melanomas were enriched with invasiveness genes.
FIGURE 7

NanoString analysis of pathway-associated gene expression differences between responder (n = 4) and non-responder (n = 4) melanomas to
anti-PD1 therapy. Values are in z-score. Here, Pt, patient; R, responder; N, non-responder.
TABLE 2 Jak-Stat pathway genes and their functions.

Gene
name

Fold
change

p-
value

Description

CBL 1.82 0.02 essential for T cell activation and regulating peripheral T cell tolerance (58)

LEPR 2.37 0.007 regulates both innate and adaptive responses through modulation of immune cells survival and proliferation as well as increasing the
cytotoxicity of NK cells, and activating granulocytes, macrophages and DCs (59)

SOCS2 1.733 0.02 involved in regulation of developmental and homeostatic pathways and loss of SOCS2 are involved in STAT3 de-activation (60)

SPRY1 2.58 0.02 inhibits signalling from various growth factors pathways and play role as a tumour suppressor in various malignancies (61)

SPRY4 3.11 0.03 involved in cell proliferation and lower expression of SPRY4 predicts poor prognosis (62)
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Discussion

In this study we have focused on systematic assessment of

responder and non-responder melanoma patients to ICI

treatment with respect to TMB, expressed neoantigens,

d e c onvo l u t i on ana l y s i s o f t h e t umou r immune

microenvironment, and phenotype switching, through using

Oncomine Next Generation Sequencing and RNA-Seq

analysis, which were generated from melanoma tissues. In all

cases the melanoma tissues were obtained prior to the patients

receiving anti-PD1 therapy. We found that, as others have

previously reported, when compared to non-responding

melanomas, the responding melanomas were more likely to

have accumulated a greater tumour mutational burden.

Tumour mutational burden (TMB) refers to the total

number of non-synonymous mutations observed per megabase

(64), and it is a genomic biomarker with relatively low power to

predict favourable responses to ICIs in melanoma (65). High

TMB results in the expression of tumour related antigens, or

neoantigens, that can trigger T cell activation. We observed that

TMB had a strong positive correlation with expressed

neoantigens, and a moderate positive relationship with

immune scores in melanoma patients.

A possible reason that melanomas frequently don’t respond

to immune checkpoint therapy could be due to lack of

recognition of tumour cells by T cells, which may be linked to

an absence of tumour neoantigens (66). Clinical responses to
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ICIs are thought to be mediated in part by T cell recognition of

neoantigens that are derived from cancer-specific mutations and

presented on major histocompatibility complex (MHC)

molecules (67). Moreover, our results showed that non-

responding tumours were highly enriched with malignant cell

types, CAF cell subsets, an M2 subtype of macrophages, and B

cells, compared to the responding tumours. A higher abundance

of CAFs in the tumour stroma is associated with an increased

risk of invasion, metastasis, and poor prognosis of melanoma

through the release of a variety of chemokines and cytokines,

extracellular matrix (ECM) components and ECM-remodelling

enzymes (51). Previously, several studies have reported that

melanoma-associated fibroblasts can induce immune

suppression via melanoma–stroma crosstalk (51–53). We

therefore carried out a deconvolution analysis of melanoma

RNA-Seq data to identify immune cell components, and we

also investigated gene expression patterns characteristic of

phenotype switching.

Melanocytic differentiation pathways are thought to have a

role in controlling cell migration of the neural-crest lineage. One

of the most established factors that controls neural-crest

migration, and melanocyte differentiation, is the expression

level of microphthalmia-associated transcription factor

(MITF). In melanoma cell biology, MITF is a central player,

controlling aspects of phenotypic switching (68), and is one of

several critical transcriptional regulators involved in melanocyte

development, upregulating a set of genes to drive melanocytic
FIGURE 8

Enrichment score analysis. Barcode plots show that genes involved in the epithelial mesenchymal transition and viral mimicry detection were
upregulated in non-responders whereas differentiation-associated genes and proliferative signature genes were downregulated. Genes
expressed in the profile datasets were ranked by log2 fold changes (high-expression/low-expression) in the responders (left side, n = 10) and
non-responders (right side, n = 10). Overall shifts in the genes (represented by vertical bars) towards the left or right give an indication of the
overall gene level for specific pathways rather than at the individual gene level. Above each barcode plot enrichment scores are shown. Positive
and negative values for enrichment scores mean positive and negative enrichment, respectively. Here, R, responder; N, non-responder.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.955063
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hossain et al. 10.3389/fimmu.2022.955063
differentiation (3). All melanomas exhibit at least two distinct

MITF transcriptional cell states, which are represented by

melanomas with high levels of MITF, versus melanomas with

low levels of MITF (50). High MITF levels are thought to

promote cell proliferation through the direct activation of the

DIAPH1 gene, and low MITF expression in melanoma is

associated with cell migration (68). We therefore used gene

expression signatures identified by Jeffs et al. (56), and

characterised by high and low MITF expression levels, to

distinguish invasive and non-invasive cell phenotypes between

responding and non-responding tumour types. In addition, we

characterised our dataset using a related, but independent gene

signature matrix associated with high and low MITF expression

levels, as identified by Widmer et al. (40). In each scenario, using

our dataset, non-responding melanomas were associated with an

invasive gene signature, while responding melanomas were

associated with proliferative and non-invasive gene

signature matrices.

The acquisition of differentiation plasticity is a non-

mutational mechanism of drug resistance in melanoma. This

was also part of our rationale for investigating an association

with anti-PD1 treatment resistance, using gene signatures

associated with a melanoma differentiation trajectory, as

categorized by Tsoi et al. (41). Our results confirmed that

non-responding melanomas were enriched for genes that were

characteristic of undifferentiated and neural crest-like

differentiation states, while in contrast, the responding

melanomas mainly exhibited expression signatures

characterized by transitory and melanocytic state gene

signatures. To further validate these findings, we next

analysed other publicly available ICI-associated melanoma

RNA-Seq data (6, 8), in which we observed very similar

outcomes, which further supports the notion that the

responding versus non-responding melanomas exhibit

phenotype switching behaviour.

From our findings, we propose a model (see Figure 9),

which puts forward the idea that responding melanomas are

mainly melanocytic in nature and due to their proliferative

nature, they frequently (but not always) generate relatively

larger tumour mutation burdens leading to higher neoantigen

production. In contrast, non-responding melanomas are

mainly composed of cells exhibiting neural crest-like or

undifferentiated transcriptomic stages, which makes them

more neural crest-like/cancer stem cell-like in nature and less

proliferative. Due to their lower rate of proliferation, they

produce a relatively smaller mutation burden, resulting in

less neoantigen expression.

From our RNA-Seq data we found that responding

melanomas were mostly expressing IFN-g, STAT3, cell

apoptosis and DNA damage repair signalling pathway genes,

whereas non-responding melanomas significantly expressed
Frontiers in Immunology 13
metastatic pathway genes, representing important differences

in cell signalling. Our data also suggested that IFN-g in the

responding tumours triggered antiviral and adaptive immune

responses through the Jak-STAT signalling pathway (Figure 7) –

Among the genes involved in these pathways were CBL, LEPR,

SOCS2, SPRY1, and SPRY4, which were downregulated in non-

responder melanomas (Table 2) and ultimately contributed to

melanoma immune escape. Interestingly, IFN-g plays a dual role
in anti-tumour immune response – firstly, through anti-tumour

immune responses, directing anti-proliferative and pro-

apoptotic effects on tumour cells, enhancing tumour

neoantigen presentation, and immune cell recruitment (57).

Secondly, IFN-g can cause immune escape by increasing the

expression of PD-L1 on the surface of tumour cells (48).

IFN-g is mainly produced by Th1 cells, and is critical for

immune responses and sustained M1 macrophage bioactivities

to eliminate neoplastic cells (69). Supporting this, responder

melanomas were highly enriched with a combination of CD8+

T cells, T helper cells (Th1 and Th2), dendritic cells (DCs) and

an M1 subtype of macrophages, whereas non-responding

tumours contained abundant M2 macrophages and B cells.

Th1 cells, IFN-g, and TNFa regulate M1 macrophages to

enhance antigen presentation on the major histocompatibility

complex (MHC) (70, 71) to exert anti-tumour immune

response. In contrast, activated M2 macrophage subtypes

possess pro-tumorigenic properties (72, 73). Increased levels

of Th1 and Th2 cells in responding tumours activate CD8+ T

cells through IFN-g as a mediator, which inhibits tumour cell

proliferation. Th1 cells in responding tumours activate

macrophages and maturation of DCs (54), which then

recognize tumour antigens, and process neoantigens. DCs

also induce a cross-presentation of antigens to CD8+ T

lymphocytes by MHC class I molecules, and to CD4+ by

MHC class II molecules to initiate and regulate both innate

and adaptive immunity. Furthermore, mature DCs can

contribute to the cytotoxic immune reaction directly, as well

as activating NK cells (54), which are also linked with

favourable clinical outcomes in melanoma. Additionally, our

study showed that non-responding melanomas were enriched

with B-cells (Figure 4), and they exhibited higher expression of

chemokine C-X-C motif ligand 13 (CXCL13) (p value = 0.02,

Mann-Whitney U), compared to responding melanomas

(Supplementary Figure S6). Interestingly, CXCL13 expression

facilitates recruitment of B cells, and leads to an immune-

suppressive TME, promoting initiation of tumorigenesis,

tumour progression and metastasis (74, 75). In addition,

several studies have reported that CXCL13 modulates cancer

stem cell properties by recruiting B-cells (74, 76). Overall, these

reports are consistent with our data.

Therefore, as depicted in Figure 9, we surmise that the

responding melanoma bed was composed of larger numbers of
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activated DCs, capturing the neoantigens and presenting them on

MHC molecules to T cells, resulting in their activation, which is

reflective of an immunologically “hot” tumour microenvironment.

On the other hand, non-responding melanomas lacked activated

DCs, and produced fewer neoantigens, which led to insufficient

signals to trigger activation of T cells. In addition, the abundance of

M2 macrophages in the non-responding melanoma bed inhibited

effector T cell activation. This together with de-differentiated gene

expression signatures, was associated with innate resistance to anti-

PD1 therapy, and led to an immunologically “cold” tumour

environment for melanomas.

Our study expands knowledge of the TMB, expressed

neoantigens, tumour immune microenvironment and

phenotype switching in melanoma, although our study had

certain limitations. Due to the retrospective nature of the

study, the responding and non-responding melanomas to anti-

PD1 therapy represented relatively small numbers of

melanomas, and the relative numbers of melanomas in each

group were not representative of the relative incidence in the

entire malignant cutaneous melanoma population. Additionally,

the conclusions are drawn from bioinformatic analyses of an
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initial sample cohort from a single institution. Further validation

using in vivo malignant melanoma models, as well as larger

cohort studies are thus warranted.
Conclusion

Our results suggest that TMB positively correlated with

neoantigen expression in melanoma, and TMB also exhibited a

moderate positive relationship with melanoma immune scores.

Additionally, we identified that responding melanomas were

comprised mainly of tumour cells with relatively more highly

differentiated, and proliferative gene expression signatures,

which were associated with comparatively immunologically

“hot” tumour microenvironments. Furthermore, our data

suggest that immunogenicity in the melanoma tumour

microenvironment was associated with the interplay between

the transcriptomic state(s) of the tumour cells, neoantigen

expression and immune cell types present in the tumour bed,

highlighting the need for alternative therapeutic strategies to

target dormant cell types in non-responding melanomas.
FIGURE 9

Hypothetical presentation of responding tumour microenvironment versus non-responding tumour microenvironment. The upper panel is
representing melanoma de-differentiation trajectory and the lower panel is focusing on the interplay between melanoma cell types and immune
cell composition. This image was generated using BioRender.com.
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